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Abstract. Eigenvalue problems of the formx′′ = −λf(x) + µg(x), (i),
x(0) = 0, x(1) = 0 (ii) are considered. We are looking for(λ, µ) such that the
problem (i), (ii) has a nontrivial solution. This problem generalizes the famous Fuchik
problem for piece-wise linear equations. In our considerations functions f andg may
be super-, sub- and quasi-linear in various combinations. The spectraobtained under the
normalization condition (otherwise problems may have continuous spectra) structurally
are similar to usual Fuchik spectrum for the Dirichlet problem. We provideexplicit
formulas for Fuchik spectra for super and super, super and sub, sub and super, sub and
sub cases, where superlinear and sublinear parts of equations are ofthe form|x|2α x and

|x|
1

2β+1 respectively (α > 0, β > 0.)
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1 Introduction

In this paper we consider boundary value problems of the form

x′′ = −λf(x) + µg(x), (1)

x(0) = 0, x(1) = 0, (2)

whereλ andµ are non-negative parameters andf andg are continuous functions such
thatf(x) > 0 for x > 0 andf = 0 for x < 0 and, respectively,g(x) > 0 for x < 0 and
g = 0 for x > 0. It can be written also as

x′′ =

{

−λf(x), if x ≥ 0,

µg(x), if x < 0.
(3)

Any nontrivial solutionx(t) of equation (1) (or, which is the same, of (3)) satisfies the
conditionx(t)x′′(t) ≤ 0 for anyt. Therefore behavior of solutions is rather oscillatory.
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In our research we are motivated by the Fuchik equation

x′′ = −λx+ + µx−, (4)

wherex+ = max{x, 0}, x− = max{−x, 0}.
This equation may be written also as

x′′ =

{

−λx, if x ≥ 0,

−µx, if x < 0.
(5)

Equation (4) contains a piece-wise linear function in the right side which possesses
some important properties of the linear functions. For example, the positive homogeneity
property holds, that isF (αx) = αF (x), α > 0, whereF (x) stands for the right side
in (4). Formally equation (4) is nonlinear and the additivity property fails to hold, that is
the sum of two solutionsx1(t) andx2(t) of (4) need not to be a solution. It was the idea
of Fuchik [1] to modify a linear equation in this way and to consider nonlinear (“almost”
linear) equations of the form (4).

The Fuchik spectrum for the problem (4), (2) is defined as a setof all pairs(λ, µ),
for which the problem has a nontrivial solution. This spectrum is well known [2, § 35]
and is depicted in Fig. 1.

Fig. 1. Fuchik spectrum for the Dirichlet problem (4), (2).

The Fuchik spectrum is useful in the study of the so called “jumping nonlinearities”.
Imagine equation of the type

x′′ + g(x) = f(t, x, x′), (6)

whereg(x) is a “principal” nonlinearity which behaves like a linear function at infinity
andf is bounded (nonlinear) function. More preciously, letg(x) satisfy the conditions

g(x)/x → λ as x → +∞,

g(x)/x → µ as x → −∞.
(7)
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It appears that “large amplitude” solutions of (6) behave like respective solutions of the
Fuchik equation (4). It is supposed, of course, thatλ andµ are the same in (4) and (6).

Nonlinearitiesg of this kind often are referred to as “asymptotically asymmetric”
ones.

Asymmetric equations of the form (6) were studied intensively together with the
Dirichlet boundary conditions and others. Consider also the linear equation

x′′ + Λx = 0 (8)

along with the boundary conditions (2). LetΛ1,Λ2, . . . be the eigenvalues. It is used to
say that nonlinearityg(x) “crosses several eigenvalues” of the problem (8), (2) if some of
Λi fall within the interval(µ, λ). One may consult [3–5] for more details.

Another (practical) motivation to study asymptotically asymmetric equations is that
these equations appear in the theory of suspension bridges.

Suspension bridges have a roadway that hangs from steel cables supported by two
high towers. Suspension bridge cables are not directly connected to the towers. The cables
of a suspension bridge are not connected to the bridge - the cables pass through holes in
the top of the towers. A suspension bridge has at least two main cables. These cables
extend from one end of the bridge to the other. Suspender cables hang from these main
cables. The other end of the suspender attaches to the roadway. Schematically suspension
bridge is depicted in Fig. 2.

Fig. 2. One-dimensional model of a suspension bridge.

The largest suspension bridges in the world, according to the web information (Au-
gust 2006), are

1. Akashi-Kaikyo Bridge (Japan) 1991 m (length of the centerspan) – 1998;

2. Great Belt Bridge (Denmark) 1624 m – 1998;

3. Runyang Bridge (China) 1490 m – 2005;

4. Humber Bridge (England) 1410 m – 1981 (the largest from 1981 until 1998);

5. Jiangyin Suspension Bridge (China) 1385 m – 1997;

6. Tsing Ma Bridge (Hong Kong) 1377 m – 1997;
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7. Verrazano Narrows Bridge (USA) 1298 m – 1964 (the largest from 1964 until 1981);

8. Golden Gate Bridge (USA) 1280 m – 1937 (the largest from 1937 until 1964);

9. Hoga Kusten Bridge (Sweden) 1210 m – 1997;

10. Mackinac Bridge (USA) 1158 m – 1958.

However, the most famous is the Tacoma Narrows suspension bridge, which collapsed in
1940 as a result of dramatic large-scale oscillations. The standard explanation of the large
oscillations of the bridge attribute the bridge’s collapseto the phenomenon of resonance.
In the case of so the explanation goes, a suspension bridge oscillates at its own natural
frequency. The wind blowing past the bridge generated a train of vortexes that produced
a fluctuating force in tune with the bridge’s natural frequency, steadily increasing the
amplitude of its oscillations until the structure finally collapsed.

Further research showed that this explanation, however, isincomplete and flawed.
R.H. Scanlan of Johns Hopkins University in Baltimore and K.Yusuf of Princeton Univer-
sity presented their own engineering report in the article [6]. They focused on the idea that
mechanism responsible for large oscillations is self-excitation-an interaction between the
bridge’s motion and the vortexes produced by that motion – rather than forced resonance.

P. J. McKenna of the University of Connecticut provided his own explanation after
spending significant time developing alternative mathematical models to account for the
undulations and gyrations shown by the Tacoma bridge. His main idea is that “what
distinguishes suspension bridges . . . is their fundamentalnonlinearity”. This nonlinearity
is like “jumping nonlinearity” and it appears in a respective mathematical model because
“the restoring force due to a cable is such that it strongly resists expansion, but does not
resist compression. Thus, the simplest function to model the restoring force of the stays
in the bridge would be a constant timesx, the expansion, ifx is positive, but zero, ifx is
negative, corresponding to compression.” McKenna asserted, that one of the reasons,
explaining strange behavior of suspension bridges under the influence of slow wind,
lies in the behavior of the vertical strands of wire, or stays, connecting the roadbed to
a bridge’s main cable. Civil engineers usually assume that the stays always remain in
tension under a bridge’s weight, in effect acting as stiff springs. That allows them to use
relatively simple, linear differential equations to modelthe bridge’s behavior. When a
bridge starts to oscillate, however, the stays begin alternately loosening and tightening.
That produces a nonlinear effect, changing the nature of theforce acting on the bridge.
When the stays are loose, they exert no force, and only gravityacts on the roadbed. When
the stays are tight, they pull on the bridge, countering the effect of gravity. Solutions
of the nonlinear differential equations that correspond tosuch an asymmetric situation
suggest that, for a wide range of initial conditions, a givenpush can produce either small
or large oscillations. Lazer and McKenna went on to argue that the alternate slackening
and tightening of cables might also explain the large twisting oscillations experienced by
a suspension bridge.

The whole story of mathematical explanation of behavior of suspension bridges can
be traced by the following references [4,7–11].
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2 One parameter problems

Due to definition of equation (1) one have to consider the nonlinear eigenvalue problem

x′′ = −λf(x), x(0) = 0, x(1) = 0, (9)

looking for positive solutions of (1), (2) (similarly, one has to consider the problem
x′′ = µg(x), x(0) = 0, x(1) = 0, looking for negative solutions of (1), (2)).

The problem (9) was considered in [12, 13]. It is known that any positive solution
x(t) of (9) is symmetric with respect to the middle pointt = 1

2 , where the maximal value
is attained.

We assume thatf(x) satisfies the following condition:

(A1) A first zerot1(γ) of a solution to the Cauchy problem

u′′ = −f(u), u(0) = 0, u′(0) = γ (10)

exists for anyγ > 0.

Similar property can be assigned tog(x). We assume thatg(x) satisfies the condition:

(A2) A first zeroτ1(δ) of a solution to the Cauchy problem

v′′ = g(v), v(0) = 0, v′(0) = −δ (11)

exists for anyδ > 0.

Simple examples off(x) possessing the property(A1) are the functionsf(x) = x3

(t1(γ) decreases from+∞ to zero asγ increases from zero to+∞) andf(x) = x
1
3

(t1(γ) increases from zero to+∞ asγ increases from zero to+∞). This can be verified
by direct calculation.

Proposition 1. Suppose thatf(x) satisfies the condition(A1) and t1(γ) maps(0,+∞)
onto(0,+∞) continuously. Then the problem(9) has a continuous spectrum.

Proof. Fix λ > 0 and consider a solutionu(t; γ) of the Cauchy problem (10). This
solution has its first positive zero att1(γ). Consider a functionX(t) := u(

√
λ t; γ). This

function solves the equation in (9). Moreover,X(0) = 0 andX( t1(γ)√
λ

) = 0. In view of

properties of the functiont1(γ) for fixedλ a valueγ0 > 0 exists such thatt1(γ0)√
λ

= 1.

Example 1. Consider the boundary value problemx′′ = −λx3, x(0) = 0, x(1) = 0,
x(t) > 0, ∀t ∈ (0, 1).

The valuemax[0,1] x(t) := ‖x‖ andλ relate as

‖x‖ · λ = 2
√

2 ·
1

∫

0

dx√
1 − x4

.
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The problem has continuous spectrum therefore, that is, forany positiveλ there exists a
unique positive solution of the problem.

Similarly the problem

x′′ = µg(x), x(0) = 0, x(1) = 0, x(t) < 0 in (0, 1) (12)

also has continuous spectrum.
A solution of the problem (9) under the condition(A1) (and (12) under the condition

(A2)) is unique however, if the normalization conditionx′(0) = 1 (resp.:x′(0) = −1) is
imposed.

3 Two-parameter problems

3.1 Nonlinear spectra for Fuchik type problems

Consider

x′′ =

{

−λf(x), if x ≥ 0,

µg(x), if x < 0,
x(0) = x(1) = 0, (13)

wheref(x) andg(x) are positive valued continuous functions described in Introduction.
Suppose thatf andg satisfy the conditions(A1) and(A2) respectively.

Example 2. Consider the eigenvalue problem

x′′ =

{

−λx2, if x ≥ 0,

µx4, if x < 0,
(14)

x(0) = x(1) = 0, x(t) has exactly one zero in(0, 1). (15)

Let us show that this problem has a continuous spectrum. Indeed, let us look for nontrivial
solutions which vanish exactly once in the interval(0, 1). Let τ ∈ (0, 1). There exists a
continuum of solutionsx(t;λ, τ), which are positive in(0, τ) and vanish at the ends of
the interval(0, τ). The derivativex′(τ ;λ, τ) is a monotonic continuous function ofλ with
the range of values(−∞, 0). Similarly there exists a continuum of solutionsx(t;µ, τ) of
the equationx′′ = µx4, which are negative in(τ, 1) and vanish at the ends of the interval
(τ, 1). The derivativex′(τ ;µ, τ) is a monotonic continuous function ofµ with the range
of values(−∞, 0). Thus for anyτ ∈ (0, 1) and for anyλ > 0 there existsµ(λ) such that
a solutionx(t) of the problem (14) has exactly one zero and isC1-smooth (it follows that
in fact it isC2-smooth).

One is led thus to the conclusion that in order to have reasonable nonlinear eigenvalue
problems normalized solutions should be considered.

Consider

x′′ =

{

−λf(x), if x ≥ 0,

µg(x), if x < 0,
x(0) = x(1) = 0,

∣

∣x′(0)
∣

∣ = 1. (16)

Let us state our main result.
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Theorem 1. Let the conditions(A1) and(A2) hold with the functionst1(γ) andτ1(δ).
The Fuchik spectrum for the problem(16) is given by the relations (i = 1, 2, . . .):

F+
0 =

{

(λ;µ) : λ is a solution of
1√
λ

t1

( 1√
λ

)

= 1, µ ≥ 0
}

, (17)

F−
0 =

{

(λ;µ) : λ ≥ 0, µ is a solution of
1√
µ

τ1

( 1√
µ

)

= 1
}

, (18)

F+
2i−1 =

{

(λ;µ) : i
1√
λ

t1

( 1√
λ

)

+ i
1√
µ

τ1

( 1√
µ

)

= 1
}

, (19)

F−
2i−1 =

{

(λ;µ) : i
1√
µ

τ1

( 1√
µ

)

+ i
1√
λ

t1

( 1√
λ

)

= 1
}

, (20)

F+
2i =

{

(λ;µ) : (i + 1)
1√
λ

t1

( 1√
λ

)

+ i
1√
µ

τ1

( 1√
µ

)

= 1
}

, (21)

F−
2i =

{

(λ;µ) : (i + 1)
1√
µ

τ1

( 1√
µ

)

+ i
1√
λ

t1

( 1√
λ

)

= 1
}

. (22)

Proof. Consider first solutions of (16), which are positive in(0, 1). These solutions, if
any, are solutions of the problem (9). Let us find appropriateλ. Consider a solution
u(t; γ) of the Cauchy problem (10). A functionX(t) := u(

√
λ t; γ) solves equation

X ′′ = −λf(X) and satisfies the conditionsX(0) = 0, dX
dt

|t=0 = du(ξ)
dξ

|ξ=0

√
λ =

γ
√

λ. ThenX ′
t(0) = 1 if γ = 1√

λ
. Sinceu(t; γ) has its first positive zero att1(γ) the

functionX(t) = u(
√

λ t; γ) has the first zero at1√
λ

t1(γ) = 1√
λ

t1(
1√
λ
). If λ is such that

1√
λ

t1(
1√
λ

) = 1, thenX(t) is a solution to the problem (9) and to the problem (16) also.

Hence (17).
Similarly a solutionY (t) := v(

√
µ t; δ) with δ = 1√

µ
solves equationY ′′ = µg(Y )

and satisfies the conditionsY (0) = 0, dY
dt

|t=0 = −1. This solution has its first zero at

t = 1√
µ

τ1(
1√
µ
). If µ is such that

1√
µ

τ1(
1√
µ

) = 1, thenY (t) is a solution to the problem

(12) and to the problem (16) also. Hence (18).
Consider now solutions of (16) (if any), which have exactly one zero in(0, 1).

We have to distinguish between solutions which are first positive and then negative,
and solutions, which are first negative and then positive. Consider the first case. Let
X(t) = u(

√
λ t; γ), whereγ = 1√

λ
. This solution is positive in the interval(0, Tλ), where

Tλ = 1√
λ

t1(
1√
λ
), vanishes at the end points and satisfyX ′(0) = 1, X ′(Tλ) = −1.

Similarly Y (t) = v(
√

µ t; δ), whereδ = 1√
µ
, is negative in the interval(0, Tµ), where

Tµ = 1√
µ

τ1(
1√
µ
), vanishes at the end points and satisfyY ′(0) = −1, Y ′(Tµ) = 1. Since

equation (12) is autonomous, a functionY (t − Tλ) solves it also, and can be combined
with X(t) in order to get a solution of equation in (16). By construction the function

Z(t) =

{

X(t), if t ∈ [0, Tλ],

Y (t − Tλ), if t ∈ [Tλ, Tλ + Tµ]
(23)
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satisfies the conditions

Z(0) = 0, Z(Tλ) = 0, Z(Tλ + Tµ) = 0,

Z ′(0) = 1, Z ′(Tλ) = −1, Z ′(Tλ + Tµ) = 1.

If the condition

Tλ + Tµ =
1√
λ

t1

( 1√
λ

)

+
1√
µ

τ1

( 1√
µ

)

= 1

holds thenZ(t) is a solution of the problem (16). Hence (19) fori = 1.
Similarly (20) fori = 1 can be obtained from the relationTµ + Tλ = 1, considering

first Y (t) and combining it withX(t − Tµ).
The rest of (19) and (20) (fori = 2, 3, . . .) can be obtained using respectively the

relations

(Tλ + Tµ) + . . . + (Tλ + Tµ), i pairs (Tλ + Tµ)

and

(Tµ + Tλ) + . . . + (Tµ + Tλ), i pairs (Tµ + Tλ).

Then the case of solutions of the problem (16), which have oddnumber zeros in(0, 1), is
exhausted.

The relations (19) and (20) define the same set (fori fixed).
This is not the case for solutions of (16), which have even number of zeros in(0, 1).

For i fixed the relations (21) and (22) generally define different sets.

3.2 Samples

3.2.1 Superlinear+superlinear

Consider the boundary value problem

x′′ =

{

−λ|x|2α x, if x ≥ 0,

−µ|x|2β x, if x < 0,
x(0) = x(1) = 0,

∣

∣x′(0)
∣

∣ = 1, (24)

whereα > 0 andβ > 0. Both “positive” and “negative” parts of equation are superlinear.
Computations show that the Fuchik spectrum for the problem (24) consists of two straight
lines

F+
0 =

{

(

(2Aα)2α+2(α + 1);µ
)

: µ ≥ 0
}

,

F−
0 =

{

(

λ; (2Aβ)2β+2(β + 1)
)

: λ ≥ 0
}

,

and a set of curves

F+
2i−1 =

{

(λ;µ) : i
2Aα(α + 1)

1
2α+2

λ
1

2α+2

+ i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}

,
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F−
2i−1 =

{

(λ;µ) : i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

+ i
2Aα(α + 1)

1
2α+2

λ
1

2α+2

= 1

}

,

F+
2i =

{

(λ;µ) : (i + 1)
2Aα(α + 1)

1
2α+2

λ
1

2α+2

+ i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}

,

F−
2i =

{

(λ;µ) : (i + 1)
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

+ i
2Aα(α + 1)

1
2α+2

λ
1

2α+2

= 1

}

,

where

Aα =

1
∫

0

ds√
1 − s2α+2

, Aβ =

1
∫

0

ds√
1 − s2β+2

.

The respective Fuchik spectrum is depicted in Fig. 3.

Remark 1. The even-numbered branches of the spectrum cannot intersect at the bisectrix
unlessα = β. Indeed, consider the branchesF+

2i andF−
2i . Suppose thatλ = µ, that is,

the branches intersect at the bisectrix. Then

(i + 1)
2Aα(α + 1)

1
2α+2

λ
1

2α+2

+ i
2Aβ(β + 1)

1
2β+2

λ
1

2β+2

= 1

and

i
2Aα(α + 1)

1
2α+2

λ
1

2α+2

+ (i + 1)
2Aβ(β + 1)

1
2β+2

λ
1

2β+2

= 1.

Therefore one gets comparing the above two lines that

2Aα(α + 1)
1

2α+2

λ
1

2α+2

=
2Aβ(β + 1)

1
2β+2

λ
1

2β+2

. (25)

The left (resp.: right) side of (25) is a valuet1(α) (resp.: t1(β)) of the first zero of a
solution to the Cauchy problem

x′′ = −λ|x|2α x (resp.:x′′ = −λ|x|2β x), x(0) = 0, x′(0) = 1.

Since the functiont1(z) is monotone, equalityt1(α) = t1(β) impliesα = β.

3.2.2 Superlinear+sublinear

Consider the boundary value problem

x′′ =

{

−λ|x|2α x, if x ≥ 0,

µ|x| 1
2β+1 , if x < 0,

x(0) = x(1) = 0,
∣

∣x′(0)
∣

∣ = 1, (26)
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whereα > 0 andβ > 0. “Negative” part of equation is now sublinear. Computations
show that the Fuchik spectrum for the problem (26) consists of two straight lines

F+
0 =

{

(

(2Aα)2α+2(α + 1);µ
)

: µ ≥ 0
}

,

F−
0 =

{

(

λ; (2Aβ)
2β+2

2β+1
β + 1

2β + 1

)

: λ ≥ 0
}

,

and curves

F+
2i−1 =

{

(λ;µ) : i
2Aα(α + 1)

1
2α+2

λ
1

2α+2

+ i
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

= 1

}

,

F−
2i−1 =

{

(λ;µ) : i
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

+ i
2Aα(α + 1)

1
2α+2

λ
1

2α+2

= 1

}

,

F+
2i =

{

(λ;µ) : (i + 1)
2Aα(α + 1)

1
2α+2

λ
1

2α+2

+ i
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

= 1

}

,

F−
2i =

{

(λ;µ) : (i + 1)
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

+ i
2Aα(α + 1)

1
2α+2

λ
1

2α+2

= 1

}

,

where meaning ofAα andAβ is the same as above.
The respective Fuchik spectrum is depicted in Fig. 4.
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Fig. 3. Fuchik spectrum for the case
super+super, the first six pairs of

branches.
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Fig. 4. Fuchik spectrum for the case
super+sub, the first six pairs of

branches.
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3.2.3 Sublinear+superlinear

Consider the boundary value problem

x′′ =

{

−λ|x| 1
2α+1 , if x ≥ 0,

−µ|x|2β x, if x < 0,
x(0) = x(1) = 0,

∣

∣x′(0)
∣

∣ = 1, (27)

whereα > 0 andβ > 0. “Positive” part of equation is sublinear. Computations show that
the Fuchik spectrum for the problem (26) consists of two straight lines

F+
0 =

{

(

(2Aα)
2α+2

2α+1
α + 1

2α + 1
;µ

)

: µ ≥ 0
}

,

F−
0 =

{

(

λ; (2Aβ)2β+2(β + 1)
)

: λ ≥ 0
}

,

and curves

F+
2i−1 =

{

(λ;µ) : i
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

+ i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}

,

F−
2i−1 =

{

(λ;µ) : i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

+ i
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

= 1

}

,

F+
2i =

{

(λ;µ) : (i + 1)
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

+ i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}

,

F−
2i =

{

(λ;µ) : (i + 1)
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

+ i
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

= 1

}

,

whereAα andAβ are as above.
The respective Fuchik spectrum is depicted in Fig. 5.

3.2.4 Sublinear+sublinear

Consider the boundary value problem

x′′ =

{

−λ|x| 1
2α+1 , if x ≥ 0,

µ|x| 1
2β+1 , if x < 0,

x(0) = x(1) = 0,
∣

∣x′(0)
∣

∣ = 1, (28)

whereα > 0 andβ > 0. Both “positive” and “negative” parts of equation are sublinear.
Computations show that the Fuchik spectrum for the problem (28) consists of two straight
lines

F+
0 =

{

(

(2Aα)
2α+2

2α+1
α + 1

2α + 1
;µ

)

: µ ≥ 0
}

,

F−
0 =

{

(

λ; (2Aβ)
2β+2

2β+1
β + 1

2β + 1

)

: λ ≥ 0
}

,
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and curves

F+
2i−1 =

{

(λ;µ) : i
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

+ i
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

= 1

}

,

F−
2i−1 =

{

(λ;µ) : i
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

+ i
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

= 1

}

,

F+
2i =

{

(λ;µ) : (i + 1)
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

+ i
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

= 1

}

,

F−
2i =

{

(λ;µ) : (i + 1)
2Aβ( β+1

2β+1 )
2β+1

2β+2

µ
2β+1

2β+2

+ i
2Aα( α+1

2α+1 )
2α+1

2α+2

λ
2α+1

2α+2

= 1

}

,

whereAα andAβ are as above.
The respective Fuchik spectrum is depicted in Fig. 6.
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Fig. 5. Fuchik spectrum for the case
sub+super, the first six pairs of branches.
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Fig. 6. Fuchik spectrum for the case
sub+sub, the first six pairs of branches.

Remark 2. The even-numbered branches of the spectrum cannot intersect at the bisectrix
unlessα = β (see Subsection3.2.1for explanation).

4 Semilinear spectra for Fuchik type problems

Consider semilinear problems, where equation is linear forx positive, and superlinear for
x negative. Let equation be of the form

x′′ =

{

−λx, if x ≥ 0,

−µ|x|2βx, if x < 0,
x(0) = x(1) = 0, (29)
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whereλ ≥ 0 andµ ≥ 0, β > 0.
Let us look for solutions, normalized by the condition|x′(0)| = 1. Computations

show that the Fuchik spectrum for the problem (29) consists of two straight lines

F+
0 =

{

(π2;µ) : µ ≥ 0
}

,

F−
0 =

{

(

λ; (2Aβ)2β+2(β + 1)
)

: λ ≥ 0
}

,

whereAβ =

1
∫

0

dt√
1 − t2β+2

and curves

F+
2i−1 =

{

(λ;µ) : i
π√
λ

+ i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}

,

F−
2i−1 =

{

(λ;µ) : i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

+ i
π√
λ

= 1

}

,

F+
2i =

{

(λ;µ) : (i + 1)
π√
λ

+ i
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

= 1

}

,

F−
2i =

{

(λ;µ) : (i + 1)
2Aβ(β + 1)

1
2β+2

µ
1

2β+2

+ i
π√
λ

= 1

}

.
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Fig. 7. The first branches of the Fuchik spectrum for the problem (29), β = 0.1.

4.1 Semilinear boundary value problems

At the end we consider the boundary value problem for equation

x′′ + g(x) = f(t, x, x′), g ∈ C1, f, fx, fx′ ∈ C1; (30)
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whereg is the principal (semilinear) term, andf is bounded.
Suppose thatg(x) satisfies the conditions:

(C1) g(x)/x → ω2 asx → +∞ (g(x) is “almost linear” at+∞);

(C2) g(x) < K|x|px, x < −N, whereK > 0, N > 0 andp > 0 are constants.
A sample equation might be

x′′ =

{

−ω2x, if x ≥ 0,

−Kx3, if x < 0.

In the related literature often the linear eigenvalue problem

x′′ + k2x = 0, (31)

x(0) = 0, x(1) = 0 (32)

is considered for comparison. The interval(−∞, ω) is compared with the eigenvalues
k1 = π, k2 = 2π, . . . of the problem (31), (32). If

−∞ < k1 < . . . < ki < ω < ki+1, (33)

theng(x) is referred to as “nonlinearity crossing several eigenvalues.”
The conditions(C1) and(C2) are insufficient to make conclusions on the number of

solutions to the problem (30), (32). An extra condition is needed.
Introduce the additional condition in the spirit of the work[14], where motivation

and reasoning can be found:

(C3) there exists the trivial solutionx ≡ 0 to the problem (30), (32) and a solutiony(t)
of the respective equation of variations

y′′ + gx(0)y = fx(t, 0, 0)y + fx′(t, 0, 0)y′, (34)

y(0) = 0, y′(0) = 1 (35)

has exactlym zeros in(0, 1) andy(1) 6= 0.

Theorem 2. Let the conditions(C1) to (C3) hold. Suppose that the condition(33) holds
for somei = 1, 2, . . . , whereki are eigenvalues of the linear problem(31), (32). Then
the problem(30), (32)has at least|m − 2i| + |m − (2i + 1)| solutions.

The proof is not simple, but analogous to that of the main result in [14]. It can be
carried out considering solutionsx(t; γ) of the Cauchy problem (30),x(0) = 0, x′(0) =
γ. For γ small in modulus solutionsx(t; γ) behave likey(t). For γ positive and large
x(t; γ) behave like solutions ofz′′ + ω2z = 0, z(0) = 0, z′(0) = 1. For γ negative
and largex(t; γ) behave like solutions of superlinear equation witht1(γ) (the first zero)
tending to zero asγ tends to−∞. “Behaves like” means here “has the same number of
zeros in(0, 1).” We omit the proof.
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