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Abstract. An analysis is preformed to study the heat transfer characteristic of unsteady
mixed convection flow of a viscous fluid in the vicinity of a stagnation point of a general
three-dimensional body embedded in a porous media. The velocity in the potential flow
is assumed to vary arbitrary with time. The non-Darcy effects including convective,
boundary and inertial effects are included in the analysis.Both nodal-point region
(0 ≤ c ≤ 1), wherec = b/a is the ratio of the velocity gradients iny andx directions
in the potential flow and saddle point region (−1 ≤ c < 0), are considered. The semi-
similar solutions of the momentum and energy equations are obtained numerically using
finite difference method. Also a self-similar solution is found when the velocity in the
potential flow and the wall temperature vary with time in particular manner. Many results
are obtained and a representative set is displayed graphically to illustrate the influence of
the physical parameters on the surface shear stresses and the surface heat transfer.

Keywords: unsteady flow, mixed convection, stagnation-point, self-similar solution,
porous media.

Nomenclature

a, b principal curvatures of the body at the stagnation point
c curvature ratio at the stagnation point
Cfx surface skin friction coefficient in thex direction
Cfy surface skin friction coefficient in they direction
cp specific heat at a constant pressure
E, E1 Eckert numbers
f dimensionless velocity component in thex direction
g acceleration due to gravity
g(η, t∗) dimensionless temperature
Grx local Grashof number
k thermal conductivity
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K permeability
Nux local Nusselt number
Pr Prandtl number
Rex local Reynolds number
s dimensionless velocity component in the y direction
t time
t∗ dimensionless transformed independent variable based on time
T temperature
u, v, w velocity components in thex, y andz directions, respectively
x, y, z local orthogonal coordinates withx andy axes along the body surface andz

axis normal to the surface

Greek symbols

α thermal diffusivity
β bulk coefficient of thermal expansion
χ mixed convection parameter
∆ second order resistance
ε porosity
φ dimensionless velocity component in thez direction
η dimensionless transformed independent variable based onz
γ first order resistance
Γ empirical constant
λ dimensionless parameter which characterizes the unsteadiness in the flow field
µ fluid dynamic viscosity
ν fluid kinematics viscosity
ρ fluid density

Subscripts

i initial condition
w wall condition
∞ condition in the ambient fluid

Superscript
′ denotes derivative with respect toη

1 Introduction

Convective heat transfer in fluid-saturated porous media has important applications in
both technology and geothermal energy recovery. Most of therecent research on convec-
tive flow in porous media has been directed to the problems of steady free and mixed
convection flows over heated bodies embedded in fluid-saturated porous media. Ho-
wever, unsteady convective boundary layer flow problems have not, so far, received as
much attention. The analysis of many practical fluid mechanics problems depends on
understanding the behavior of the unsteady boundary layer.It is of interest in problems
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covering dynamic stall of helicopters, rotor blades, and turbo machinery, acoustics, aero-
nautics and missile aerodynamics. For such wide applications as geothermal serves the
design of high temperature insulation and reactors and thinfilm separation in chemical
processes. Perhaps, the first study on unsteady boundary layer flow on flat surfaces in
porous media was made by Johnson and Cheng [1] who found similarity solutions for
certain variations of the wall temperature. The more commoncases, in general, involve
transient convection, which is non-similar and hence, morecomplicated mathematically.
The interested reader can find an excellent collection of papers on unsteady convective
flow problems over heated bodies embedded in a fluid-saturated porous medium in the
review papers by Bradean et al. [2] and in the book by Pop and Ingham [3].

The present paper address the problem of mixed convection flow in the region of
a general three-dimensional stagnation point (i.e., nodalor saddle point)of a body em-
bedded in a porous medium in the presence of first and second orders resistances, which
to the best of our knowledge have not been investigated yet. Although the problem of
mixed convection flow over three-dimensional bodies embedded in porous media has
not been studied very much, the corresponding case of clear (non-porous) fluid has been
investigated by a number of researchers. The unsteady three-dimensional free convection
flow in the stagnation-point region on a general curved isothermal surface placed in an
ambient fluid was studied by Hang et al. [4]. Eswara and Nath [5] studied the unsteady
laminar incompressible mixed convection boundary layer flow with large injection rates
at the stagnation point of a three-dimensional body. Kumariand Nath [6] studied the
unsteady flow and heat transfer of a viscous fluid in the stagnation region of a three-
dimensional body surrounded by a magnetic field.

Several investigations have been carried out also for the two-dimensional case of
free and mixed convection in porous media. Nazar et al. [7] have studied the unsteady
mixed convection boundary layer flow near the region of a stagnation point on a vertical
surface embedded in a Darcian fluid-saturated porous medium. A detailed theoretical
study of unsteady free convection boundary-layer flow near the stagnation point of a two-
dimensional cylindrical surface embedded in a fluid-saturated porous medium has been
studied by Merkin and Pop [8].

Hassanien et al. [9] have studied recently the unsteady freeconvection flow in the
stagnation-point region of a three-dimensional body embedded in a porous media. More
recently, the problem of free convection boundary layer flownear a three-dimensional
stagnation point of attachment resulting from a step changein its constant surface tem-
perature has been studied by Shafie et al. [10].

Motivation to study mixed convection in porous media comes from the need to
characterize the convective transport processes around deep geological repository for
the disposal of high-level nuclear waste, e.g. spent fuel rods from nuclear reactors (see
Lai [11]).

The aim of the this analysis is to study the development of mixed convection in
the stagnation flow of a three-dimensional body embedded in aporous medium in the
presence of first and second orders resistances. The semi-similar solutions of the partial
differential equations are obtained by the local non-similarity solutions. Also a self-
similar solution is found when the velocity in the potentialflow and the wall temperature
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vary with time in a particular manner.

2 Mathematical analysis

Let us consider the unsteady laminar motion of a viscous incompressible fluid in the
neighborhood of the forward stagnation point of a three-dimensional body. The physical
model and coordinate system are shown in Fig. 1.

Fig. 1. Schematic representation of coordinates, velocitycomponents and the
streamlines in the external stream.

A locally orthogonal set of coordinates(x, y, z) is chosen with the origin o at the
lowest stagnation point, withx andy the coordinates along the body surface andz the
coordinate perpendicular to the body surface at o. Gravityg is normal to the surfacex = 0
andy = 0 and acts opposite toz direction. Letu, v andw denote the velocity components
alongx, y andz directions, respectively. The parametersa andb are the curvatures of
the body measured in the planesy = 0 andx = 0, respectively. The components of
buoyancy force in thex, y andz directions areaxβg(T − T∞), byβg(T − T∞), and0
given by Banks [12]. The boundary layer equations of continuity, momentum and energy
governing the unsteady flow are given below:

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0, (1)

Du

Dt
= −ρ−1 ∂p

∂x
+ ν∇2u + axgβ(T − T∞) − νε

K
u − Γε2

K12
u2, (2)

Dv

Dt
= −ρ−1 ∂p

∂y
+ ν∇2v + bygβ(T − T∞) − νε

K
v − Γε2

K12
v2, (3)

Dw

Dt
= −ρ−1 ∂p

∂z
+ ν∇2w − νε

K
w − Γε2

K12
w2, (4)

ρcp
DT

Dt
= k∇2T + µ

(

∂2u

∂z2
+

∂2v

∂z2

)

, (5)
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where

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
,

D

Dt
=

∂

∂t
+ u

∂

∂x
+ v

∂

∂y
+ w

∂

∂z
.

The initial conditions (i.e., conditions att = 0) are given by

u = ui, v = vi, w = wi, p = pi, T = Ti, at t = 0. (6)

The boundary conditions are

u = v = w = 0, p = p0, T = Tw at z = 0, x ≥ 0, y ≥ 0,

u → U, v → V, w → W, T → T∞ as z → ∞, x ≥ 0, y ≥ 0,
(7)

u = U, v = V, w = W, T = T∞ at x = 0, y ≥ 0, z > 0,

u = U, v = V, w = W, T = T∞ at y = 0, x ≥ 0, z > 0.

Herep is the static pressure;T is the temperature;ρ andµ are the fluid density and the
dynamic viscosity, respectively;ν is the kinematics viscosity;cp is the specific heat at
a constant pressure;k is the thermal conductivity;β is the bulk coefficient of thermal
expansion;p0 is the stagnation pressure;U, V andW are the components of velocity
in the potential flow;ε, K, Γ are the porosity, the permeability and empirical constant.
The subscriptsi, w and∞ denote initial condition, condition at the wall and condition at
infinity.

3 Semi-similar equations

The equations governing the unsteady flow (1)–(5) are partial differential equations with
four independent variables(t, x, y, z). To reduce these equation to partial differential
equations with two independent variables(η, t∗), the potential velocity components inx
andy directions are taken in the form (Kumari and Nath [6]):

U = axφ(t∗), V = byφ(t∗),

t∗ = at, a = (∂U/∂x)t∗=0 and b = (∂V/∂y)t∗=0.
(8)

Substituting from equation (8) into the equation of continuity (1), we can get the third
component of the potential velocity in the form.

W = −a(1 + c)zφ(t∗), c = b/a. (9)

Using the three-dimensional unsteady Bernoulli equation,the pressurep is given by

p0 − p =
ρa2

2

[(

φ2 + γφ + ∆φ2 +
dφ

dt∗

)

x2 +

(

cφ2 + γφ + c∆φ2 +
dφ

dt∗

)

cy2

+

(

(1 + c)φ2 − dφ

dt∗
− γφ + ∆(1 + c)φ2

)

(1 + c)z2

]

,

(10)
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whereγ = νε/Ka is the first order resistance and∆ = Γε2L/K1/2 is the second order
resistance.

Now we apply the following transformations (Kumari and Nath[6]):

η = (a/ν)1/2z, u = Uf ′(η, t∗), v = V s′(η, t∗),

w = −(aν)1/2φ(t∗)
[

f
(

η, t∗
)

+ cs
(

η, t∗
)]

,

p0 − p =
(

ρa2/2
)[(

φ2 + γφ + ∆φ2 + dφ/dt∗
)

x2

+
(

cφ2 + γφ + c∆φ2 + dφ/dt∗
)

cy2 + (2ν/a)P
(

η, t∗
)]

,

T − T∞ = (Tw − T∞)
[

g0

(

η, t∗
)

+ (x/L)2g1

(

η, t∗
)

+ (y/L)2g2

(

η, t∗
)]

= (Tw − T∞)g
(

η, t∗
)

,

(11)

to equations (1)–(5). We get

f ′′′ + φ(f + cs)f ′′ + φ
(

1 − f ′2
)

+ φ−1
(

dφ/dt∗
)(

1 − f ′
)

+ γ
(

1 − f ′
)

+ ∆φ
(

1 − f ′2
)

− ∂f ′/∂t∗ − φ−1χ
[

g0 + (x/l)2g1 + (y/l)2g2

]

= 0, (12)

s′′′ + φ(f + cs)s′′ + cφ
(

1 − s′2
)

+ φ−1
(

dφ/dt∗
)(

1 − s′
)

+ γ
(

1 − s′
)

+ cφ∆
(

1 − s′2
)

− ∂s′/∂t∗ − φ−1χ
[

g0 + (x/l)2g1 + (y/l)2g2

]

= 0, (13)

1

Pr
g′′0 + φ(f + cs)g′0 − ∂g0/∂t∗ = 0, (14)

1

Pr
g′′1 + φ(f + cs)g′1 − 2φf ′g1 + Eφ2f ′′2 − ∂g1/∂t∗ = 0, (15)

1

Pr
g′′2 + φ(f + cs)g′2 − 2φcs′g2 + E1φ

2s′′2 − ∂g2/∂t∗ = 0, (16)

P =
1

2
(f + cs)2φ2 +

(

f ′ + cs′
)

φ −
∂

∂t∗

η
∫

0

(f + cs)φ∂η. (17)

The initial conditions are

f = fi, s = si, g0 = g0i, g1 = g1i, g2 = g2i at t∗ = 0, (18)

and the boundary conditions are given by

f = f ′ = s = s′ = 0, g0 = 1, g1 = g2 = 0 at η = 0,
(19)

f ′ → 1, s′ → 1, g0 = g1 = g2 = 0 as η → ∞,

where primes denote the derivative with respect toη andE = a2L2

cp(Tw−T∞) , E1 = c2E are

Eckert numbers;Pr = µcp/k is the Prandtl number.
The corresponding steady-state equations are obtained by putting t∗ = 0, φ = 1,
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∂/∂t∗ = 0 in equations (12)–(16) and they are given by

f ′′′ + (f + cs)f ′′ +
(

1 − f ′2
)

+ γ
(

1 − f ′
)

+ ∆
(

1 − f ′2
)

− χ
[

g0 + (x/l)2g1 + (y/l)2g2

]

= 0, (20)

s′′′ + (f + cs)s′′ + c
(

1 − s′2
)

+ γ
(

1 − s′
)

+ c∆
(

1 − f ′2
)

− χ
[

g0 + (x/l)2g1 + (y/l)2g2

]

= 0, (21)

1

Pr
g′′0 + (f + cs)g′0 = 0, (22)

1

Pr
g′′1 + (f + cs)g′1 − 2f ′g1 + Ef ′′2 = 0, (23)

1

Pr
g′′2 + (f + cs)g′2 − 2cs′g2 + E1s

′′2 = 0, (24)

P =
1

2
(f + cs)2 +

(

f ′ + cs′
)

φ, (25)

whereχ = Grx/Re2
x = gβ∆T/aU∞ is the mixed convection parameter;Grx =

gβ(Tw−T∞)x3/ν2 is the local Grashof number,Rex = U∞x/ν is the Reynolds number.

The boundary conditions for equations (20)–(24) are given by equations (18), (19).

Hereη andt∗ are the transformed independent variables; prime denotes derivative
with respect toη; f ′ ands′ are the dimensionless velocity components alongx andy di-
rection, respectively;P is the dimensionless pressure;L = (ν/a)1/2 is the characteristic
length;a andb are the velocity gradients alongx andy directions in the potential flow and
c = b/a is their ratio. The functionφ(t∗) should be chosen such that bothφ anddφ/dt∗

are continuous functions.

It may be noted that equations (20) and (21) forγ = ∆ = χ = 0 (clear fluid in forced
convection limit) are essentially the same as those of Kumari and Nath [6] but without
magnetic field, those of Howarth [13] for the flow in the nodal-point region (0 ≤ c ≤ 1)
and those of Davey [14] in the saddle-point region (−1 ≤ c < 0). Also equation (20) and
(22) withγ = ∆ = χ = 0 are identical to those of Kumari and Nath [6] and Hayday and
Bowlus [15] in the region (0 ≤ c ≤ 1).

Most the dimensional shapes of practical interest lie between a cylinder (c = 0) and
a sphere (c = 1), which are discussed by Kumari and Nath [6].

The quantities of physical interest are the local skin friction coefficients inx andy
directions and the local heat transfer coefficient in terms of the Nusselt umber.

Cfx = 2µ(∂u/∂z)z=0/ρU2
∞

=
2√
Rex

φ(t∗)f ′′(0, t∗), (26)

Cfy = 2µ(∂v/∂z)z=0/ρU2
∞

=
2√
Rex

(V∞/U∞)φ(t∗)s′′(0, t∗), (27)
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Nux = −x(∂T/∂z)z=0/(Tw − T∞)

= −
1√
Rex

[

g′0(0, t∗) + (x/L)2g′1(0, t∗) + (y/L)2g′2(0, t∗)
]

,

= −
1√
Rex

g′(0, t∗). (28)

Where

U∞ = ax, V∞ = by, Rex = U∞x/ν, (29)

hereCfx andCfy are the local skin friction coefficients inx and y directions, respectively;
Nux is the local Nusselt number;Rex is the local Reynolds number;U∞ andV∞ are the
components of the velocity inx andy direction in the potential flow for the steady-state
case. ForC = 0, V∞ = 0 and forC = 1, U∞ = V∞.

4 Self-similar equations

The partial differential equations (1)–(5) with four independent variables(t, x, y, z) can
be reduced to a system of ordinary differential equations ifthe velocity components in
x and y directions in the potential flow vary directly as a linear function of distance and
inversely as a linear function of time. The velocity components are given by

U = ax(1 − λt∗)−1, V = by(1 − λt∗)−1, λt∗ < 1. (30)

From the continuity equation, we get thez-component of the velocity as

w = −a(1 + c)(1 − λt∗)−1z. (31)

The wall temperatureTw0 is the value ofTw at t∗ = 0 varies

Tw − T∞ = (Tw0 − T∞)(1 − λt∗)−2. (32)

From the Bernoulli equation we get the expression for the pressurep as

p0 − p =
1

2
ρa2(1 − λt∗)−2

[

(1 + λ + γ + ∆)x2 + c(c + λ + γ + c∆)y2
]

+ (1 + c)
[

1 + c − λ − γ + ∆(1 + c)
]

z2.
(33)

We apply the following transformations along with equations (29)–(32)

η = (a/ν)(1 − λt∗)−1/2z, t∗ = at, u = ax(1 − λt∗)−1f ′(η), (34)

v = by(1 − λt∗)−1s′(η), w = −(aν)(1 − λt∗)−1/2[f(η) + cs(η)], (35)

T − T∞ = (Tw − T∞)
[

g0(η) + (x/l)2g1(η) + (y/l)2g2(η)
]

= (Tw − T∞)g(η), (36)

p0 − p =
1

2
ρa2(1 − λt∗)−2

[

(1 + λ + γ + ∆)x2 + c(c + λ + γ + c∆)y2

+ (2ν/a)
(

1 − λt∗p(η)
)]

(37)
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to equations (1)–(5) and it is found that (1) is identically satisfied and (2)–(5) reduce to

f ′′′ + (f +cs)f ′′ +
(

1−f ′2
)

+ γ
(

1−f ′
)

+ ∆
(

1−f ′2
)

+ λ
(

1−f ′−ηf ′′/2
)

− χ
[

g0 + (x/l)2g1 + (y/l)2g2

]

= 0, (38)

s′′′ + (f +cs)s′′ + c
(

1−s′2
)

+ γ
(

1−s′
)

+ c∆
(

1−s′2
)

+ λ
(

1−s′−ηs′′/2
)

− χc
[

g0 + (x/l)2g1 + (y/l)2g2

]

= 0, (39)

1

Pr
g′′0 + (f + cs)g′0 −

1

2
ηg′0 − 2λg0 = 0, (40)

1

Pr
g′′1 + (f + cs)g′1 − 2f ′g1 − 2λg1 −

1

2
ληg′1 + Ef ′′2 = 0, (41)

1

Pr
g′′2 + (f + cs)g′2 − 2cs′g2 − 2λg1 −

1

2
ληg′1 + E1s

′′2 = 0, (42)

P =
1

2
(f + cs)2 − (λ/2)η(f + cs). (43)

The boundary conditions are given by

f = f ′ = s = s′ = g1 = g2 = 0, g0 = 1 at η = 0,
(44)

f ′ = s′ = 1, g0 = g1 = g2 = 0, as η → ∞,

hereλ is the dimensionless parameter which characterizes the unsteadiness in the flow
field. For the accelerating flowλ > 0 and for the decelerating flowλ < 0. The above
equations reduce to steady-state equations forλ = 0 which are given by (20)–(24).

It may be noted that equations (38)–(42) forγ = ∆ = λ = 0 (clear fluid in forced
convection limit) are identical to those of Kumari and Nath [6] without magnetic field.
Also equation (28), (39) and (40) withγ = ∆ = χ = λ = 0 are the same as those of
Teipel [16].

The local skin friction coefficients inx andy directions and the local Nusselt number
(heat transfer coefficients) are expressed as

Cfx = 2µ(∂u/∂z)z=0/ρU2 =
2√
Rex

φ(t∗)f ′′(0, t∗), (45)

Cfy = 2µ(∂v/∂z)z=0/ρU2 =
2√
Rex

(V/U)φ(t∗)s′′(0, t∗), (46)

Nux = −x(∂T/∂z)z=0/(Tw − T∞)

= − 1√
Rex

[

g′0(0, t∗) + (x/L)2g′1(0, t∗) + (y/L)2g′2(0, t∗)
]

,

= − 1√
Rex

g′(0, t∗), (47)

whereRex = Ux/ν.
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5 Method of solution

The partial differential equations governing the semi-similar flow, equations (12)–(16)
under boundary conditions (19) and initial conditions (20)–(24), are solved numerically
using a finite difference scheme developed by Nakamura [17].Hence, for the sake of
completeness, we present here only an outline of this method. Equations (12)–(16) are
coupled non-linear parabolic partial differential equations in f, s and gi, i = 1, 2, 3.
First, equations (12) and (13) are linearized and the resulting third-order linear partial
differential equations are converted into second order partial differential equations by
substitutingf ′ = F and s′ = S. The variablesf and s in equations (14), (16) are
considered as non-linear coefficients and are evaluated by numerical integration from
F and S. These linear partial differential equations are discretised using the central
difference approximation in theη coordinate and backward difference approximation in
the t∗ coordinate. For the time stepk, the discretised equations become tri-diagonal
equations. This system of equations for each time step requires an iterative procedure
due to the presence of non-linear coefficients. Successive substitution and iteration are
continued for each time step until convergence is reached. Equations (20)–(24) under
boundary conditions (19) were solved by using a double shooting method in order to
accurately obtain the initial values of the various functions at timet∗ = 0.

In a similar manner the systems of equations (38)–(42) with the boundary conditions
(44) governing the self-similar flow case also been solved.

6 Results and discussion

The partial differential equations (12)–(16) governing the semi-similar flow and the or-
dinary differential equations (38)–(42) governing the self-similar flow have been solved
numerically using the method described earlier. In order toasses the accuracy of the
method, we have compared the surface shear stresses inx andy directions (f ′′(0), s′′(0))
for the steady-state case (t∗ = 0) whenγ = ∆ = χ = 0 (clear fluid in forced convection
limit) with those of Kumari and Nath [6], Howarth [13] and Hayday and Bowlus [15] in
the nodal point region (0 ≤ c ≤ 1) and with those of Kumari and Nath [6] and Davey [14]
in the saddle-point region (−1 ≤ c < 0). The heat transfer parameter (−g′0(0)) for the
nodal-point region whenE = E1 = 0 (without viscous dissipation) are compared with
that of Kumari and Nath [6] and Hayday and Bowlus [15]. In all the cases the results are
found to be in excellent agreement. The comparison is presented in Tables 1–3.

The variation of the surface shear stresses inx andy directions,f ′′(0, t∗), s′′(0, t∗),
and the surface heat transfer−g′(0, t∗) with time t∗ for the accelerating flowφ(t∗) =
1 + δt∗, δ = 0.2, c = −0.5, γ = 0.0, 0.5, 1.0, ∆ = 0.0, Pr = 0.7, E = E1 = 0.2,
x/l = y/l = 0.2, χ = 0, 0.5 is presented in Figs. 2–4. It is observed that as the first
resistance parameterγ increases bothf ′′(0, t∗) ands′′(0, t∗) increases and the magnitude
of −g′(0, t∗), which characterize the heat transfer rate decreases. Hover as the mixed
convection parameterχ increases the surface shear stresses and the surface heat transfer
all increase. Also both off ′′(0, t∗) and−g′(0, t∗) increases with the increase of timet∗
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whereass′′(0, t∗) increases up to certain value oft∗ depends onχ and then decreases as
t∗ increases.

Table 1. Comparison of surface shear stresses for the steadystate case,f ′′(0), s′′(0),
whent∗ = 0, 0 ≤ c ≤ 1

Present results Kumari and Nath [6] Howarth [13]
c f ′′(0) s′′(0) f ′′(0) s′′(0) f ′′(0) s′′(0)

1.0 1.31194 1.31194 1.3153 1.3153 1.312 1.312
0.75 1.28863 1.16433 1.2892 1.1723 1.288 1.164
0.5 1.26687 0.99813 1.2654 1.0142 1.267 0.998
0.25 1.24761 0.80515 1.2453 0.8378 1.247 0.805
0.0 1.23258 0.57049 1.2268 0.5848 1.233 0.570

Table 2. Comparison of surface shear stresses for the steadystate case,f ′′(0), s′′(0),
whent∗ = 0, −1 ≤ c < 0

Present results Kumari and Nath [6] Davey [14]
c f ′′(0) s′′(0) f ′′(0) s′′(0) f ′′(0) s′′(0)

-0.1 1.22843 0.45937 1.2282 0.4594 1.2284 0.4594
-0.2 1.22577 0.33533 1.2256 0.3350 1.2258 0.3353
-0.3 1.22501 0.19700 1.2248 0.1973 1.2250 0.1970
-0.4 1.22646 0.04597 1.2262 0.0459 1.2265 0.0460
-0.5 1.23019 -0.11150 1.2304 -0.1113 1.2302 -0.1115
-0.6 1.23593 -0.26659 1.2361 -0.2664 1.2359 -0.2666
-0.7 1.24322 -0.41295 1.2430 -0.4128 1.2432 -0.4130
-0.8 1.25169 -0.54872 1.2519 -0.5485 1.2517 -0.5488
-0.9 1.26115 -0.67521 1.2610 -0.6758 1.2612 -0.6761
-1.0 1.27154 -0.79449 1.2732 -0.8110 1.2729 -0.8112

Table 3. Comparison of surface shear stresses for the steadystate case,−g′

0(0), when
t∗ = 0, 0 ≤ c ≤ 1

Present results Kumari and Nath [6] Hayday and Bowlus [15]
c Pr = 0.7 Pr = 10 Pr = 0.7 Pr = 10 Pr = 0.7 Pr = 10

1.0 0.66538 1.75208 0.6656 1.7523 0.6654 1.7521
0.75 0.62308 1.64171 0.6233 1.6419 0.6231 1.6417
0.5 0.57967 1.53140 0.5798 1.5311 0.5797 1.5314
0.25 0.53621 1.42634 0.5358 1.4265 0.5362 1.4263
0.0 0.49587 1.33880 0.4957 1.3386 0.4959 1.3389
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The variation of the surface shear stresses inx andy directions,f ′′(0, t∗), s′′(0, t∗)
and the surface heat transfer−g′(0, t∗), with the ratio velocity gradients in the free stream
c (nature of the stagnation point) fort∗ = 1.5, φ(t∗) = 1 + δt∗, δ = 0.2, γ, ∆ =
0.0, 0.5, 1.0, E = E1 = 0.2, Pr = 0.7, x/l = y/l = 0.2, χ = 0, 0.5, 1, 3 are presented
in Figs. 5–7. It can be seen from Fig. 5 that the shear stressesin x-directions,f ′′(0, t∗)

Fig. 2. Variation of the surface shear stress
in x-directionf ′′(0, t∗) with time t∗ for the
accelerating flowφ(t∗) = 1 + δt∗2, Pr =
0.7, δ = 0.2, c = −0.5, ∆ = 0.0 with

various values ofγ andχ.

Fig. 3. Variation of the surface shear stress
in y-direction s′′(0, t∗) with time t∗ for the
accelerating flowφ(t∗) = 1 + δt∗2, Pr =
0.7, δ = 0.2, c = −0.5, ∆ = 0.0 with

various values ofγ andχ.

Fig. 4. Variation of the surface heat transfer
−g′(0, t∗) with time t∗ for the accelerating
flow φ(t∗) = 1 + δt∗2, Pr = 0.7, δ = 0.2,
c = −0.5, ∆ = 0.0, x/L = y/L = 0.1,
E=E1=0.2 with various values ofγ andχ.

Fig. 5. Variation of the surface shear
stress inx-directionf ′′(0, t∗) with c for the
accelerating flowφ(t∗) = 1 + δt∗2, Pr =
0.7, δ = 0.2, t∗ = 1.5, ∆ = 0.0 with various

values ofγ andχ.
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is rather insensitive to the change inc. This is similar to the forced convection case
increase with the first and second order resistances and the mixed convection parameter
also increases. Similar trend has been observed by Kumari and Nath [6]. Hover, the
effect of bothχ and γ parameter is significant. Fig. 6 indicate that the surface shear
stresses iny-directions,s′′(0, t∗), continuously increases with increasingc and vanishes
at c = −0.7536 for χ = 0 (forced convection limit) and the reverse flow occurs in the
region (−1 ≤ c < −0.7536). Whenχ > 0 there is no reverse flow. Therefore, the
increase in the free stream velocity or (and) in the buoyancyforce delay or prevent the
occurrence of flow reversal. As illustrated in Fig. 7 it is observed that, the surface heat
transfer−g′(0, t∗), decreases with decreasingc, χ, γ until at some negative value ofc
where the flow is revised. Consequently, the heat transfer rate increases asc, χ, γ further
increases.

Fig. 6. Variation of the surface shear
stress iny-direction s′′(0, t∗) with c for the
accelerating flowφ(t∗) = 1 + δt∗2, Pr =
0.7, δ = 0.2, t∗ = 1.5, ∆ = 0.0 with various

values ofγ andχ.

Fig. 7. Variation of the surface heat transfer
−g′(0, t∗) with c for the accelerating flow
φ(t∗) = 1 + δt∗2, Pr = 0.7, δ = 0.2,
t∗ = 1.5, c = −0.5, ∆ = 0.0 with various

values ofγ andχ.

The effects of the second order resistance∆ on the surface shear stresses inx andy
directions,f ′′(0, t∗), s′′(0, t∗) and the surface heat transfer−g′(0, t∗), are illustrated in
Figs. 8–10. The second order parameter∆ has the same trend as the first order parameter
γ as discussed in Figs. 5–7.

The velocity profiless′(η, t∗) for φ(t∗) = 1 + δt∗2, δ = 0.2, t∗ = 1.5, Pr = 0.7,
c = −0.5 with various values ofγ, ∆ andχ are shown in Fig. 11. It is observed that the
magnitude and the region of reverse flow decrease with increasing the mixed convection
parameterχ and increase with increasing the second order resistance parameter∆ while
there is no reverse flow for all values of the first order resistance parameterγ. Since
the velocity profiles inx-direction,f ′(η, t∗), and the temperature profiles,g(η, t∗), show
usual features of boundary layer flows [13–15], they are not shown here.
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Fig. 8. Variation of the surface shear
stress inx-directionf ′′(0, t∗) with c for the
accelerating flowφ(t∗) = 1 + δt∗2, Pr =
0.7, δ = 0.2, t∗ = 1.5, γ = 0.0 with various

values of∆ andχ.

Fig. 9. Variation of the surface shear
stress iny-direction s′′(0, t∗) with c for the
accelerating flowφ(t∗) = 1 + δt∗2, Pr =
0.7, δ = 0.2, t∗ = 1.5, γ = 0.0 with various

values of∆ andχ.

Fig. 10. Variation of the surface heat transfer
−g′(0, t∗) with c for the accelerating flow
φ(t∗) = 1 + δt∗2, Pr = 0.7, δ = 0.2,
t∗ = 1.5, γ = 0.0 with various values of∆

andχ.

Fig. 11. Effect of the first and second
resistance parametersγ and∆ on the velocity
profiles iny-direction,s′(η, t∗), with φ(t∗) =
1 + δt∗2, Pr = 0.7, δ = 0.2, t∗ = 1.5,

c = −0.5 andχ = 0.0, 0.5.

7 Conclusions

Equations of motion and energy governing the unsteady mixedconvection flow of a
viscous fluid in near a stagnation point of a general three-dimensional body embedded in a
porous media are integrated. The velocity in the potential flow is assumed to vary arbitrary
with time. The non-Darcy effects including convective, boundary and inertial effects are
included in the analysis. Both nodal-point region and saddle-point region are consid-
ered. The semi-similar solutions of the momentum and energyequations are obtained
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numerically using finite difference method. Also a self-similar solution is found when the
velocity in the potential flow and the wall temperature vary with time in particular manner.
Many results are obtained and a representative set is displayed graphically to illustrate
the influence of the physical parameters on the surface shearstresses and the surface
heat transfer. Whenever possible, these results are compared with available numerical
solutions and found to be highly accurate. The results indicate that significant changes
occur in the shear stresses and the surface heat transfer. For a certain negative value of
the parameterc, flow reversal takes place in the velocity component iny-direction. The
buoyancy force or (and) the accelerating free stream velocity tends to delay or prevent
flow reversal. The presence of the buoyancy force and the solid matrix increases the shear
stress inx andy directions and the surface heat transfer.
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