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Abstract. Quasi-linear systems governed byp-integrable controls, for1 < p < ∞ with
constraint‖u(·)‖p ≤ µ0 are considered. Dependence on initial conditions of attainable
sets are studied.
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1 Introduction

In this paper quasi-linear control systems which are nonlinear with respect to phase state
vector, linear with respect to control vector and where control inputs are constrained by
an integral inequality are studied.

It is well known that attainable sets play an important role in control theory. Many
problems of optimization, dynamics, game theory can be stated and solved in terms of
attainable sets (see [1,2]).

Many properties of attainable sets for linear and nonlinearsystems without integral
constraints is well known (see [3–5]). On the other hand attainable sets of control systems
with p-integrable controls are still in interest. General properties and computability of
attainable sets of latter completely differs from former (see [6–10]). Hence different
techniques are required.

Consider a control system whose behavior is described by a differential equation

ẋ(t) = f
(

t, x(t)
)

+ B
(

t, x(t)
)

u(t), x(t0) ∈ X0, (1)

wherex ∈ R
n is then-dimensional phase state vector of the system,u ∈ R

r is ther-di-
mensional control vector,t ∈ [t0, T ] (t0 < T < ∞) is the time,f(t, x) is n-dimensional
vector function,B(t, x) is an(n × r)-dimensional matrix function andX0 ⊂ R

n.
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It is assumed that the realizationsu(t), t ∈ [t0, T ], of the controlu are restricted by
the constraint

T
∫

t0

‖u(t)‖pdt ≤ µ
p
0, µ0 > 0, 1 < p < ∞, (2)

where‖ · ‖ denotes the Euclidean norm. Inequality (2) describes the constraint on the
control pulse. This constraint is used for controls which have limited resources such as
fuel reserve for jet engines, or capital for economical systems, etc. It is also assumed
that the functions(t, x) → f(t, x), (t, x) → B(t, x) and the setX0 satisfy the following
conditions:

1. The setX0 ⊂ R
n is compact.

2. The functions(t, x) → f(t, x) and (t, x) → B(t, x) are continuous with respect
to (t, x) and locally Lipschitz with respect tox, that is for any bounded setD ⊂
[t0, T ] × R

n there exist Lipschitz constantsLi = Li(D) ∈ (0,∞) (i = 1, 2) such
that

‖f(t, x∗) − f(t, x∗)‖ ≤ L1‖x
∗ − x∗‖,

‖B(t, x∗) − B(t, x∗)‖ ≤ L2‖x
∗ − x∗‖

for any(t, x∗) ∈ D, (t, x∗) ∈ D.

3. There exist constantsγi ∈ (0,∞) (i = 1, 2) such that

‖f(t, x)‖ ≤ γ1(1 + ‖x‖), ‖B(t, x)‖ ≤ γ2(1 + ‖x‖)

for every(t, x) ∈ [t0, T ] × R
n.

Every functionu(·) ∈ Lp ([t0, T ], Rr), (1 < p < ∞), satisfying the inequality (2) is
said to be anadmissible control, whereLp ([t0, T ], Rr) denotes the space ofp-power in-
tegrable functions. By the symbolU we denote the set of all admissible control functions
u(·).

Let u∗(·) ∈ U . The absolutely continuous functionx∗(·) : [t0, T ] → R
n which

satisfies the equatioṅx∗(t) = f(t, x∗(t)) + B(t, x∗(t))u∗(t) a.e. in[t0, T ] and the initial
conditionx∗(t0) = x0 ∈ X0 is said to be asolutionof the system (1) with initial condition
x∗(t0) = x0, generated by the admissible control functionu∗(·). By the symbolX(t0, x0)
we denote the set of all solutions of the system (1) with initial conditionx(t0) = x0,

generated by all admissible control functionsu(·) ∈ U and we set

X(t0,X0) =
{

x(·) ∈ X(t0, x0) : x0 ∈ X0

}

,

X(t; t0,X0) =
{

x(t) ∈ R
n : x(·) ∈ X(t0,X0)

}

.

The setX(t; t0,X0) is called theattainable setof the system (1) with constraint (2) at the
instant of timet. It is obvious that the setX(t; t0,X0) consists of allx ∈ R

n, at which the
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solutions of the system (1) which are generated by all possible controlsu(·) ∈ U arrive at
the instant of timet ∈ [t0, T ].

The calculation of attainable sets can be a tedious task and it is generally treated
numerically with the use of a computer. Therefore it is very important to determine how
attainable set changes when the initial conditions change.This is studied in Proposi-
tions 1–6.

The Hausdorff distance between the nonempty setsE,F ⊂ R
n is defined as

α(E,F ) = inf{r > 0: E ⊂ F + rB, F ⊂ E + rB}, (3)

whereB is unit ball inR
n.

2 Preliminaries

First, let us give a useful inequality:

t
∫

t0

(

K1 + K2‖u(τ)‖
)

dτ ≤ K1(T − t0) + K2(T − t0)
p−1

p µ0 (4)

for everyu(·) ∈ U and allt ∈ [t0, T ], whereK1 andK2 are positive constants. Inequality
(4) will be used frequently in the following sections and it can be easily obtained via
Hölder’s integral inequality (see [11, pp. 122]).

The following proposition states that the graphs of all solutions of the system (1)
with constraint (2) is bounded.

Proposition 1. The inequality

‖x(t)‖ ≤ r

is fulfilled for all x(·) ∈ X(t0,X0) andt ∈ [t0, T ], where

q = γ1(T − t0) + γ2µ0(T − t0)
p−1

p ,

d∗= max
{

‖x‖ : x ∈ X0

}

and

r = (d∗ + q) exp(q). (5)

Proof. Let x(·) ∈ X(t0,X0) be any solution of the system (1). Then there existx0 ∈ X0

andu(·) ∈ U such that

x(t) = x0 +

t
∫

t0

[

f
(

τ, x(τ)
)

+ B
(

τ, x(τ)
)

u(τ)
]

dτ, t ∈ [t0, T ]
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holds. After taking the norm of both sides, on using Condition 3 and recalling thatd∗ =
max{‖x‖ : x ∈ X0}, we obtain,

‖x(t)‖ ≤ d∗ + γ1(T − t0) + γ1

t
∫

t0

‖x(τ)‖dτ + γ2

t
∫

t0

‖u(τ)‖dτ

+ γ2

t
∫

t0

‖x(τ)‖‖u(τ)‖dτ.

In view of Hölder’s integral inequality we have

t
∫

t0

‖u(τ)‖dτ ≤

(

t
∫

t0

1
p

p−1 dτ

)

p−1

p

(

t
∫

t0

‖u(τ)‖pdτ

)
1

p

≤ µ0(T − t0)
p−1

p . (6)

By virtue of (6) and sinceq = γ1(T − t0) + γ2µ0(T − t0)
p−1

p we obtain

‖x(t)‖ ≤ d∗ + q +

t
∫

t0

(

γ1 + γ2‖u(τ)‖
)

‖x(τ)‖dτ.

It follows from Gronwall’s inequality that

‖x(t)‖ ≤ (d∗ + q) exp

(

t
∫

t0

(

γ1 + γ2‖u(τ)‖
)

dτ

)

.

From inequality (4) it follows that

‖x(t)‖ ≤ (d∗ + q) exp(q).

The right hand side of this last inequality is exactly the number r (see (5)). Thus the
inequality

‖x(t)‖ ≤ r

holds for allx(·) ∈ X(t0,X0) and allt ∈ [t0, T ].

The set

Z(t0,X0) =
{(

t, x(t)
)

∈ [t0, T ] × R
n : x(·) ∈ X(t0,X0)

}

is called theintegral funnelof the system (1) with constraint (2).
A corollary of the previous proposition is that the graphs ofall solutions of the system

(1) is bounded by the cylinder

D =
{

(t, x) ∈ [t0, T ] × R
n : ‖x‖ ≤ r

}

. (7)

That is, the inclusionZ(t0,X0) ⊂ D holds. Here,r > 0 is defined by (5). From now on
D will denote the cylinder (7).
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3 Dependence on initial conditions

The following proposition determines the dependence of attainable sets on the initial set
X0.

Proposition 2. LetX0 andX1 be compact subsets ofR
n. Then the inequality

α
(

X(t; t0,X0),X(t; t0,X1)
)

≤ Kα(X0,X1)

is valid for all t ∈ [t0, T ]. Here,K is positive constant.

Proof. Let x0(·) ∈ X(t0,X0) be arbitrary. Then there existx0 ∈ X0 andu(·) ∈ U such
that

x0(t) = x0 +

t
∫

t0

[

f
(

τ, x0(τ)
)

+ B
(

τ, x0(τ)
)

u(τ)
]

dτ

holds for allt ∈ [0, T ]. SinceX0 andX1 are compact subsets ofR
n, by the definition of

Hausdorff distance there existsx1 ∈ X1 such that

‖x1 − x0‖ ≤ α(X0,X1) < +∞

holds.
Therefore we obtain a new trajectoryx1(·) ∈ X(t0,X1) for the system (1) which is

generated by the same controlu(·) ∈ U that satisfies the initial conditionx1(t0) = x1.
Thus we can write

x1(t) = x1 +

t
∫

t0

[

f
(

τ, x1(τ)
)

+ B
(

τ, x1(τ)
)

u(τ)
]

dτ

for all t ∈ [t0, T ].
By Condition 1 we have

‖x0(t) − x1(t)‖ ≤ α(X0,X1) +

t
∫

t0

(

L1 + L2‖u(τ)‖
)

‖x0(τ) − x1(τ)‖dτ

for all t ∈ [t0, T ].
It follows from Gronwall’s inequality (see [11, pp. 189]) that

‖x0(t) − x1(t)‖ ≤ α(X0,X1) exp

(

t
∫

t0

(

L1 + L2‖u(τ)‖
)

dτ

)

(8)

is valid for all t ∈ [t0, T ]. Taking (4) into account we obtain

‖x0(t) − x1(t)‖ ≤ α(X0,X1) exp
(

L1(T − t0) + L2(T − t0)
p−1

p µ0

)
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for all t ∈ [t0, T ]. To shorten notation let us set

K = exp
(

L1(T − t0) + L2(T − t0)
p−1

p µ0

)

. (9)

Thus we get

‖x0(t) − x1(t)‖ ≤ Kα(X0,X1)

for all t ∈ [t0, T ].
The inclusion

X(t; t0,X0) ⊂ X(t; t0,X1) + Kα(X0,X1)B, t ∈ [t0, T ] (10)

is then immediate.
Similar arguments yield the inclusion

X(t; t0,X1) ⊂ X(t; t0,X0) + Kα(X0,X1)B (11)

for all t ∈ [t0, T ].
Hence the desired inequality

α
(

X(t; t0,X0),X(t; t0,X1)
)

≤ Kα(X0,X1), t ∈ [t0, T ]

is an immediate consequence of (3).

Our next result, an easy corollary of the Proposition 2, tells us that the set valued
mapX0 ⊂ R

n → X(t; t0,X0) ⊂ R
n is Lispschitz continuous with Lipschitz constantK

which is defined by (9). It means that attainable set at any instant of timet continuously
depends on the initial setX0.

Proposition 3. LetT > t1 > t0, X0,X1 ⊂ R
n be compact subsets,

r0 = α(X0,X1) + d1(t1 − t0) + d2µ0(t1 − t0)
p−1

p , (12)

and

r = r0 exp
(

L1(T − t1) + L2µ0(T − t1)
p−1

p

)

.

Then the inequality

α
(

X(t; t0,X0),X(t; t1,X1)
)

≤ r, t ∈ [t1, T ]

holds for the system(1) with constraint(2). Hered1 andd2 are positive constants.

Proof. Let t ∈ [t1, T ] andy0 ∈ X(t; t0,X0) be arbitrary, then there existx0 ∈ X0,
x0(·) ∈ X(t0, x0) andu(·) ∈ U such that

y0 = x0(t) = x0 +

t
∫

t0

[

f
(

τ, x0(τ)
)

+ B
(

τ, x0(τ)
)

u(τ)
]

dτ
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holds. By the definition of Hausdorff distance there existsx1 ∈ X1 such that

‖x0 − x1‖ ≤ α(X0,X1). (13)

Let x1(·) ∈ X(t1, x1) be solution of the system (1) starting from the initial point
x1 ∈ X1 and generated by the same controlu(·) ∈ U asx0(·), then

x1(t) = x1 +

t
∫

t1

[

f
(

τ, x1(τ)
)

+ B
(

τ, x1(τ)
)

u(τ)
]

dτ

is fulfilled for all t ∈ [t1, T ]. Therefore we obtain the inequality,

‖x0(t) − x1(t)‖ ≤ ‖x0 − x1‖ +

t
∫

t1

∥

∥f
(

τ, x0(τ)
)

− f
(

τ, x1(τ)
)
∥

∥dτ

+

t
∫

t1

∥

∥

[

B
(

τ, x0(τ)
)

− B
(

τ, x1(τ)
)]

u(τ)
∥

∥dτ

+

t1
∫

t0

∥

∥f
(

τ, x(τ)
)

+ B
(

τ, x0(τ)
)

u(τ)
∥

∥dτ

(14)

for all t ∈ [t1, T ].
From Proposition 1 there exists a cylinderD∗ such that the inclusions

Z(t0,X0) ⊂ D∗ andZ(t1,X1) ⊂ D∗ holds.
Let

d1 = max
(t,x)∈D∗

‖f(t, x)‖ andd2 = max
(t,x)∈D∗

‖B(t, x)‖,

then it follows from (14) and Condition 1 that

‖x0(t) − x1(t)‖ ≤ ‖x0 − x1‖ +

t
∫

t1

(

L1 + L2‖u(τ)‖
)(

‖x0(τ) − x1(τ)‖
)

dτ

+

t1
∫

t0

(

d1 + d2‖u(τ)‖
)

dτ

(15)

for all t ∈ [t1, T ].
In view of (13) and (4) the inequality

‖x0(t) − x1(t)‖ ≤ r0 +

t
∫

t1

(

L1 + L2‖u(τ)‖
)

‖x0(τ) − x1(τ)‖dτ
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is valid, wherer0 is defined by (12).
By virtue of Gronwall’s inequality and (4) we find

‖x0(t) − x1(t)‖ ≤ r0 exp

(

t
∫

t1

(

L1 + L2‖u(τ)‖
)

dτ

)

≤ r0 exp
(

L1(T − t1) + L2µ0(T − t1)
p−1

p

)

for all t ∈ [t0, T ].
Hence the inclusion

X(t; t0,X0) ⊂ X(t; t1,X1) + rB

holds for allt ∈ [t1, T ]. Here,r = r0 exp(L1(T − t1) + L2µ0(T − t1)
p−1

p ).
Similarly choosing an arbitrary element fromX(t; t1,X1) one can prove that the

inclusion

X(t; t1,X1) ⊂ X(t; t0,X0) + rB

also holds for allt ∈ [t1, T ].
Thus the desired inequality

α
(

X(t; t0,X0),X(t; t1;X1)
)

≤ r, t ∈ [t1, T ]

follows from (3).

An immediate corollary of Proposition 3 is the following.
Let X0 ⊂ R

n andXn ⊂ R
n (n = 1, 2, . . .) be compact subsets,α(Xn,X0) → 0

andtn → t0 asn → ∞. Then the inequality

α
(

X(t; tn,Xn),X(t; t0,X0)
)

→ 0, t ∈ [t0, T ]

holds asn → ∞.
Let µ0 andµ1 be positive,

U0 =
{

u(·) ∈ Lp([t0, T ], Rm) : ‖u(·)‖p ≤ µ0

}

and

U1 =
{

u(·) ∈ Lp([t0, T ], Rm) : ‖u(·)‖p ≤ µ1

}

.

The set of all solutions and attainable set at instant of timet of the system (1) from
the initial set(t0,X0) which are generated by all controls fromU0 andU1 are denoted by
X0(t0,X0), X0(t; t0,X0) andX1(t0,X0), X1(t; t0,X0) respectively.

The following proposition gives the dependence of attainable sets on theµ0.

300



Dependence on Initial Conditions of Attainable Sets of Control Systems withp-Integrable Controls

Proposition 4. LetK > 0 be constant,r0 = K(T − t0)
p−1

p |µ0 − µ1| and

r = r0

[

1+
(

L1(T − t0) + L2µ1(T − t0)
p−1

p

)

× exp
(

L1(T − t0) + L2µ1(T − t0)
p−1

p

)

]

,

then the inequality

α
(

X0(t; t0,X0),X1(t; t0,X0)
)

≤ r

is fulfilled for all t ∈ [t0, T ].

Proof. Let y0 ∈ X0(t; t0,X0) be arbitrary fort ∈ [t0, T ], then there existx0 ∈ X0,
x0(·) ∈ X0(t0, x0) andu0(·) ∈ U0 such that

y0 = x0(t) = x0 +

t
∫

t0

[

f
(

τ, x0(τ)
)

+ B
(

τ, x0(τ)
)

u0(τ)
]

dτ

holds.
Let us define a new control functionu1(·) via u0(·) ∈ U0 such that

u1(t) =
µ1

µ0
u0(t), t ∈ [t0, T ].

Since

‖u1(·)‖p =

(

T
∫

t0

‖u1(t)‖
pdt

)
1

p

=
µ1

µ0

(

T
∫

t0

‖u0(t)‖
pdt

)
1

p

≤ µ1,

we getu1(·) ∈ U1.
We denote the solution of the system (1) starting from the initial point (t0, x0) and

generated by the controlu1(·) ∈ U1, by x1(·) ∈ X1(t0, x0) ⊂ X1(t0,X0).
Settingx1(t) = y1, we get

y1 = x1(t) = x0 +

t
∫

t0

[

f
(

τ, x(τ)
)

+ B
(

τ, x(τ)
)

u(τ)
]

dτ.

Hence we obtain the inequality

‖y0 − y1‖ ≤

t
∫

t0

∥

∥f
(

τ, x0(τ)
)

− f
(

τ, x1(τ)
)∥

∥dτ

+

t
∫

t0

∥

∥B
(

τ, x0(τ)
)

u0(τ) − B
(

τ, x1(τ)
)

u1(τ)
∥

∥dτ.

301



E. Akyar

It follows from Condition 1.

‖y0 − y1‖ ≤

t
∫

t0

(

L1 + L2‖u0(τ)‖
)

‖x0(τ) − x1(τ)‖dτ

+

t
∫

t0

∥

∥B
(

τ, x1(τ)
)∥

∥‖u0(τ) − u1(τ)‖dτ.

TakingK = max(t,x)∈D ‖B(t, x)‖ and using the definition of the controlu1(·) we
clearly have

‖y0 − y1‖ ≤

t
∫

t0

(

L1 + L2‖u0(τ)‖
)

‖x0(τ) − x1(τ)‖dτ

+ K
∣

∣

∣
1 −

µ1

µ0

∣

∣

∣

t
∫

t0

‖u0(τ)‖dτ,

whereD is defined by (7).
From the Hölder’s integral inequality it follows that

‖y0 − y1‖ ≤

t
∫

t0

(

L1 + L2‖u0(τ)‖
)

‖x0(τ) − x1(τ)‖dτ

+ K|µ0 − µ1|(T − t0)
p−1

p .

Let us set

r0 = K|µ0 − µ1|(T − t0)
p−1

p .

Using Gronwall’s inequality and (4) we find

‖x0(t) − x1(t)‖ ≤ r0 exp
(

L1(T − t0) + L2µ0(T − t0)
p−1

p

)

.

Definer = r0 exp(L1(T − t0) + L2µ0(T − t0)
p−1

p ), then it follows that

‖x0(t) − x1(t)‖ ≤ r.

Therefore the inclusion

X0(t; t0,X0) ⊂ X1(t; t0,X0) + rB (16)

valid for t ∈ [t0, T ].

302



Dependence on Initial Conditions of Attainable Sets of Control Systems withp-Integrable Controls

Similarly, one can obtain the inclusion

X1(t; t0,X0) ⊂ X0(t; t0,X0) + rB (17)

for t ∈ [t0, T ].
According to inclusions (16) and (17) we obtain the validityof the inequality

α
(

X0(t; t0,X0),X1(t; t0,X0)
)

≤ r, t ∈ [t0, T ]

as desired.

Let us define

Un =
{

u(·) ∈ Lp([t0, T ], Rn) : ‖u(·)‖p ≤ µn

}

and denote the set of all solutions and attainable set at instant of timet of the system (1)
with initial set(t0,X0) corresponding to control setsUn byXn(t0,X0) andXn(t; t0,X0)
respectively.

Proposition 4 implies that forµn → µ0 asn → ∞, the inequality

α
(

Xn(t; t0,X0),X0(t; t0,X0)
)

→ 0

holds asn → ∞ for all t ∈ [t0, T ].
By the following proposition it is proved that the set valuedmapt → X(t; t0,X0)

is Hölder continuous.

Proposition 5. For the system(1) with constraint(2) the inequality

α
(

X(t1; t0,X0),X(t2; t0,X0)
)

≤ M |t1 − t2|
p−1

p

holds for everyt1, t2 ∈ [t0, T ]. Here,M > 0 is constant.

Proof. Without loss of generality we can supposet1 < t2. Let y1 ∈ X(t1; t0,X0) be
arbitrary, then there existx0 ∈ X0, x∗(·) ∈ X(t0, x0) andu∗(·) ∈ U such that

y1 = x∗(t1) = x0 +

t1
∫

t0

[

f
(

τ, x∗(τ)
)

+ B
(

τ, x∗(τ)
)

u∗(τ)
]

dτ

holds.
If we takey2 = x∗(t2) ∈ X(t2; t0,X0)

y2 = x∗(t2) = x0 +

t2
∫

t0

[

f
(

τ, x∗(τ)
)

+ B
(

τ, x∗(τ)
)

u∗(τ)
]

dτ.
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is obtained. Therefore we clearly have

‖y1 − y2‖ ≤

t2
∫

t1

∥

∥f
(

τ, x∗(τ)
)∥

∥dτ +

t2
∫

t1

∥

∥B
(

τ, x∗(τ)
)

u∗(τ)
∥

∥dτ.

Let K1 = max{‖f(t, x)‖ : (t, x) ∈ D} andK2 = max{‖B(t, x)‖ : (t, x) ∈ D},
then we find

‖y1 − y2‖ ≤

t2
∫

t1

(K1 + K2)‖u∗(τ)‖dτ

Finally, applying Hölder’s integral inequality we obtain

‖y1 − y2‖ ≤ (K1 + K2)µ0|t1 − t2|
p−1

p .

If we setM = (K1 + K2)µ0, then we get

‖y1 − y2‖ ≤ M |t1 − t2|
p−1

p .

Therefore the inclusion

X(t1; t0,X0) ⊂ X(t2; t0,X0) + M |t1 − t2|
p−1

p B (18)

is valid for all t1, t2 ∈ [t0, T ].
Similarly, choosing an arbitrary elementy2 from X(t2; t0,X0) the inclusion

X(t2; t0,X0) ⊂ X(t1; t0,X0) + M |t1 − t2|
p−1

p B (19)

can be obtained. Combining inclusions (18) and (19) we obtain the desired result.

Let E ⊂ R
n. Then diameter ofE is denoted by

diam E = sup
x,y∈E

‖x − y‖.

The following proposition gives an upper bound for the diameter of the attainable
sets.

Proposition 6. Let

K = max
(t,x)∈D

‖B(t, x)‖ andd = diam X0, (20)

then the inequality

diam X(t; t0,X0) ≤
(

d + 2Kµ0(t − t0)
p−1

p

)

exp
(

L1(T − t0)
)

holds for allt ∈ [t0, T ].
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Proof. Let t ∈ [t0, T ] andy1, y2 ∈ X(t; t0,X0) be arbitrary, then there existx1 ∈ X0,
x1(·) ∈ X(t0,X0), u1(·) ∈ U such that

y1 = x1(t) = x1 +

t
∫

t0

[

f
(

τ, x1(τ)
)

+ B
(

τ, x1(τ)
)

u1(τ)
]

dτ

holds and there existx2 ∈ X0, x2(·) ∈ X(t0,X0), u2(·) ∈ U such that

y2 = x2(t) = x2 +

t
∫

t0

[

f
(

τ, x2(τ)
)

+ B
(

τ, x2(τ)
)

u2(τ)
]

dτ

is valid. It follows from Condition 1 and (20) that

‖y1 − y2‖ ≤ ‖x1 − x2‖ + L1

t
∫

t0

‖x1(τ) − x2(τ)‖dτ

+

t
∫

t0

∥

∥B
(

τ, x1(τ)
)∥

∥‖u1(τ)‖dτ +

t
∫

t0

∥

∥B
(

τ, x2(τ)
)∥

∥‖u2(τ)‖dτ

≤ d + L1

t
∫

t0

‖x1(τ) − x2(τ)‖dτ + K

[

t
∫

t0

‖u1(τ)‖dτ +

t
∫

t0

‖u2(τ)‖dτ

]

.

In accordance with Hölder’s integral inequality we obtain

‖y1 − y2‖ ≤ d + L1

t
∫

t0

‖x1(τ) − x2(τ)‖dτ + 2Kµ0(t − t0)
p−1

p

Therefore utilizing the Gronwall’s inequality (see [11, pp. 189]) we find

‖y1 − y2‖ ≤
(

d + 2Kµ0(t − t0)
p−1

p

)

exp
(

L1(T − t0)
)

.

Sincet ∈ [t0, T ] andy1, y2 ∈ X(t; t0,X0) arbitrary, we find

diam X(t; t0,X0) ≤
(

d + 2Kµ0(t − t0)
p−1

p

)

exp
(

L1(T − t0)
)

for all t ∈ [t0, T ].

It is clear from Proposition 6 thatdiam X(t; t0,X0) → diam X0 ast → t0.

We conclude from Propositions 1–6 that attainable set of thesystem (1) with con-
straint (2) at the instant of timet ∈ [t0, T ] continuously depends on initial setX0 andµ0.
Besides, the set valued mapsX0 → X(t; t0,X0) andt → X(t; t0,X0) are Lipschitz and
Hölder continuous respectively.

305



E. Akyar

References

1. F. L. Chernousko,State Estimation for Dynamic Systems, CRC Press, Boca Raton, Florida,
1984.

2. E. V. Grigorieva, E. N. Khailov, Attainable Set of a Nonlinear ControlledMicroeconomic
Model,J. Dyn. Control Syst., 11(2), pp. 157–176, 2005.

3. A. M. Formalsky, A. N. Sirotin, On the Geometric Properties of Reachable and Controllable
Sets for Linear Discrete Systems,J. Optim. Theory Appl., 122(2), pp. 257–284, 2004.

4. H. Hermes, J. P. Lasalle,Functional Analysis and Time Optimal Control, Academic Press, New
York, 1969.

5. E. B. Lee, L. Markus,Foundations of Optimal Control Theory, Wiley, New York, 1967.

6. Kh. G. Guseinov, A. A. Neznakhin, V. N. Ushakov, Approximate construction of reachable
sets of control systems with integral constraints on the controls,Nonlinear Anal., 63(4),
pp. 557–567, 1999.

7. Kh. G. Guseinov, O. Ozer, E. Akyar, On the continuity properties of the attainable sets of
control systems with integral constraints on control,Nonlinear Anal., 56(3), pp. 433–449, 2004.

8. H. W. Lou, On the Attainable Sets of Control Systems withp-Integrable Controls,J. Optim.
Theory Appl., 123(1), pp. 123–147, 2004.

9. M. Motta, C. Sartori, Minimum time with bounded energy, minimum energy with bounded
time,SIAM J. Control Optim., 42(3), pp. 789–809, 2003.

10. B. T. Polyak, Convexity of the reachable set of nonlinear systems underL2 bounded controls,
Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal., 11(2–3), pp. 255–267, 2004.

11. J. WargaOptimal Control of Differential and Functional Equations, Academic Press, New
York, 1972.

12. P. Collins, Continuity and Computability of Reachable Sets,Theoret. Comput. Sci., 341(1–3),
pp. 162–195, 2005.

306


