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Abstract. A three-trophic model for marine community is proposed and investigated
by means of numerical bifurcation analysis. The proposed model based on a modified
version of the Leslie-Gower scheme, incorporates mutual interference in all the three
populations and generalizes several other known models in the ecological literature. We
investigate the dynamical behavior of the model system by considering the Holling type II
functional response of toxin liberation process. Bifurcation diagram and two-dimensional
parameter scan suggest that chaotic dynamics is robust to variations in toxin production
by phytoplankton. Our study suggests that toxic substancesreleased by TPP population
may act as bio-control by changing the state of chaos to order. The mutual interference
also induces chaos and acts as both stabilizing and destabilizing factors.

Keywords: chaotic dynamics, toxin producing phytoplankton, aquaticsystem, functional
response.

1 Introduction

Ecological systems have all the necessary characteristics(nonlinearity, high-dimensions,
etc.) to support chaotic dynamics [1]. Chaotic dynamics andlimit cycles are common
in tri-trophic food chain model and are of common interest toboth the theoretical and
experimental population biologists/ecologists. To assess the ecological implications of
chaotic dynamics in different natural system, it is important to explore changes in the
dynamics when structural assumptions of the system are varied. One such approach to the
study of the dynamics of marine ecological community is its food web and the coupling
of interacting species with each other [2]. Upadhyay and Rai[3] provided new examples
of a chaotic population system in a simple tri-trophic food chain with Holling type II
functional response. Aziz- Alaoui [4] revisited the Upadhyay and Rai model and found
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that the chaotic dynamics is observed via sequences of period-doubling bifurcation of
limit cycles which however suddenly break down and reverse giving rise to a sequence
of period-halving bifurcation leading to limit cycles. Upadhyay and Chattopadhyay [5]
modified the model of Upadhyay and Rai [3], by introducing an extra mortality term in
middle predator and interpreted the system for aquatic environment consisting of TPP-
Zooplankton-Molluscs food chain model. They observed thatan increase in the strength
of toxic substance released by toxin producing phytoplankton population reduces the
propensity of chaotic dynamics and changes the state of chaos to limit cycle and finally
settles down to stable focus. Ruxton [6] also showed that thesystem of linked populations
has a stabilizing effect on tri-trophic food chain model. Further study [7] reveals that the
rate of toxin production by TPP plays an important role for controlling oscillations in the
plankton system.

Many studies investigated the effect of mutual interference on the population dy-
namics. DeAngelis et al. [8] studied the dynamical properties of a continuous-time au-
tonomous model system incorporating their interference model. This model was studied
by Hwang [9] to establish that the periodic orbits, if they exist, are unique. The models
considered for interference have different mathematical expressions and different con-
ceptual foundations [10]. From theoretical studies and empirical evidences, a consensus
has been reached to conclude that interference has a stabilizing influence on population
dynamics [11], although Hassell and May [12] pointed out that there was an upper limit
on the interference constant beyond which the dynamics becomes unstable. Predator-prey
models incorporating mutual interference were first proposed in Hassell [13] and Rogers
and Hassell [14]. A model incorporating density-dependentdeath rates was considered
by Levin [15]. Freedman and Rao [16] considered the Gause-type model incorporating
mutual interference among predators and a density-dependent predator death rate. Erbe
and Freedman [17] applied it to the simple food chain, modeled by Lotka -Volterra
dynamics. Here, I have used the concept for modelling it withmodified version of Leslie-
Gower scheme in a simple food-chain model modelling marine ecosystems. Motivated
by the above studies, we show that the chaotic behaviour as described by Upadhyay and
Rai [3,18] could be controlled by an auto-control mechanism.

In this paper, we propose a generalized model of aquatic ecological system by in-
troducing mutual interference in all the three populations, an extra mortality term in
zooplankton population and also taking into account the toxin liberation process of TPP
population. This model generalizes several other known models in the literature like
Upadhyay and Rai model [3, 18] and Hastings and Powell model [19]. One of the main
objectives of this study is to examine the roles of mutual interference parameters and
the parameterθ, the rate of toxin release by TPP population on the dynamics of the
model system. Different types of toxin release functionf1(x1), which represents the
toxin liberation process of TPP population is considered. The results reported in this
paper are only for Holling type II functional response.

This paper is organized as follows: in Section 2, we present the details of the model
system. The methodology used is presented in Section 3, to help us in selecting the
parameter values to perform simulation experiments. Numerical results are summarized
in Section 4 and conclusions are presented in Section 5.
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2 The mathematical model

Consider a situation where a prey populationx1 is predated by individuals of a population
x2. The populationx2, in turn serves as a favourite food for individuals of a population
x3. This interaction is represented by the following system (prey – specialist predator –
generalist predator interaction) of ordinary differential equations:

dx1

dt
= g1(x1, x2, x3) ≡ a1x1 − b1x

2
1 − w0

(

x1

x1 + D0

)m1

xm2

2 , (1a)

dx2

dt
= g2(x1, x2, x3) ≡ −a2x2 + w1

(

x1

x1 + D1

)m1

xm2

2

− w2

(

x2

x2 + D2

)m2

xm2

3 − θf1(x1)x2, (1b)

dx3

dt
= g3(x1, x2, x3) ≡ cxm3

3 − w3f2(x2)x
m3

3 , (1c)

wheremi > 0 for i = 1, 2, 3, a1, a2, b1, θ, w0, w1, w2, w3, c andD0, D1, D2, D3, D4 are
the positive constants andfi ∈ C0(R+) for i = 1, 2. The parametersmi for i = 1, 2, 3 are
mutual interference parameters that model the intraspecific competition among predators
when hunting for prey [13,16,17,20,21].

In this model, TPP population (prey) of sizex1 serves as the only food for the
specialist predator (zooplankton) population of sizex2. This zooplankton population,
in turn, serves as a favorite food for the generalist predator (molluscs) population of size
x3. The equations for rate of change of population size for preyand specialist predator
have been written following the Volterra scheme that is, predator population dies out
exponentially in the absence of its lone prey. The interaction between this predator
x2 and the generalist predatorx3 is modeled by the modified version of the Leslie-
Gower scheme, where the loss in a predator population is proportional to the reciprocal
of per capita availability of its most favorite food.a1 is the intrinsic growth rate of the
prey populationx1, a2 is the intrinsic death rate of the predator populationx2 in the
absence of the only foodx1, c measures the rate of self-reproduction of generalist predator
x3, w0, w1, w2, w3 are the maximum values which per capita growth rate can attain. b1

measures the strength of intra-specific competition among the individuals of the prey
speciesx1. D0 andD1 quantify the extent to which environment provides protection to
the preyx1 and may be thought of as a refuge or a measure of the effectiveness of the
prey in evading a predator’s attack.D2 is the value ofx2 at which per capita removal rate
of x2 becomesw2/2. Form1 = 1 the coefficientw0/(x1 + D0), of the third term on the
right hand side of (1a) is obtained by considering the probable effect of the density of the
prey’s population on predators attack rate. If this coefficient is multiplied byx1 (the prey
population at any instant of time), it gives the attack rate on the prey per predator. Denote
p(x1) = w0x1/(x1 + D0), whenx1 → ∞, p(x1) → w0 which is the maximum value
that it can reach. Some aquatic organisms condition their medium by releasing substances
that stimulate growth of species, which have similar genetic make-up. Sparse populations
rarely provide sufficient opportunities for social interaction necessary for reproduction.
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Here, f1(x1) represents the toxin liberation process of TPP population for which the
mortality of zooplankton increases and as a result, the grazing pressure of zooplankton on
TPP population decreases. The parameterθ is the rate of toxin release by TPP population.
w3 measures the limitation on the growth of the generalist predatorx3 by its dependence
on per capita availability of its most favorite preyx2 represented by the functionf2(x2).
f2(x2) = 1

x2+D3

whereD3 represents the residual loss inx3 population due to severe
scarcity of its favourite foodx2. Equations (1a)–(1c) describe the proposed model system.

A model system could be more realistic from ecological pointof view and interesting
from mathematical point of view if one considers different predator’s functional response
and compares the dynamic effects of these functional responses. Since functional re-
sponse encapsulates attributes of both prey and predator biology, so handling time, search
efficiency, encounter rate, prey escape ability, etc. should alter, in general, the functional
responses [22]. Therefore, predator’s functional response may be different when a partic-
ular predator preys different prey having different escapeability and if a particular prey
is predated by different predators having different hunting ability. The structure of prey
habitat is also responsible to alter the functional response. Thus, a predator which follows
type II functional response in homogeneous habitat may follow type III in a heterogeneous
medium. Anderson [23] experimentally observed in a kelp bass-kelp parch predator-
prey interaction for none and medium amounts of habitat structure, the type II functional
response had a better fit than linear models. However, for thehighest amount of habitat
structure a type III functional response had a better fit. In reality, the raptorial behaviour
of copepods is highly complex and exhibits a hunting behaviour [24] and hence type II
or type III is an appropriate choice. To characterize interface between phytoplankton
and zooplankton populations in the presence of toxic chemical, Holling type II functional
responses forf1(x1) is considered to study the dynamical behaviour of the model system.

It is easy to see that the functionsgi, i = 1, 2, 3 in (1a)–(1c) are continuous onR3
+,

whereR+ = [0,∞). Whenmi ≥ 1, the functions∂gi

∂xk

are continuous onR3
+. Following

Erbe et al. [17], we determine the conditions under which thesolutions of (1a)–(1c) form
a dynamical system.

A separate investigation is required when the parametersmi are sub-linear
(0 < mi < 1). In this case, we make the following assumptions:

Assumption 1. There exist functionshj continuous onR3
+, where

hj(x1, x2, x3) = x−mi

j gj(x1, x2, x3) with 0 < mj < 1, j = 1, 2, 3.

Assumption 2. xmk

k
∂

∂xk

hj(x1, x2, x3) are continuous onR3
+ for j 6= k = 1, 2, 3.

Assumption 3. All solutions of the systemdui

dt
= hi(u1, u2, u3) for i = 1, 2, 3 are

continuous onR3
+.

As in Erbe et al. [17], we consider the following change of variables for (1a)–(1c)

u1 = x1−m1

1 , u2 = x1−m2

2 , u3 = x1−m3

3 . (2)
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The system (1a)–(1c) transforms as

u′

1 = (1−m1)
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≡ h2(u1, u2, u3), (3b)

u′

3 = (1 − m3)

[

c − w3f2

(

u
1

1−m2

2

)]

≡ h3(u1, u2, u3). (3c)

The change of variables given in (2) transforms the sublinear system (3c) into (3b) in
which no sublinearities are present. Biologically, this amounts to requiring that the mutual
interferences are not too strong.

The above discussions may be summarized as follows.

Theorem 1. Consider the system of equations(1a)–(1c) in whichxi(0) ≥ 0, 0 < mi < 1
for i = 1, 2, 3. Assume that the Assumptions1–3hold. Then, the solutions of the system
equations(1a)–(1c) form a dynamical system in the sense of Nemytskii and Stepanov [25],
provided the mutual interference parameters satisfy the following inequalities:

m1 ≥
1

2
, m2 ≥

1

2
and m2 + m3 ≥ 1.

3 Methods of investigation

The model system presented above is a multi-parameter system. Model parameters are
selected in accordance with a method given in upadhyay et al.[3, 18]. A few hundred
parameter combinations (choosing two at a time) are possible. This is simply not feasible
for any one to scan the system in all the parameter spaces. Application of non-linear
dynamics is in unison with the knowledge of biology of the system and enables one to
choose parameter combinations for simulation experiments. The most crucial part of the
present methodology is the following conjecture:

Two coupled Kolmogorov systems in oscillatory mode would yield either cyclic (sta-
ble limit cycles and quasi-periodic) or chaotic solutions depending on the strength of
coupling between the two.

In the present case, the set of parameter values for which thesystem admits a limit
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cycle solution is found to be

a1 = 2.0, b1 = 0.05, w0 = 1.0, a2 = 1.0, w1 = 2.0, D1 = 10,

w2 = 0.55, D2 = 10, D4 = 10, θ = 0.003, c = 0.03,

w3 = 1.0, D3 = 20, m1 = 0.95, m2 = 0.95, m3 = 2.0.

(4)

There is one more important aspect of these simulation experiments i.e., choosing
the step size for the variation of a system parameter from a parameter combination within
the chosen range. It depends on the nature of the parameter concerned: whether it is a
slow varying or fast varying one.

The most useful way to study such a dynamical system is to monitor the amplitude
(maxima) of the subsequent oscillations as the control parameter of the system is varied. A
small change in parameter values may lead to a bifurcation: an abrupt, qualitative change
in the dynamics. There are number of ways to detect chaotic dynamics in dynamical
systems. We have used in our study the phase space representation, bifurcation diagram
and two dimensional scan.

4 Numerical results

Model system is integrated numerically using six-order Runge-Kutta method along with
predictor corrector method. It is observed that the model system (1a)–(1c) has a chaotic
solution at the following set of parameter values (see Fig. 1).

a1 = 1.93, b1 = 0.06, w0 = 1.0, D0 = 10.0, a2 = 1.0, w1 = 2.0,

D1 = 10.0, w2 = 0.405, D2 = 10.0, c = 0.03, w3 = 1, D3 = 20.0,

D4 = 10.0, m1 = 1.0, m2 = 1.0, m3 = 2.0, θ = 0.0.

(5)

The parameter values are selected on the basis of previous studies [4, 7] and corres-
pond to quantitative measures of attributes of the TPP-Zooplankton-Molluscs food chain.

Fig. 1. Phase plane diagram for model system (1a)–(1c) depicting chaotic attractor for
θ = 0, other parameter are same as given in (5) [7].
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To confirm the existence of chaos, the dynamics of the model system is studied
by constructing bifurcation diagram. For Holling type II functional response form for
toxin liberation process, we have plotted the successive maxima of top predatorx3 as a
function of the parameterθ (rate of toxin substances release by TPP population) keeping
other parameters fixed as given in equation (5) for model system (1a)–(1c). The Fig. 2
represents the bifurcation diagrams of model system (1a)–(1c) with Holling type II func-
tional response. This figure shows the transition from chaosto order through sequences of
period-halving bifurcation. From this bifurcation diagram, it is observed that an increase
in the value of toxic substances released by TPP population has a stabilizing effect. The
blow-up bifurcation diagram (see Fig. 2(b)) shows that the model system possesses rich
variety of dynamical behaviour for bifurcation parameterθ in the range[0, 0.06]. A period
– doubling cascade is observed. After the accumulation point, the behaviour settles down
onto a chaotic attractor. Whenθ, the bifurcation parameter is decreased, new periodic
orbits are created. The chaotic attractor emanating from the main one is destroyed by a
boundary crisis with the unstable periodic orbit created bythe saddle-node bifurcation. A
saddle-node bifurcation is merge and disappearance of two steady states one of them is
saddle and other is node. Two co-existing period – doubling cascades are then observed.

(a) (b)

Fig. 2. (a) Bifurcation diagram as a function ofθ for model system withf1(x1) of
Holling type II; (b) blown up bifurcation diagram of (a) in the range0 ≤ θ ≤ 0.2. Here

z stands forx3 in model system (1a)–(1c) [7].

Dynamical behavior of model system (1a)–(1c) depending on the results of bifurca-
tion diagrams given in Fig. 2 is presented in Table 1. From this result, we observe stable
focus, different order limit cycles and strange chaotic attractor in different ranges ofθ, the
rate of toxic substance released by TPP. Also, we conclude that for the model system, the
increase in the value of toxic substances released by TPP hasa stabilizing effect. These
observations indicate that to maintain the order of an ecosystem functioning, Holling type
II functional form for toxin liberation process is more appropriate.
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Table 1. Dynamical behavior of model system (1a)–(1c) depending on the results of
bifurcation diagrams given in Fig. 2. Pi – limit cycle of periodi for (i = 2, 4, 5, 6),
SF – stable focus, LC – limit cycle, LP – long period, SCA – strange chaotic attractor

Results of model (1a)–(1c) for Holling type II functional response
f(x) = x/(x + D4), whereD4 = 10

θ Dynamical behavior θ Dynamical behavior
0.001–0.0111 SCA 0.061 P6
0.0112 P6 0.062–0.068 P4
0.0113–0.0115 P5 0.07–0.16 P2
0.0116–0.0123 P4 0.17 LP
0.0124–0.059 SCA 0.18–0.39 LC
0.06 LP 0.4–0.6 SF

We have also investigated the role of mutual interference parameters on the dynamics
of trophic system in detail. The values of mutual interference parameters were chosen
on the basis of the values reported in Katz [26]. We have observed stable focus, limit
cycles and chaotic dynamics phenomena in the model system bychanging the mutual
interference parametersmi, i = 1, 2, 3 and the rate of toxin release by TPP population
θ, in the fixed range. We have also reported the function error or argument domain error,
the region in the parameter space, where no dynamics is observed. In this domain, the
values of mutual interference parameters are not conducivefor simulation experiment i.e.,
in real situation, no species can attain these values of mutual interference. Our approach
is to fix m1 andm2 then varym3 in the interval[1, 3] andθ in the interval[0, 1) and then
observe the exchange of states (stability – limit cycle – period doubling – chaos) in the
model system for three different cases ofmi (mi >, =, < 1).

The results for model system (1a-1c) are summarized below:

Case I. Whenmi > 1.

(A) For f1(x1) = x1

x1+D4

, f2(x2) = 1

x2+D3

(see Table 2).

(i) For m1 = m2 = 1.05 and1.5 ≤ m3 ≤ 3.0, 0 ≤ θ ≤ 1.
Chaos exists at some discrete points. For example, chaos exists for (m3, θ) =
(1.75, 0.4), (2.0, 0.45), (2.0, 0.5), (2.0, 0.55), (2.25, 0.5), (2.25, 0.55). Rest of
the points it shows the limit cycle attractor.

(ii) For m1 = m2 = 2.0 and1 ≤ m3 ≤ 3, 0 ≤ θ ≤ 1.
It is found that in most of the cases,x2 becomes extinct and(x1, x3) rests on stable
focus for higher values ofθ. For lower values ofθ, all the three populations rest
on stable focus and limit cycle attractor in the phase plane.It is also observed that
for m1 = m2 = 1.25, 1.5, 1.75 and for whole range of the parameter space(m3, θ)
(i.e.,1 ≤ m3 ≤ 3, 0 ≤ θ ≤ 1), the model system (1a)–(1c) predicts no dynamics.
The simulation results show function error or argument domain error.

Case II. Whenmi = 1 (i.e., m1 = m2 = m3 = 1).

(A) For f1(x1) = x1

x1+D4
, f2(x2) = 1

x2+D3
, 0 ≤ θ ≤ 1.
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Chaos exists in the interval0 ≤ θ ≤ 0.25. Forθ ∈ [0.3, 0.4] andθ ∈ [0.45, 0.7], we obtain
the limit cycle and stable focus behaviour respectively. For the values ofθ ∈ [0.8, 1.0],
(x2, x3) becomes extinct andx1 rests on a stable focus but atθ = 0.75, onlyx3 becomes
extinct and other species rests on stable focus. Fig. 3 showsthe chaotic behaviour of the
model system (1a)–(1c) observed in the domain0.75 ≤ m3 ≤ 2.25, 0 ≤ θ ≤ 0.35.

Table 2. Simulation experiments of model system (1a)–(1c) with Holling type II
functional response. The values of the common parameters used in the model system
are same as given in (4) withD4 = 10.0. The mutual interference parametersmi > 1

(i = 1, 2, 3), andθ varies in the range[0, 1]

Values ofm1, m2 m3 (in [1;3]) θ (in [0;1]) Dynamical behaviour
m1 = m2 = 1.05 1.5 0.0002–0.001 Limit cycle

1.75 0.0001–0.0003; 0.002–0.0095 Limit cycle
0.09; 0.5–0.6 Limit cycle
0.4 Chaos

2.0 0–0.0002; 0.0005–0.0008 Limit cycle
0.0075–0.02 Limit cycle
0.3–0.4; 0.6–0.65 Limit cycle
0.45–0.55 Chaos

2.25 0–0.002 Limit cycle
0.0035–0.015;0.09; 0.3–0.45 Limit cycle
0.5–0.55 Chaos
0.6–0.7 Limit cycle

2.5 0–0.02; 0.3–0.75 Limit cycle
2.75 0.09, 0.3–0.75 Limit cycle
3.0 0.35–0.42; 0.7– 0.75 Limit cycle

m1 = m2 = 2.0 1.0 0–1.0 x1 SF;(x2, x3) extinct
1.25–2.0 0–0.1 (x1, x3) SF;x2 extinct
2.25 0–1.0 (x1, x2, x3) SF

0.15–1.0 (x1, x3) SF;x2 extinct
2.5 0–0.4 (x1, x2, x3) SF

0.45–1.0 (x1, x3) SF;x2 extinct
2.75 0–0.5 (x1, x2, x3) SF

0.55–0.6 (x1, x2, x3) Limit cycle
0.65–1.0 (x1, x3) SF;x2 extinct

3.0 0–0.5 (x1, x2, x3) SF
0.55–0.85 (x1, x2, x3) Limit cycle
0.86–1.0 (x1, x3) SF;x2 extinct

Case III. Whenmi < 1.

In this case, chaos does not exist at all. The domain in which we perform the two
dimensional scans is

m1 = m2 = 0.25, 0.5, 0.75, 0.95, m3 = 0.25, 0.5, 0.75 and 0 ≤ θ ≤ 1.

We obtain only function error in this domain except form1 =m2 =0.95. Form1 =m2 =
0.95 and in the whole range ofm3 andθ, stable focus and limit cycles are observed. Re-
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sults are presented in Table 3, from which it is observed thatfor m1 =m2 =0.25, 0.5, 0.75
andm3 ∈ [0.25, 3], θ ∈ [0, 1] the dynamics is settles down to stable focus.

Fig. 3. 2D scan diagram between(m3, θ) parameter space for Holling type II functional
responses with the parameter valuesa1 = 2, b1 = 0.05, w2 = 0.55, D4 = 10.0,
θ = 0.003 other parameters are same as given in (5).

Table 3. Simulation experiments of model system (1a)–(1c) with Holling type II
functional response. The values of the common parameters used in the model system
are same as given in (4) withD4 = 10.0. The mutual interference parametersm3 and

θ varies in the ranges[0.25, 3] and[0, 1] respectively

Values ofm1, m2 m3 (in [0.25;3]) θ (in [0;1]) Dynamical behaviour
m1 = m2 = 0.25 0.25–0.75 0–1.0 Function Error

1.00–3.0 0–1.0 Stable Focus
m1 = m2 = 0.5 0.25–0.75 0–1.0 Function Error

1.0–3.0 0–1.0 Stable Focus
m1 = m2 = 0.75 0.25–0.75 0–1.0 Function Error

1.0–3.0 0–1.0 Stable Focus
m1 = m2 = 0.95 0.25 0–0.004 Limit cycle

0.01–0.1 Limit cycle
0.2–0.4 Stable Focus

0.5–0.75 0–0.15 Limit cycle
0.2–0.4 Stable Focus

1.0 0–0.15 Limit cycle
0.2–0.7 Stable Focus
0.75–1.0 (x1, x2) SF,x3 extinct

1.25–2.25 0–0.15 Limit cycle
0.2–1.0 Stable Focus

2.5 0–0.0002 Limit cycle
0.0005–0.0006 Limit cycle
0.001–0.006 Limit cycle
0.03–0.15 Limit cycle
0.2–1.0 Stable Focus

2.75 0.2–1.0 Stable Focus
3.0 0.25–1.0 Stable Focus
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5 Conclusions

In this article, we have attempted to find whether mutual interference and toxic substances
released by TPP always stabilize the predator – prey dynamics in aquatic environment?
Our simulation experiments support the conclusion that TPPstabilizes the predator – prey
dynamics in aquatic environment. From the tables, it is observed that for different values
of mutual interference parameters in different ranges, dynamics of the model system is
also influenced by the functional form of toxin liberation process. Formi < 1, i = 1, 2, 3,
no dynamics was observed in the range0.25 ≤ mi ≤ 0.75, but if we take the values of
any one of the interference parameters close to1, the system dynamics converges to stable
focus. In this case, the top predator becomes extinct asm3 reaches1. Formi > 1, most
often the dynamics rests on stable limit cycle or stable focus. From Tables 2, it is found
that form1 = m2 = 1.05 (i.e., close to1) andm3 in the range[1, 3], system dynamics
settles down to limit cycle attractor. In this case, model system also supports chaotic
dynamics only at a few discrete points. But form1 = m2 = 2 andm3 in the range
[1, 3], the system dynamics mostly settled on stable focus and middle predator becomes
extinct. These results show that the interaction between predators is a stabilizing factor.
Chaotic dynamics/situation may arise from an equilibrium state for different reasons in
any ecosystem. But to overcome this chaotic situation sometimes system itself has some
mechanism and self-adaptability. There are many ways by which system can be self-
adjusted and one of such ways is toxin production by phytoplankton, which reduces the
zooplankton grazing, helps the system to recover chaotic situation. In aquatic system
of such condition it is reported in Mandal et al. [2], that toxins are produces by many
phytoplankton and these toxins may turn the ecosystem into ordered state from chaos by
reducing the grazing pressure of zooplankton.

From the tables and 2D scan diagram, it was also observed thatthe model system
supports chaotic dynamics formi ≥ 1. We also observe from bifurcation diagram that
chaotic dynamics is robust to changes in changes against rates in toxin production by
phytoplankton as it exists for large range ofθ value. Period doubling bifurcations seem to
be responsible for this kind of dynamical behaviour.

In real life situations, it has been observed that increasing the strength of toxic
substances and mutual interference parameters has a greater stabilizing effect. Here, we
like to see whether this is true or not in our considered modelsystem. Our simulation
results show that interference might actually strongly destabilize the dynamics as well
leading to chaotic dynamic behaviour. Further studies are needed to ascertain if this
defense mechanism suppresses chaotic dynamics in model aquatic systems.
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