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Abstract. The modern unification of the European standards EUROCODE requires
securing a constant quality of metallurgical production in the EU countries.In this
paper, experimentally found statistical characteristics of yield stress, ultimate tensile
strength and ductility of Czech and Austrian steel are presented. In the probabilistic
reliability analysis, the experimentally found yield stress histograms of structural steel
S235 of both Czech and Austrian manufacturing processes are considered as basic
parameters. The reliability of steel members designed according to EUROCODE 3 is
investigated. The objective of the studies is the verification of partial safetyfactors of
load-carrying capacity, and of load action given in the standard EN1990. Differences in
failure probabilities of steel members of Czech and Austrian production are studied in
connection with the influence of model fuzzy uncertainties in the determination of load
action and load-carrying capacity values.

Keywords: Eurocode, stability, constructional steel, stochastic yield stress, structural
reliability, fuzzy sets, fuzzy reliability.

1 Introduction

In practical design, the primary reliability of structuralsystems and objects is ensured by
unified standard design prescriptions – EUROCODE. Besides the design standards, the
production quality of load-carrying members also plays an important role in the resulting
steel structure reliability; in individual EU countries, this quality may vary in dependence
on different production technologies.

One of the primary problems in the EU is the definition of the optimal reliability
level of structural systems. Securing the optimal reliability level requires control of
the optimal variability of material properties and tolerances on shape and dimensions
of metallurgical production in individual EU countries. The definition of the optimal

∗The present paper was elaborated under the project GAČR103/07/1067, junior research project
B201720602 of Czech Academy of Science and Research Centre Project CIDEAS 1M68407700001(1M0579).
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reliability level of structural systems, in particular securing it from the point of view of
the optimal variability of quality parameters (size and dispersion of material properties)
and of tolerances on shape and dimensions of metallurgical production in individual
EU countries is among the primary problems. In the Czech Republic, the quality and
reliability of materials and steel products are controlledboth by manufacturers and at
independent scientific workplaces.

As in many probabilistic reliability studies, material properties are input data iden-
tified, at scientific workplaces, with maximum objectivity [1]. Although the statistical
data are satisfactory, the quality and reliability of Czechmaterials and steel products
are sometimes considered to be unsatisfactory in western countries. In this context,
the unfinished elaboration state of probabilistic studies is of topical significance with
aim at investigating to what extent differences in manufacturing quality can influence
the reliability from the point of view of transparency and the verification of processes
applied in practice [2]. The material properties obtained in the Czech Republic [1] were
compared with material properties of Austrian steels [3, 4]. Evaluations were carried out
independently at an Austrian workplace in Vienna and at a Czech workplace in Brno; this
guaranteed maximum objectivity of results and conclusionsdrawn from them. Compar-
ison of statistical characteristics of yield stress, ultimate tensile strength and ductility
provide satisfactory evidence that, on the European market, Czech products are fully
competitive [4]. The topic of the presented studies is the application of this knowledge to
probabilistic studies focused at reliability design concepts of Eurocodes.

The paper is aimed at the probability study of the ultimate limit state of a hot-rolled
beam IPE220 of steel grade S235 designed according to [5] with maximum load-carrying
capacity. The misalignment of the design failure probability according to [6] is studied
applying statistical yield stress characteristics of Austrian and Czech steel. Discrepan-
cies between failure probabilities of members from Czech and Austrian production are
compared. Numerous uncertainties, which are not of random character, exist during
the evaluation of the failure probability [7]. With the aim to analyse the effect of these
uncertainties, the probability calculation is supplemented with fuzzy analysis. The fuzzy
inputs were considered to be model uncertainties in determining the load action and load-
carrying capacity effects. The fuzzy analysis of output failure probabilities was evaluated
according to the general extension principle [8]. The fuzzynumbers of failure probability
are the outputs. The supports of fuzzy numbers are compared with crisp failure probability
values of steel members of Austrian and Czech production.

2 Parametric probabilistic study of the steel member

The reliability of a bar under permanent (G) and long-time variable (Q) load actions
was analysed in the parametric study. The standard design reliability condition according
to [6] can be written in the form:

γGGk + γQQk ≤ RAχfy,k/γM , (1)
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whereRAχ = χA is the product of buckling coefficientχ and cross sectional areaA,
valuesGk, Qk represent the characteristic load action values,fy,k is the yield stress
characteristic value. The design reliability is secured bypartial safety factorsγ. The
standard design reliability condition (1) can be rewrittenas an inequality of the design
load actionSd and the design load-carrying capacityRd:

Sd ≤ Rd. (2)

In the probabilistic analysis, the function of ultimate limit state is expressed by the in-
equality:

G + Q ≤ R. (3)

Failure occurs if condition (3) is not fulfilled, i.e., if therandom load action effect
S = G + Q is higher than the random load-carrying capacityR. The random load-
carrying capacityR is a function of material and geometrical imperfections, which can
be determined from experimental research [1, 4]. The memberload-carrying capacity is
calculated from the relation:

R = fyA. (4)

According to [6], it can be presumed during the determination of the statistical characteris-
tics of random load actionsG andQ that the characteristic valuesGk andQk are quantiles
of a Gaussian probability distribution and of a Gumbel distribution, respectively. It can be
assumed for the permanent load actionG that the characteristic valueGk represents the
mean value of the Gaussian probability density function, and that the variation coefficient
equals0.1. Gumbel distribution with mean value0.6Qk and standard deviation0.21Qk

was considered for the long-time random load action. When defining characteristic load
action valuesGk, Qk, it is assumed that in (1), the design value of load action effectsSd is
equal to the design value of load-carrying capacityRd determined according to [5]. The
aim of the study is the analysis of the failure probability independence on the parameter
δ, which expresses the ratio of variable load actionQk to the general load actionGk +Qk.

δ =
Qk

Gk + Qk

. (5)

3 Experimental results of mechanical and geometrical characteris-
tics

The yield stress is the basic mechanical characteristic of structural steels. The yield
stress is controlled in metallurgical works, and is utilized for the determination of design
resistance values and the partial safety factor values connected with steel structural design
standards EUROCODES.

Statistical characteristics of yield stress, ultimate tensile strength and ductility of
steel grade S235 produced both in Bohemia and Austria are given in Table 1. Sample
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elements of20 mm thick metal sheets were analysed. The results pertainingto Austrian
production were obtained from measurements on 1123 samples. Czech steel results were
obtained from measurements on 5293 samples. The nominal yield stress of tested samples
for element of thicknesst ≤ 40 mm is235 MPa according to [5].

Table 1. Mechanical characteristics of Austrian and Czech steel

Austrian steel S235 Czech steel S235
Yield Ultimate Ductility Yield Ultimate Ductility
stress strength [%] stress strength [%]

Mean 289.01 408.85 38.28 284.43 421.77 37.902

value MPa MPa % MPa MPa %
Standard 19.82 18.83 2.99 21.59 19.322 3.057

deviation MPa MPa % MPa MPa %
Coef. of
variation 0.0697 0.0461 0.0781 0.0759 0.0458 0.0806

Stand.
skewness 0.61083 1.4547 −0.65823 0.61429 0.84048 −0.41169

Stand.
kurtosis 1.3312 7.078 1.4492 1.6107 5.4322 0.7847

Comparison of results illustrate that the Austrian steel yields a slightly higher yield
stress and lower standard deviation, which results in theirhigher reliability. As will be
illustrated later, this difference is negligible, i.e., yield stress statistical characteristics of
both manufacturers are in very good agreement from the technical point of view. The
yield stress histograms are presented in Fig. 1.

Fig. 1. Histograms of yield stress of Austrian and Czech steel S235.

The cross section of the IPE220 is defined by the parametersh, b, t1, t2, which repre-
sent further input random quantities. The nominal geometrical cross sectional dimensions
of IPE220 are presented in Fig. 2.
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Fig. 2. Geometry of hot-rolled profile IPE220.

The cross sectional area calculated from three rectangles using nominal values
h = 220 mm, b = 110 mm, t1 = 5.9 mm, t2 = 9.2 mm is 3213 mm2. The tabular
nominal value (taking into account rounding off in corners)is 3340 mm2; this value is
higher by127 mm2. As only random quantitiesh, b, t1, t2, have been measured and
statistically evaluated by experimental research [1], thearea random function will be
written in the form:

A = 2bt2 + (h − 2t2)t1 + 127. (6)

The area of127 mm2 was considered as deterministic. According to comparison stu-
dies, it does not actually influence the probabilistic analysis results. The input random
quantities are specified in Table 2.

Table 2. Input statistical characteristics

Density StandardSymbol Quantity Mean valuefunction deviation
h Cross sectional height Histogram 220.22 mm 0.975 mm
b Flange width Histogram 111.49 mm 1.093 mm
t1 Web thickness Histogram 6.225 mm 0.247 mm
t2 Flange thickness Histogram 9.136 mm 0.421 mm
G Permanent action Gauss Gk 0.1Gk

Q Variable action Gumbel 0.6Qk 0.21Qk

Austrian Histogram 289.01 MPa 19.82 MPa
fy Yield stress Czech Histogram 284.43 MPa 21.59 MPa

4 Probabilistic analysis

The probabilistic analysis results were obtained utilizing the Monte Carlo simulation.
The probability that condition (3) is not fulfilled was evaluated. Random load-carrying
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capacityR was calculated by (4) and (6) using random quantities from Table 2. Input
statistical characteristics of load actionsG andQ in (3) are defined in Table 2 by charac-
teristic valuesGk andQk. Characteristic valuesGk andQk are calculated according to
the relation:

1.35Gk + 1.5Qk = 784.9 kN. (7)

Equation (7) is derived from (1) for partial safety factorsγG = 1.35; γQ = 1.5 and
γM = 1.0 [6]. The value784.9 kN on the right side of equation (7) represents the design
load-carrying capacity of profile IPE220, determined by thepartial safety factors method
according to [5]:

Rd =
Afy

γM

=
3.34 · 10−3 · 235 · 106

1.0
= 784.9 · 103 N. (8)

While determining the characteristic values of deadGk and variableQk load it is neces-
sary in (7) to choose the ratioδ (5). Theδ value is stepwise increased and sampling is
repeated in order to get a dependency betweenδ and failure probabilityPf . Gk andQk

(for selectedδ) are fixed for each simulation run.
Practically: for selected value of parameterδ (e.g.δ = 0.1) the characteristic values

Gk andQk were evaluated according to (7). All input random variable in Table 2, which
are necessary for the evaluation of the failure probabilityaccording to (3), are known upon
the evaluation ofGk andQk.

Sufficient runs of the Monte Carlo simulation were used for determining the failure
probability Pf , so that condition (3) was not fulfilled minimally 200 times.This gua-
rantees a balanced probability assessment error of approximately 7 %. This problem was
analysed forδ = 0, 0.1, . . . , 1. The probabilistic study results are depicted in Fig. 3.

Fig. 3. Misalignment of failure probability by [6].

It is apparent from Fig. 3 that higher failure probability was obtained for the Czech
steel, which has a lower mean value and higher standard deviation of yield stress than
the Austrian steel. The design of the member from Czech steelis satisfactory (failure
probability is lower than the reference value7.2 · 10−5) for δ ∈ 〈0.03; 0.66〉. For the
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Austrian steel the intervalδ ∈ 〈0.0; 0.72〉 is reliable, i.e., the structural stress is relatively
unsafe for high values of long-time variable load action (Q). Differences between both
results are low, and as will be shown below, they can be clearly transcended by the fuzzy
uncertainty of the stochastic calculation model.

5 Fuzzy probabilistic analysis

The apparatus of mathematical statistics provides the classical form of representation of
uncertainty. The theoretical value of failure probabilityof structures may be evaluated
provided sufficient information on input random variables and their correlation is avai-
lable. Limitation of stochastic models rests mainly in the ability to reflect only uncertainty
of the stochastic nature. In the event that sufficient information on input random variables
is unavailable, a further source of uncertainty is of fuzzy (vague) origin. The notion
“fuzzy”was firstly used by Prof. Lotfi Zadeh in 1962 [9]. In 1965, L. Zadeh published
his pioneer, today still classical paper entitled “Fuzzy sets” [10]. Commonly encountered
problems may be characterised by both fuzzy and stochastic uncertainty. This “combined”
fuzzy-random uncertainty can be modelled by applying fuzzyrandom variables and fuzzy
random functions only [7, 11]. Newer mathematical approaches, which extend or depart
from the probability theory, are also available in [12–16].

The combined fuzzy-random uncertainty is also encounteredduring the analysis of
failure probability according to (3). The source of fuzzy uncertainty is for e.g. density
functions and statistical characteristics of random variablesG andQ. Precise statistical in-
formation on loading is not generally known during structural design. Further uncertainty
may occur due to human involvement during the realization ofexperiments, evaluation of
results of experimental research, etc.

The aim of further studies is not the elaborate analysis of the origin of model un-
certainties, but rather the theoretical quantification of their influence on the behaviour
of failure probabilityPf in dependence on parameterδ. Model uncertainties can be
quantified utilizing the so-called coefficients of model uncertaintiesKS , KR and modified
reliability conditions (3):

KS(G + Q) ≤ KRR. (9)

The influence of coefficientsKS andKR on the failure probabilityPf may generally
be either linear or non-linear. For this purpose coefficientsKS ,KR were chosen as fuzzy
numbers with linear triangular symmetrical membership functions, see Fig. 4 and Fig. 5.

The graphical representations of uncertainty in Figs. 4 and5 assign toKR andKS

uncertainty by means of a degree of membership into the set onthe vertical axis [8]. The
membership function has nothing in common with probability. In the case of probability,
we examine the frequency of occurrences of a given phenomenon that occurred.

The fuzzy analysis of failure probability according to (9) was evaluated according to
the general extension principle for10α-cuts [8], see Fig. 4 and Fig. 5.

µPf
(KR,KS) =

∨

Pf

(

µ1(KR) ∧ µ2(KS)
)

. (10)
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The output of (10) is the fuzzy number of failure probabilityPf . An illustration of output
fuzzy number of failure probabilityPf evaluated according to (10) for Austrian steel for
δ = 1 is depicted in Fig. 6. Equation (10) requires the evaluationof minimal and maximal
Pf for all realization combinations of coefficientsKS ,KR on eachα-cut.
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Fig. 4. Fuzzy number of resistance uncertainty.

0.98 1.0 1.02

Model uncertainties coeficient KS

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Degree of membership

M
em

be
rs

hi
p

fu
nc

tio
n

m
K

S

9.

8.

6

7.

.

5.

4.

3.

2.

1.

0.

Fig. 5. Fuzzy number of load action uncertainty.
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Fig. 6. Fuzzy number ofPf – Austrian steel,δ = 1.0.

The fuzzy analysis procedure according to (10) may be explained on oneα-cut.
Let us consider the zeroα-cut (the so-called support) of input fuzzy numbersKS ,KR

and output fuzzy numberPf . The minimumPf,min = 18.5 · 10−5 is evaluated for
KS = 0.98, KR = 1.02 and maximumPf,max = 5 · 10−5 is evaluated forKS =
1.02, KR = 0.98, see Fig. 6. The procedure is analogical for otherα-cuts. The non-linear
membership function evaluated for 10α-cuts is apparent from Fig. 6. Results depicted in
Fig. 6 quantify the dependence ofPf on the change in coefficientsKS ,KR (sensitivity
analysis of the influence of coefficientsKS ,KR onPf ). The failure probabilityPf is non-
linearly dependent on coefficientsKS ,KR for all consideredδ values. Fuzzy analysis
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results of failure probability for Austrian and Czech steelare depicted in Fig. 7 and Fig. 8.
The fuzzy analysis results in Fig. 7 and Fig. 8 supplement theinformation given in

Fig. 3 with the influence of coefficients of model uncertaintiesKR andKS . Membership
functions of failure probability were calculated forδ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0}. Degree
of membership1.0 on the vertical axis means that the failure probability belongs to
the set fully (kernel). The so-called support limiting the set of all failure probability
values with positive membership function is a further characteristic of fuzzy numbers.
In Fig. 7 and Fig. 8, boundaries of the support interval are marked by the dashed line.
The defuzzified “crisp” failure probability value is drawn by dot-and-dash line as the last
value; it can be compared with the reference value7.2 · 10−5 [6]. The defuzzification
was evaluated utilizing the centre of gravity method [8]. The major characteristics of the
failure probability fuzzy analysis from Fig. 7 and Fig. 8 areclearly depicted in Fig. 9 and
Fig. 10.

Fig. 7. Fuzzy analysis of failure probability – Austrian steel.

Fig. 8. Fuzzy analysis of failure probability – Czech steel.

It is apparent from Fig. 9 and Fig. 10 that defuzzified values are higher than the kernel
ones – obtained by crisp stochastic solution in Fig. 3. This is due to the non-linear and
asymmetrical membership functions of failure probabilityPf . The courses of defuzzified
values presenting a crisp controllable output are clearly shown in Fig. 11.
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Fig. 9. Fuzzy output of failure
probability – Austrian steel.

Fig. 10. Fuzzy output of failure
probability – Austrian steel.

Fig. 11. Results of fuzzy analysis of failure probability.

6 Conclusion

Basic information on the misalignment and discrepancies offailure probability of a steel
member produced from Austrian and Czech steel are presentedin Fig. 3. The failure
probability of the steel bar made from Austrian steel is lower than that of Czech steel
for the same bar. The higher reliability of the member produced from Austrian steel is
due to the moderately higher mean value and lower standard deviation of yield stress.
The mentioned differences, however, are not significant in comparison with the effect of
further uncertainties inevitably met when calculating theload-carrying capacity and load
action effects.

The output membership functions are non-linear and pronouncedly asymmetric, tri-
angular symmetric membership functions having been selected as input fuzzy numbers
of coefficientsKR andKS . This information is very valuable because it quantifies the
non-linear dependence between the coefficients of model uncertaintiesKR andKS and
the failure probability.
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It is apparent from results depicted in Fig. 3 and Figs. 9 to 11that design of steel
bars is satisfactory for reasonable ratios of the variable load action to the total load
action. High failure probability values were obtained forδ = 0 (purely permanent
load) andδ = 1 (purely variable load), which represent limit unrealisticcases. The
reliability analysis of bars under buckling is planned in the future. It can be expected
that imperfections will present a significant source of uncertainty. Whilst information on
statistical characteristics of initial strut curvature isavailable, there is an insufficiency of
experimental information on system imperfections of steelframes. Further analytical
studies are planned for additional values of partial safetyfactorsγG, γQ, γM . The
reliability analysis of the design of steel structures according to the allowable stress design
method forγG = 1.0; γQ = 1.0 a γM = 1.5 will be performed. Probabilistic analysis
results of the limit state method and the allowable stress method will be compared.
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