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Abstract. Natural convection flow across an isothermal cylinder immersed in a viscous
incompressible fluid in the presence of species concentration and chemical reaction has
been investigated. The governing boundary layer equations are transformed into a system
of non-dimensional equations and the resulting nonlinear system of partial differential
equations is reduced to a system of local non-similarity boundary layer equations, which
is solved numerically by a very efficient implicit finite difference method together with
the Keller-box scheme. Numerical results are presented by the velocity,temperature and
species concentration profiles of the fluid as well as the local skin-frictioncoefficient,
local heat transfer rate and local species concentration transfer ratefor a wide range of
chemical reaction parameterγ (γ = 0.0, 0.5, 1.0, 2.0, 4.0), buoyancy ratio parameterN
(N = −1.0,−0.5, 0.0, 0.5, 1.0), Schmidt numberSc (Sc = 0.7, 10.0, 50.0, 100.0) and
Prandtl numberPr (Pr = 0.7, 7.0).

Keywords: natural convection, chemical reaction, skin-friction, rate of heat transfer, rate
of species concentration, cylinder.

Nomenclature

a radius of the circular cylinder g acceleration due to gravity
C species concentration in the fluid Gr Grashof number
C∞ species concentration with fluid Jw concentration flux

away from the cylinder K thermal conductivity
Cp specific heat at constant pressure K1 chemical reaction parameter
Cw species concentration at the surface N buoyancy ratio parameter

of the cylinder Nux local Nusselt number
Cfx local skin-friction Pr Prandtl number
D chemical molecular diffusivity qw heat flux at the surface
f dimensionless stream function Sc Schimdt number
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Shx local Sherwood number u, v the dimensionlessx andy compo-
T temperature of the fluid in the nent of the velocity

boundary layer û, v̂ the dimensional̂x andŷ component
T∞ temperature of the ambient fluid of the velocity
Tw temperature at the surface x, y axis in the direction along and normal

to the surface

Greek symbols

β volumetric coefficient of thermal ρ density of the fluid
expansion µ viscosity of the fluid

ψ stream function φ dimensionless concentration function
τw shearing stress θ dimensionless temperature function
γ chemical reaction parameter

1 Introduction

The application of boundary layer techniques to mass transfer has been of considerable
assistance in developing the theory of separation processes and chemical kinetics. Some
of the interesting problems that have been studied are mass transfer from droplets, free
convection on electrolysis in non-isothermal boundary layer. Heat, mass and momentum
transfer on a continuously moving or a stretching sheet has several applications in electro-
chemistry and polymer processing [1–4].

Gebhart and Pera [5] investigated the nature of vertical natural convection flow
resulting from the combined buoyancy effects of thermal andmass diffusion. Diffusion
and chemical reaction in an isothermal laminar flow along a soluble flat plate was studied
and an appropriate mass-transfer analogue to the flow along aflat plate that contains a
species say,A slightly soluble in the fluid say,B has been discussed by Fairbanks and
Wick [6]. Hossain and Rees [7] have investigated the combined effect of thermal and
mass diffusion in natural convection flow along a vertical wavy surface. The effects of
chemical reaction; heat and mass transfer on laminar flow along a semi-infinite horizontal
plate have been studied by Anjalidevi and Kandasamy [8].

By taking advantage of the mathematical equivalence of the thermal boundary layer
problem with the concentration analogue, results obtainedfor heat transfer characteristics
can be carried directly over to the case of mass transfer by replacing the Prandtl number
Pr by the Schimdt numberSc. However, the presence of a chemical reaction term in the
mass diffusion equation generally destroys the formal equivalence with the thermal energy
problem and moreover, generally prohibits the construction of the otherwise attractive
similarity solutions. Takhar et al. [9] for example, considered diffusion of chemically
reactive species from a stretching sheet.

The application of the boundary layer theory with chemical reaction has been applied
to some problems of free and mixed convection flow from the surface of simple geometry
by the above authors. Chiang et al. [10] investigated the laminar free convection from a
horizontal cylinder. Sparrow and Lee [11] looked at the problem of vertical stream over a
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heated horizontal circular cylinder. They have obtained a solution by expanding velocity
and temperature profiles in powers ofx, the co-ordinate measuring distance from the
lowest point on the cylinder. The exact solution is still outof reach due to the non-linearity
in the Navier-Stokes equations. It appears that Merkin [12,13] was the first who presented
a complete solution of this problem using Blasius and Görtler series expansion method
along with an integral method and a finite-difference scheme. Ingham [14] investigated
the free convection boundary layer flow on an isothermal horizontal cylinder. Recently,
Nazar et al. [15] have considered the problem of natural convection flow from lower
stagnation point to upper stagnation point of a horizontal circular cylinder immersed in a
micropolar fluid.

In the present study the focus is given on the effects of heat and mass transfer on the
natural convection boundary layer flow across a horizontal circular cylinder with chemical
reaction when the surface is at a uniform temperature and a uniform mass diffusion. Here
it has been assumed that the level of species concentration is very low and that the heat
generated during chemical reaction can be neglected. The basic equations are transformed
to local non-similarity boundary layer equations, which are solved numerically using a
very efficient finite-difference scheme together with the Keller-box method [16]. To the
best of our knowledge, this problem has not been considered before. Consideration is
given to the situation where the buoyancy forces assist the natural convection flow for
various combinations of the chemical reaction parameterγ, buoyancy ratio parameterN ,
Prandtl numberPr and Schimdt numberSc. The results allow us to predict the different
kinds of behaviour that can be observed when the relevant parameters are varied.

2 Formulation of problem

Let us consider a steady two-dimensional laminar free convective flow that flows across a
uniformly heated horizontal circular cylinder of radiusa, which is immersed in a viscous
and incompressible fluid. It is assumed that the surface temperature of the cylinder is
Tw, whereTw > T∞. HereT∞ is the ambient temperature of the fluid andT is the
temperature of the fluid. The configuration considered is as shown in Fig. 1.

ŷ

¥
T g

Tw
a

x̂0

Cw

Fig. 1. Physical model and coordinate system.

An appropriate mass transfer analogue to the problem shown in Fig. 1 would be the
flow across the surface of a horizontal circular cylinder that contains a speciesA slightly
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soluble in the fluidB. The concentration of the reactant is maintained at a constant value
Cw at the surface of the cylinder and the solubility ofA in B isD and the concentration
of A far away from the surface of the cylinder is assumed to beC∞. Let the reaction of
a speciesA with B be the first order homogeneous chemical reaction with rate constant,
K1. It is desired to analyse the system by a boundary layer method. It is assumed that the
concentration of dissolvedA is small enough and the physical propertiesρ, µ andD are
virtually constant throughout the fluid. Under the usual Boussinesq approximation, the
governing equations of the flow are

∂û

∂x̂
+
∂v̂

∂ŷ
= 0, (1)

ρ
(
û
∂û

∂x̂
+ v̂

∂û

∂ŷ

)
= µ

∂2û

∂ŷ2
+ρgβT (T−T∞) sin

( x̂
a

)
+ρgβC(C−C∞) sin

( x̂
a

)
, (2)

û
∂T

∂x̂
+ v̂

∂T

∂ŷ
=

k

ρCp

∂2T

∂y2
, (3)

û
∂C

∂x̂
+ v̂

∂C

∂ŷ
= D

∂2C

∂y2
−K1C. (4)

The boundary conditions of equation (1) to (4) are

û = v̂ = 0, T = Tw, C = Cw at ŷ = 0, (5a)

û→ 0, T → T∞, C → C∞ as ŷ → ∞, (5b)

where(û, v̂) are velocity components along the(x̂, ŷ) axes,g is the acceleration due to
gravity, ρ is the density,k is the thermal conductivity,βT is the coefficient of thermal
expansion,βc is the coefficient of concentration expansion,µ is the viscosity of the fluid,
Cp is the specific heat due to constant pressure andD is the molecular diffusivity of the
species concentration. We now introduce the following non-dimensional variables:

x =
x̂

a
, y = Gr1/4

ŷ

a
, u =

a

ν
Gr−1/2û, v =

a

ν
Gr−1/4v̂,

θ =
T − T∞
Tw − T∞

, φ =
C − C∞

Cw − C∞

, Gr =
gβT (Tw − T∞)a3

ν2
,

(6)

whereν = (µ/ρ) is the reference kinematic viscosity andGr is the Grashof number,θ
is the non-dimensional temperature andφ is the non-dimensional species concentration
function.

Substituting the variables (6) into equation (1)–(4) leadsto the following non-dimensional
equations

∂u

∂x
+
∂v

∂y
= 0, (7)

u
∂u

∂x
+ v

∂u

∂y
=
∂2u

∂y2
+ (θ +Nφ) sinx, (8)
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u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

∂2θ

∂y2
, (9)

u
∂φ

∂x
+ v

∂φ

∂y
=

1

Sc

∂2φ

∂y2
− γφ. (10)

The boundary conditions (5) become

u = v = 0, θ = 1, φ = 1 at y = 0, (11a)

u→ 0, θ → 0, φ→ 0 as y → ∞, (11b)

whereN is the ratio of the buoyancy forces due to the temperature andconcentration,γ
is the chemical reaction parameter are defined respectivelyas

N =
βC(Cw − C∞)

βT (Tw − T∞)
and γ =

K1a
2

νGr1/2
. (12)

To solve equations (7)–(10), subject to the boundary conditions (11), we assume the
following variables

ψ = xf(x, y), θ = θ(x, y), φ = φ(x, y), (13)

whereφ is the non-dimensional stream function defined in the usual way as

u =
∂ψ

∂y
, v = −

∂ψ

∂x
. (14)

Substituting (13) into equations (8)–(10) we get, after some algebra the following trans-
formed equations

∂3f

∂y3
+ f

∂2f

∂y2
−

(∂f
∂y

)2

+ (θ +Nφ)
sinx

x
= x

(∂f
∂y

∂2f

∂x∂y
−

∂f

∂x

∂2f

∂y2

)
, (15)

1

Pr

∂2θ

∂y2
+ f

∂θ

∂y
= x

(∂f
∂y

∂θ

∂x
−

∂θ

∂y

∂f

∂x

)
, (16)

1

Sc

∂2φ

∂y2
+ f

∂φ

∂y
− γφ = x

(∂f
∂y

∂φ

∂x
−

∂φ

∂y

∂f

∂x

)
(17)

along with boundary conditions

f =
∂f

∂y
= 0, θ = 1, φ = 1 at y = 0, (18a)

∂f

∂y
→ 0, θ → 0, φ→ 0 as y → ∞. (18b)

It can be seen that near the lower stagnation point of the cylinder i.e.x ≈ 0, equations
(15)–(17) reduce to the following ordinary differential equations:

f ′′′ + ff ′′ − f ′2 + (θ +Nφ) = 0, (19)

1

Pr
θ′′ + fθ′ = 0, (20)

1

Sc
φ′′ + fφ′ − γφ = 0, (21)
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subject to the boundary conditions at

f(0) = f ′(0) = 0, θ(0) = 1, φ(0) = 1 at y = 0, (22a)

f ′ → 0, θ → 0, φ→ 0 as y → ∞. (22b)

In the above equations primes denote differentiation with respect toy.
In practical applications, the physical quantities of maininterest are the shearing

stress, the rate heat transfer and the rate of species concentration transfer in terms of the
skin-friction coefficientsCf , Nusselt numberNu and Sherwood numberSh respectively,
which can be written as

Cf =
Gr−3/4a2

µν
τw, Nu =

aGr−1/4

k(Tw − T∞)
qw, Sh =

aGr−1/4

D(Cw − C∞)
Jw, (23)

τw = µ
(∂û
∂ŷ

)

ŷ=0

, qw = −k
(∂T
∂ŷ

)

ŷ=0

and Jw = −D
(∂C
∂ŷ

)

ŷ=0

. (24)

Using the variables (6), (13) and the boundary condition (18a) into (23)–(24),we get

Cfx = xf ′′(x, 0), (25)

Nux = −θ′(x, 0), (26)

Shx = −φ′(x, 0). (27)

We also discuss the effect of the chemical reaction parameter γ and buoyancy ratio
parameterN on the velocity, temperature and concentration distribution. The values of
the velocity, temperature and concentration distributionare calculated respectively from
the following relations:

u =
∂f

∂y
, θ = θ(x, y), φ = φ(x, y). (28)

3 Results and discussion

Equations (15)–(17) subject to the boundary conditions were solved numerically using
a very efficient implicit finite difference method together with the Keller-box scheme,
which is described by Cebeci and Bradshow [17]. The numerical solutions start at the
lower stagnation point of the cylinder i.e. atx ≈ 0.0, with initial profiles given by the
equations (19)–(21) along with boundary conditions (22) and proceed round the cylinder
up to the upper stagnation pointx ≈ π. Solutions are obtained for fluid having Prandtl
numberPr (Pr = 0.7, 7.0), Schimdt numberSc (Sc = 0.7, 10.0, 50.0, 100.0), buoyancy
ratio parameterN (N = −1.0,−0.5, 0.0, 0.5, 1.0) and for a wide range of the values of
chemical reaction parameterγ (γ = 0.0, 0.5, 1.0, 2.0, 4.0). Since the values off ′′(x, 0),
[−θ′(x, 0)] and [−φ′(x, 0)] are known from the solutions of the equations (15)–(17),
numerical values of the local skin-friction coefficientCfx, the local Nusselt number
Nux and the local Sherwood numberShx are calculated respectively from the equations
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(25)–(27) for the surface of the cylinder from lower stagnation point to upper stagnation
point. Numerical values ofCfx, Nux andShx are depicted in Tables 1, 2 and Figs. 2–5.
A comparison of the local Nusselt numberNux andCfx for different values of curvature
parameterxwhilePr = 1.0 andN = γ = 0.0, obtained in the present work and obtained
earlier by Merkin [12] and Nazar et al. [15] has been made in Table 1. It is clearly seen
that there is an excellent agreement among the respective results.

Table 1. Numerical values ofCfx andNux for different values of curvature parameter
x while Pr = 1.0 andN = γ = 0.0

Nux Cfx

Merkin Nazar et al. Present Merkin Nazar et al. Present
x [12] [15] [12] [15]

0.0 0.4214 0.4214 0.4241 0.0000 0.0000 0.0000
π/6 0.4161 0.4161 0.4161 0.4151 0.4148 0.4145
π/3 0.4007 0.4005 0.4005 0.7558 0.7542 0.7539
π/2 0.3745 0.3741 0.3740 0.9579 0.9545 0.9541
2π/3 0.3364 0.3355 0.3355 0.9756 0.9698 0.9696
5π/6 0.2825 0.2811 0.2812 0.7822 0.7740 0.7739

π 0.1945 0.1916 0.1917 0.3391 0.3265 0.3264

The effect of the chemical reaction parameterγ, on the reduced local skin-friction
coefficientCfx, local Nusselt numberNux and the local Sherwood numberShx is shown
in Figs. 2(a)–(c) respectively forγ = 0.0, 0.5, 1.0, 2.0, 4.0, while Pr = Sc = 0.7
andN = 0.5. It is seen that an increase in the chemical reaction parameter, γ (γ =
0.0, 0.5, 1.0, 2.0, 4.0), leads to a decrease in the local skin-friction coefficientand the
local Nusselt number and an increase in the local Sherwood number. This may be at-
tributed to the fact that the increase in the values ofγ implies more interaction of species
concentration with the momentum boundary layer and less interaction with the thermal
boundary layer.

Figs. 3(a)–(c) illustrate the effect of varying values of chemical reaction parameterγ
(γ = 0.0, 0.5, 1.0, 2.0, 4.0) on the velocity, temperature and species concentration profiles
atx = π/2 while Pr = Sc = 0.7, N = 0.5. Here it is found that both the velocity and
concentration profiles decrease significantly and the non-dimensional temperature profile
increases slightly with the increase of chemical reaction parameter.

In Table 2 we have entered the numerical valuesCfx, Nux andShx for different
values ofPr (Pr = 0.7, 7.0) whileN = γ = 0.5 andSc = 0.7. It is observed that for
increasing axial distance parameterx, the values of skin-friction increase and the values
of rate of heat transfer and that of the rate of species concentration decrease for both the
values of Prandtl numberPr. On the other hand both theCfx andShx decrease andNux

increases accordingly as Prandtl numberPr increases. And these changes inCfx, Nux

andShx due to an increase inPr are consistent with a free convection boundary layer.
Figs. 4(a)–(c) show how variations inN (N = −1.0,−0.5, 0.0, 1.0) affect the

flow. WhenN = 0.0, the flow is induced entirely by thermal effects and the detailed
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concentration field is computed as a forced convection problem, however, whenN = 1.0,
it is the concentration field which induce the boundary flow. It can be stated that an
increase in the values ofN leads to an increase in the values of the local skin-friction
coefficientsCfx, local Nusselt numberNux and the local Sherwood numberShx.
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Fig. 2. (a) Skin-friction coefficient, (b) rate
of heat transfer and (c) rate of species
concentration for different values ofγ while

Pr = Sc = 0.7 andN = 0.5.
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Variation in the Schimdt numberSc are considered in Figs. 5(a)–(c) whilePr = 0.7
andγ = N = 0.5. The local skin-friction coefficientCfx and the local Nusselt number
Nux decrease sharply and the local Sherwood numberShx increases significantly with
the increasing values ofSc, which is expected.
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Fig. 4. (a) Skin-friction coefficient, (b) rate
of heat transfer and (c) rate of species
concentration for different values ofN while

Pr = Sc = 0.7 andγ = 0.5.
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Table 2. The values ofCfx, Nux andShx while N = γ = 0.5 andSc = 0.7 for
different values of Prandtl numberPr

Pr = 0.7 Pr = 7.0
x Cfx Nux Shx Cfx Nux Shx

0.0 0.00000 0.39966 0.69327 0.00000 0.93647 0.65935
π/6 0.57051 0.39461 0.68947 0.43927 0.92362 0.65640
π/3 1.03685 0.37969 0.67828 0.79521 0.88555 0.64772
π/2 1.31095 0.35454 0.65962 0.99739 0.82093 0.63320
2π/3 1.33074 0.31811 0.63302 0.99606 0.72603 0.61240
5π/6 1.06220 0.26722 0.59649 0.76233 0.58917 0.58302

π 0.46033 0.18616 0.53651 0.23597 0.33747 0.52354

4 Conclusions

The effect of chemical reaction, heat and mass diffusion in natural convection flow from
an isothermal horizontal cylinder has been investigated numerically. New variables to
transform the complex geometry into a simple shape have beenintroduced and the re-
sulting non-similarity boundary layer equations are solved by a very efficient implicit
finite difference method together with the Keller-box scheme [16]. From the present
investigation the following conclusions may be drawn:

• Both the local skin-friction coefficientCfx and the local Nusselt numberNux de-
crease and the local Sherwood numberShx increases when the value of the chemical
reaction parameterγ increases.

• As γ increases both the velocity and concentration distribution decrease significantly
and the temperature profile increases slightly atx = π/2 of the surface.

• An increase in the values ofN leads to an increase in the values of the local skin-
friction coefficientsCfx, local Nusselt numberNux and the local Sherwood number
Shx.

• The skin-friction coefficientCfx and local Nusselt numberNux decrease and the
rate of species concentrationShx increases within the boundary layer as the value
of Sc increases.

• The skin-friction coefficientCfx and the rate of species concentrationShx decrease
and local Nusselt numberNux increases for increasing values ofPr.
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