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Abstract. In this paper wavelet packet bases are used for an estimation of the
autoregressive Hilbertian processes operator. We assume that integral operator kernel
can have some singular structures and estimate them by projecting functional processes
on suitable bases. Linear methods for continuous-time prediction using Hilbert-valued
autoregressive processes are compared with the suggested method on simulated data and
on real-life data sets. Statistics of residual partial sums processes andEx poste prediction
are used to check the model.
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1 Introduction

In many real life applications, the data and the model can be structured in several ways.
In some time series it is possible to interpret the observed data as the realisation of the
functional process. Recently there has been much interest in the possibility of using
autoregressive Hilbertian model to predict the weather [1], harmonic levels in electrical
networks [2] or cash flow in automatic teller machine networks [3]. In all the mentioned
papers, the projection on the finite number of principal components of the empirical
covariance operator has been used to predict future functional observations. A compre-
hensive theoretical study of this method has been presentedby Bosq [4].

Fourier transform and spline bases have been used in the above-mentioned papers.
The authors used a rule of thumb to determine the number of bases. Further multivariate
principal components analysis and cross-validation criteria have been used to reduce the
dimensionality of the space.

Wavelet bases can be used instead of Fourier transform or spline bases for a less
regular functions. Antoniadis and Sapatinas [5] in their paper proposed to exploit some
wavelet bases regularity properties by suggesting three linear methods using wavelet
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Fig. 1. Bivariate time series.

regularisation techniques. Compared with spline bases, these methods showed a similar
prediction errors on climatological time series.

In this paper we are concerned with the autoregressive Hilbertian process that has
some singular structures in its integral kernel. For the Gaussian functional noise and
autoregressive operator with some singularities, it can beassumed that the covariance
operator principal components bases are not the best one forthe estimation of the model
parameters.

In order to deal with the autoregressive operator singularities we suggest to use
wavelet packet bases (WPB) so that the most suitable bases from the dictionary of ad-
missible bases can be found.

Recently, the best basis methods have appeared in a variety of papers in the area of
image compression and denoising (see [6] for review). The arguments presented by these
papers in favor of the wavelet packet bases can be applied to functional data with some
singular structures as well.

The rest of the article is organised as follows. The functional autoregressive process
and autoregressive operator kernel with singular structures are introduced in Section 2.
The residual partial sums processes and a certain class of functionals of the residuals
partial sums are introduced. These functionals serve as tests of stability and as a criterion
for parameters estimation. The section concludes with the simulation results, which show
that the proposed method improves the prediction results for a certain class of functional
processes.

Section 3 presents the standard and non-standard forms of operators decomposition
and discusses their extensions with the wavelet packet dictionaries. Beylkinet al. [7,
8] have demonstrated that some operator can be presented in the non-standard form
as the sparse matrix and there exist algorithms that apply those operators in order of
O(N) operations. The estimation of the operator of a first-order functional autoregressive
process based on the wavelet packet transformation is presented in Section 4. The uniform
moving residual sums statistics are used to test the stability and suitability of the model.
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The real life application of the use of the wavelet packet transformation is presented in
Section 5. The final section concludes with suggestions for future research.

2 Autoregressive Hilbertian and residual partial sums processes

LetH denote the Hilbert spaceL2(0, 1) with the norm‖x‖2 =
∫ 1

0
x2(t)dt and with the

inner product〈x, y〉 =
∫ 1

0
x(t)y(t)dt. A sequence(ξi = ξi(t), t ∈ [0, 1]; 0 < i ≤ N) of

random variables with values inH is said to follow a Hilbert space valued autoregressive
process of the first order (ARH(1)) associated with(ε, ρ) if it is stationary and such that

ξi = ρ(ξi−1) + εi, (1)

where(εi(t), t ∈ [0, 1]; 0 < i ≤ N) is anH white noise, and operatorρ : H → H is
linear and compact [9].

Row residuals(ε̂i) of the model (1) are defined in the usual way by

ε̂i = ξi − ρ̂(ξi−1),

whereρ̂ is an estimate of the operatorρ based onξ1, . . . , ξN .
In order to test the model (1) for stability and suitability we consider the process

ξ̂N (s) = N−1/2
(
Ŝ(⌊Ns⌋) + (Ns− ⌊Ns⌋)ε̂⌊Ns⌋+1

)
, 0 ≤ s ≤ 1,

whereŜ(0) = 0 and

Ŝ(i) =
∑

j≤i

ε̂j , for 0 < i ≤ N.

Residual partial sums process weak convergence to a Brownian motion with values in the
spaceH and in stronger topological framework e.g. Hölder space hasbeen investigated
in the paper by Laukaitis and Rackauskas [10]. To test ARH(1)model stability, they
suggested to use the uniform moving residual sums statistics

M̂S(N,α) = max
0≤m<N

(m−α) max
1≤k≤N−m

∥∥Ŝ(k +m) − Ŝ(k) −
m

N
Ŝ(N)

∥∥,

where0 < α < 1. The dependency of the statistiĉMS(N,α) from the choice of
Hölder parameterα has been presented at [10]. The authors demonstrated that statistics
M̂S(N,α) is more sensitive to the changes of (1) when Hölder exponent approaches 1/2.

In this paper the statistiĉMS(N,α) was used to test if the data are consistent with the
model (1). Our method is based on the choice of the best wavelet basis and this statistic
is used to test how well the model fits the data for each waveletbasis.

Let β : [0, 1]2 → R satisfies
∫ 1

0

∫ 1

0
β2(s, t)dsdt < ∞. Consider the operator

ρ : H → H defined by the kernelβ

ρ(x) =

1∫

0

β(s, t)x(t)dt, for s ∈ [0, 1]. (2)
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We now consider three special examples of the simulation that explains the motiva-
tion behind this work.

1. The two randomly generated Dirac basis (peaks) on the surface of the kernelβ (one
peak on the diagonal). In that case, the autoregressive operator will have the form

ρ(x) = A〈x, v1〉v1 +B〈x, v3〉v2, (3)

where{v1, v2, v3} is an orthonormal system in H and0 < A < 1 and0 < B < 1.

2. As the second example the kernels with singularities of the form log |t− s| are
considered. Applications of such operators have been analyzed by Bradley [11].
For the simulation studies the following operator has been used

β(s, t) =

{
− log |t−s|−2 log

(
− |t−s|+1

)
, |t−s| 6=0 or |t−s| 6=−1,

100, |t−s|=0 or |t−s|=−1.
(4)

3. The Gaussian kernel as an example of a smooth kernel function

β(s, t) = K exp
{
(s2 + t2)/2

}
, s, t ∈ [0, 1]. (5)

In addition to the wavelet packet basis approach, two methods presented by Bosq [4]
and Antoniadiset al. [5] are used in the simulation.

The estimation of the operatorρ is ill-posed. In order to handle it Bosq [4] suggested
the projection method on the span of principal components ofthe covariance operator.

Let Γ̂0 =
1

N

∑N
i=1

ξi ⊗ ξi andΓ̂1 =
1

N

∑N
i=1

ξi ⊗ ξi+1 be the empirical covariance and

cross-covariance operators and let,HiN
be the span ofkN eigenvectors of̂Γ0 associated

with the largest eigenvalues, and letπkN
be the orthogonal projector on this subspace.

Theu⊗ v defines the tensor product for two fixed elementsu, v ∈ H and is the bounded
linear operator formH toH, defined by

x ∈ H 7→ (u⊗ v)(x) = 〈u, x〉v.

Let us define the regularized covariance and cross-covariance estimates as follows:
Γ̃0 = πkN

Γ̂0π
′
kN

andΓ̃1 = πkN
Γ̂1π

′
kN

. The regularized estimator will be

ρ̃ = πkN
Γ̃1Γ̃0

−1

π′
kN
. (6)

Under certain assumptions on the covariance operator, thisestimator is consistent(for
details see [4]). For less regular space Antoniadiset al. [5] proposed the method based on
the wavelet-vaguelette decomposition and which is defined as follows

ρ̂ξi =

2
j0∑

k=1

〈ξi, ρ
∗φ̂j0k〉φj0k (7)
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and

ρ∗φ̂j0k = (Γ̂∗
0Γ̂0 + λI)−1Γ̂∗

0Γ̂
∗
1φj0k,

whereΓ̂∗
0 andΓ̂∗

1 are the adjoint operator of̂Γ0 andΓ̂1 .

Autoregressive operator estimation based on the Wavelet-vaguelette decomposition
shows similar prediction accuracy as the covariance operator principal component pro-
jection method [5]. A recent study from Laukaitis and Rackauskas [3] confirms those
findings.

Table 1 presents our simulation results for the model (1). Weassume that the
autoregressive operator has one of the three forms presented above. Wiener process
is used as the noise componentεi in our simulations. The methods of the principal
components (6), the wavelet-vaguelette decomposition (7)and the wavelet packet bases
(see Section 4) are compared by increasing the number of samples from102 to 105 and
calculating the mean quadratic errors of the forecasted variables. All simulation has been
carried in the MATLAB environment.

Table 1. Mean quadratic errors for one-step-ahead forecast of theξ in model (1)

Model (3) 102 103 104 105

PCA 0.09559 0.00398 0.001350 0.00104
Vaguelette 0.09130 0.00348 0.001449 0.00101

WPB 0.00140 0.00106 0.00096 0.00091

Model (4)
PCA 0.1302 0.06796 0.03352 0.03122

Vaguelette 0.1334 0.05279 0.03218 0.03174
WPB 0.1103 0.05072 0.03083 0.02989

Model (5)
PCA 0.1331 0.0069 0.0056 0.0025

Vaguelette 0.1366 0.0081 0.0059 0.0026
WPB 0.1497 0.0067 0.00591 0.0027

As we can see from Table 1, while consistent, method of the principal components
perform poorly when we have small number of samples and if thebest predictors of the
future evolution have little to do with the largest principal components.

The examples and arguments provided in the working paper of Kargin and Onatski
[12] confirms that the method of functional principal components is not always the best
way to estimate autoregressive operator. We see that the method of wavelet packet basis
gives more accurate estimation when we deal with the low number of observations.
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3 The standard and non-standard form of operator decomposition

Operators with singularities in the kernel has been considered in the paper by Beylkinet
al. [7, 8]. They investigated operators representation in the so-called non-standard form
and demonstrated that for some operators with singularities sparse representation with
algorithm of orderO(N) can be achieved.

By using wavelet bases the functionβ(s, t) from (2) can be represented in standard
and nonstandard forms. The standard form is the representation of an operator in the
tensor product basis. Let{Vj}j∈Z be a multiresolution approximation [6] of the function
β(s, t). If there is the coarsest scalen, then we have

Vj = Vn ⊕j′
=n

j′=j+1
Wj′ ,

where subspaceWj+1 is supplementary of subspaceVj+1 and is defined as:Vj = Vj+1⊕
Wj+1. In the case of finitely many scales the autoregressive operator is a representation of
ρj = PjρPj , wherePj is the projection on subspaceVj . Using standard form represen-
tation we can decompose autoregressive operator by the set of operators acting between
subspaces of different scales:Wj′ →Wj ,Wj →Wj′ , Vn →Wj′ ,Wj′ → Vn, Vn → Vn.

Alternatively, wavelet bases inL2(R
2) , may be constructed using the scaling func-

tion in addition to the wavelets. In that case, the triplet offunctionsψj,k(t) ψj,l(s),
ψj,k(t)φj,l(s), φj,k(t)ψj,l(s), wherej, k, l ∈ Z , forms a basis ofL2(R

2). Representing
operators in these bases leads to the non-standard form [8] as a chain of tripletsρ =
{AjBjΓj}j∈Z acting on the subspacesVj andWj :Aj : Wj → Wj , Bj : Vj → Wj ,
Γj : Wj → Vj . The operators{AjBjΓj}j∈Z are defined asAj = QjρQj , Bj = QjρPj

andΓj = PjρQj . They admit a recursive definition via the relation

ρj =

(
Aj+1 Bj+1

Γj+1 ρj+1

)
,

where the operatorsρj ,ρj : Vj → Vj are defined byρj = PjρPj . If there is a coarsest
scalen, then

ρ =
{
{AjBjΓj}j∈Z,j≤n, ρn

}
,

whereρn = PnρPn . If the number of the scales is finite, then the operators are organised
as blocks of a matrix.

In this paper we extend the notion of the standard and non-standard integral oper-
ator representation by considering operator decomposition in the wavelet packet basis.
Wavelet packet bases has been introduced by Coifmanet al. [13] as a generalization of
the wavelet transform basis. This generalization of the traditional wavelet filter bank
structure permits the representation of a function by one ofmany bases, each of which is
constructed by a unique ensemble of scalings and translations of the same wavelet/scaling
filter pair.

The motivation for using wavelet packet bases follows from the possibility to have
a whole ensemble of localized representations beyond the traditional wavelet transform.
Wavelets can isolate functions behavior in both length (time) and frequency.
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Following the same approach as in Section 3 both standard andnon-standard forms
of autoregressive operator can be introduced for wavelet packet bases (more on the func-
tions decomposition by wavelet packet bases can be found in [13] or [6]).

4 Estimation of the autoregressive operator by wavelet packets

Let Γ0 be the covariance operator of the random curves{ξi} defined byΓ0 = E〈ξi ⊗ ξi〉
so that〈Γ0x, z〉 = E〈ξi, x〉〈ξi, z〉 for x, z ∈ H. Let Γ1 be the cross-covariance operator
for the curves{ξi} and {ξi−1} defined byΓ1 = E〈ξi−1 ⊗ ξi〉 so that〈Γ1x, z〉 =
E〈ξi−1, x〉〈ξi, z〉 for x, z ∈ H.

It is easy to see that by multiplying (1) byξi−1 and taking expectation we have that
the following relationship holds:

Γ1 = ρΓ0.

An intuitive way forρ estimation is to substitute the covariance and cross-covariance
operators with their estimates

Γ̂0(x) =
1

n

n∑

i=1

〈ξi, x〉ξi, Γ̂1(x) =
1

n− 1

n−1∑

i=1

〈ξi, x〉ξi+1.

In the expression above we have thatΓ0 is singular and we face with an ill-posed
problem. As a consequence, obtaining a consistent estimateof ρ requires regularization
of the solution. One way to achieve that would be to use projection method on the span
of principal components as mentioned above (6). Mallatet al. [14] suggested to estimate
locally stationary process eigenfunctions of the covariance operator by searching for their
close match in the dictionary of local cosines bases. The best orthogonal basis provides
a means of quickly computing compact, adaptive function approximations. In the case of
the functional autoregressive processes we have the possibility to chose the basis close to
the principal components basis if the principal componentsbasis is the best one or to find
better if the principal components basis is not optimal basis for the prediction.

Let D = (φγ)γ∈N be a dictionary of waveforms. Wavelet packets and local cosine
bases can be as examples of such dictionaries.

The algorithm begins by assuming that the operator kernelβ can be sparsely ap-
proximated by one of the wavelet packet admissible tree bases. From the fast dynamic
programming algorithm of Coifman and Wickerhauser [15] follows that the best bases
can be found by a bottom-up progression. At the bottom of deeps J there is only one
basis for considerationW p

J because bottom nodes are not subdecomposed. In the space
span by basisW p

J we take the pairs(φγ1
, φγ2

)k of bases that maximizes correlation of
functional process{ξi} from (1)

ν(φγ1
, φγ2

) =
〈φγ1

,Γ1φγ2
〉2

〈φγ1
,Γ0φγ1

〉〈φγ2
,Γ0φγ2

〉
.
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Starting fromk = 1 the operatorρ is estimated in the bases(φγ1
, φγ2

)1. The statistic
M̂S(N,α) presented above is used to check the model. If we reject the null hypothesis that
the residual partial sums process behaves like white noise when we continue increasing
the number of pairs(φγ1

, φγ2
)k. The next step after the model (1) evaluation in the space

W p
J is to follow as in [15] by investigating the spaces{W p

j }0≤p<2j . When we finish the
search in the admissible tree bases we get the most sparse solution.

Also, as it has been shown in our simulation example above, there are special cases
when we can have basis better then principal components one.The example below
illustrates that we can find in the dictionary the basis that is close to principal components
basis.

5 Estimation of the payment systems transactions intensity

The operational cost control as well as the financial liquidity control is the motivation for
the following analysis. For the banks, it is important to forecast the next day cash flow at
any given moment of time. That is why the functional data analysis is suitable for such
applications.

We tackle the problem of the payments prediction intensity in Lithuania cards pay-
ment market at ATM ( automated teller machine is an electronic device that allows a
bank’s customers to make cash withdrawals) networks between 03.11.2003 and
10.03.2004. Fig. 2 left side displays the functional data. Each function represents the
number of transactions. Fig. 2 right side displays bivariate time series that we received
after fixing the values from each functional process at 12:00AM and 24:00 PM.

Fig. 2. Bivariate time series.

We use double stochastic Poisson process(N(t), t ∈ [0, 1]) to model the intensity of
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the transactions.The corresponding intensitiesΛ(t), t ∈ [0, 1] are given by

Λ(t) =

t∫

0

λ(s)ds = EN(t).

By using the observations of the functionsΛ(t), we build the observations for their
derivativesλ(t). Namely, we consider

λ(tj) = Λ(tj) − Λ(tj−1), i = 1, . . . , n, j = 1, . . . , 1024.

In the process of the exploratory data analysis we used statistic M̂S to judge about
the model (1) suitability. This analysis helped us to find that we must censor empirical
process by eliminating two weeks of Christmas holiday period (for details see [3]). In
Table 2 we show values of the statistiĉMS calculated for transactions processes before
and after we censored data. The distribution of the statistic M̂S can be found in the paper
by Laukaitis and Rackauskas [10].

From the results of Table 2 we can say that after adjusting andestimating autoregres-
sive operator the residuals of transactions intensity process follows white noise behavior
with 94 % confidential level.

Table 2. StatistiĉMS for transactions double stochastic Poisson process data set.
Case A – No censoring and no differentiation. Case B – Christmas period censored

aα 0.1 0.2 0.3 0.4 0.45 0.49 0.495
(A)MS 12.31 13.31 15.32 17.24 19.23 22.29 22.56
(B)MS 0.77 0.85 0.93 1.02 1.07 1.11 1.12

Finally, let us discuss the prediction capability of the model. Consider the prediction
problem of the functionλn+1(t), t ∈ [0, 1]. For prediction we used the model (1).
Different types of the forecasting errors can be considered. The most widely accepted
measures of the performance of the estimator ofξn+1 is it’s mean integrated square error
given by

MISE = E

1∫

0

(
ξn+1(t) − ξ̂n+1(t)

)2
dt.

We evaluated the MISE error by choosing ten days not used in the parameters esti-
mation(see Table 3).

It is clear that the predicted values depends on the number ofprincipal components
used (for principal components estimation method) or the number of selected bases (for
wavelet packet bases estimation method) in the model. As we can see the most optimal
subspace dimension for principal components method is 4 and7 for wavelet packet bases
method.
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Table 3. Prediction errors

Error\M 1 2 3 4 5 6 7 8
PCA 5.50 5.02 4.99 4.95 5.05 4.97 5.04 5.07
WPB 5.86 5.53 5.24 5.18 5.05 4.97 4.96 5.06

6 Concluding remarks

We suggested the wavelet packet bases method for functionalautoregressive process
estimation. As we have seen the method shows better prediction compared with the other
known methods when autoregressive kernel exhibits some singular structures and when
the number of observations is limited. More mathematical investigation is needed to
investigate asymptotic properties of this method. We hope to provide them in the future
research work.
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