On a Nonlinear System of Reaction-Diffusion Equations

G.A. Afrouzi, S.H. Rasouli

Department of Mathematics, Faculty of Basic Sciences Mazandaran University, Babolsar, Iran afrouzi@umz.ac.ir

Received: 08.03.2006 Revised: 19.04.2006 Published online: 18.05.2006

Abstract. The aim of this article is to study the existence of positive weak solution for a quasilinear reaction-diffusion system with Dirichlet boundary conditions,

$$\begin{cases} -\operatorname{div}\left(|\nabla u_1|^{p_1-2}\nabla u_1\right) = \lambda \, u_1^{\alpha_{11}} \, u_2^{\alpha_{12}} \dots u_n^{\alpha_{1n}}, & x \in \Omega, \\ -\operatorname{div}\left(|\nabla u_2|^{p_2-2}\nabla u_2\right) = \lambda \, u_1^{\alpha_{21}} \, u_2^{\alpha_{22}} \dots u_n^{\alpha_{2n}}, & x \in \Omega, \\ \dots \\ \operatorname{div}\left(|\nabla u_n|^{p_n-2}\nabla u_n\right) = \lambda \, u_1^{\alpha_{n1}} \, u_2^{\alpha_{n2}} \dots u_n^{\alpha_{nn}}, & x \in \Omega, \\ u_i = 0, & x \in \partial\Omega, \quad i = 1, 2, \dots, n, \end{cases}$$

where λ is a positive parameter, Ω is a bounded domain in \mathbb{R}^N (N > 1) with smooth boundary $\partial\Omega$. In addition, we assume that $1 < p_i < N$, for $i = 1, 2, \ldots, n$. For λ large by applying the method of sub-super solutions the existence of a large positive weak solution is established for the above nonlinear elliptic system.

Keywords: reaction-diffusion system, *p*-Laplacian, positive weak solutions. **AMS classification:** 35J65.

1 Introduction

In this paper we consider the existence of positive weak solution to the system

$$\begin{cases} -\Delta_{p_1} u_1 = \lambda \, u_1^{\alpha_{11}} \, u_2^{\alpha_{12}} \dots u_n^{\alpha_{1n}}, & x \in \Omega, \\ -\Delta_{p_2} u_2 = \lambda \, u_1^{\alpha_{21}} \, u_2^{\alpha_{22}} \dots u_n^{\alpha_{2n}}, & x \in \Omega, \\ \dots & & \\ -\Delta_{p_n} u_n = \lambda \, u_1^{\alpha_{n1}} \, u_2^{\alpha_{n2}} \dots u_n^{\alpha_{nn}}, & x \in \Omega, \\ u_i = 0, & x \in \partial\Omega, \quad i = 1, 2, \dots, n, \end{cases}$$
(1)

where $\lambda > 0$ is a parameter, Δ_p denotes the *p*-Laplacian operator defined by $\Delta_p z = \operatorname{div}(|\nabla z|^{p-2}\nabla z)$, and Ω is a bounded domain in $\mathbb{R}^N(N > 1)$ with smooth boundary $\partial\Omega$. In addition, we assume that $1 < p_i < N$, for $i = 1, 2, \ldots, n$.

Problems involving the *p*-Laplacian arise from many branches of pure mathematics as in the theory of quasiregular and quasiconformal mapping (see [1]) as well as from various problems in mathematical physics notably the flow of non-Newtonian fluids.

The structure of positive solutions for quasilinear reaction-diffusion systems (nonlinear Newtonian filtration systems) and semilinear reaction-diffusion systems (Newtonian filtration systems) is a front topic in the study of static electric fields in dielectric media, in which the potential is described by the boundary value problem of a static non-Newtonian filtration system, called the Poisson-Boltzmann problem. This kind of problems also appears in the study of the non-Newtonian or Newtonian turbulent filtration in porous media and so on, which have extensive engineering background.

In recent years, many authors have investigated the following initial boundary value problem of a class of quasilinear reaction-diffusion system

$$\begin{cases} u_t = \operatorname{div}\left(|\nabla u|^{p-2}\nabla u\right) + u^{\alpha_1}v^{\beta_1}, \\ v_t = \operatorname{div}\left(|\nabla v|^{q-2}\nabla v\right) + u^{\alpha_2}v^{\beta_2}, \quad (x,t) \in \Omega \times (0,T), \end{cases}$$
(2)

where Ω is as above, p, q > 1 (see e.g. [2]). For p = q = 2, (2) is the classical reaction-diffusion system of Fujita type. If $p \neq 2$, $q \neq 2$, (2) appears in the theory of non-Newtonian fluids [3] and in nonlinear filtration theory [4]. In the non-Newtonian fluids theory, the pair (p, q) is a characteristic quantity of the medium. Media with (p,q) > (2,2) are called dilatant fluids and those with (p,q) < (2,2) are called pseudoplastics. If (p,q) = (2,2), they are Newtonian fluids.

Yang and Lu [2] studied the nonexistence of positive solutions to the system (2). We refer to [5–7] for additional results on elliptic systems. In this paper, we shall prove that if $\sum_{j=1}^{n} \alpha_{1j} < p_1 - 1$, $\sum_{j=1}^{n} \alpha_{2j} < p_2 - 1$,..., $\sum_{j=1}^{n} \alpha_{nj} < p_n - 1$, (1) admits a positive weak solution for each $\lambda > 0$. Our approach is based on the method of sub- and supersolutions, see [8].

2 Existence results

Let $W_0^{1,s} = W_0^{1,s}(\Omega), s > 1$, denote the usual Sobolev space. We first give the definition of weak solution of (1).

Definition 1. A pair of nonnegative functions $(\psi_1, \psi_2, \ldots, \psi_n)$, (z_1, z_2, \ldots, z_n) in $W_0^{1,p_1} \times W_0^{1,p_2} \times \ldots \times W_0^{1,p_n}$ are called a weak subsolution and supersolution of (1) if they satisfy $\psi_i(x) \leq z_i(x)$ in Ω for $i = 1, 2, \ldots, n$, and

$$\int_{\Omega} |\nabla \psi_i|^{p_i - 2} \nabla \psi_i \nabla w_i \, dx \le \lambda \int_{\Omega} \prod_{j=1}^n \psi_j^{\alpha_{ij}} \, w_i \, dx,$$

for i = 1, 2, ..., n and

$$\int_{\Omega} |\nabla z_i|^{p_i - 2} \nabla z_i \nabla w_i \, dx \ge \lambda \int_{\Omega} \prod_{j=1}^n z_j^{\alpha_{ij}} \, w_i \, dx,$$

for $i = 1, 2, \ldots, n$ and for all $w_i(x) \in W_0^{1, p_i}$, with $w_i \ge 0$.

We shall obtain the existence of positive weak solution to system (1) by constructing a positive weak subsolution $(\psi_1, \psi_2, \ldots, \psi_n)$ and supersolution (z_1, z_2, \ldots, z_n) .

Our main result is formulated in the following theorem.

Theorem 1. Suppose that $\alpha_{ii} \ge 0$, $\alpha_{ij} > 0$ $(i \ne j)$, and $\sum_{j=1}^{n} \alpha_{1j} < p_1 - 1$, $\sum_{j=1}^{n} \alpha_{2j} < p_2 - 1, \dots, \sum_{j=1}^{n} \alpha_{nj} < p_n - 1$. Then system (1) has a positive weak solution for each $\lambda > 0$.

Proof. Let $\lambda_1^{(i)}$ (i = 1, 2, ..., n) be the first eigenvalue of the problems, respectively,

$$\begin{cases} -\Delta_{p_i} \phi_1^{(i)} = \lambda_1^{(i)} |\phi_1^{(i)}|^{p_i - 2} \phi_1^{(i)}, & x \in \Omega, \\ \phi_1^{(i)} = 0, & x \in \partial\Omega, \quad i = 1, 2, \dots, n, \end{cases}$$

where $\phi_1^{(i)}$, denote the corresponding eigenfunctions, respectively, satisfying $\phi_1^{(i)}(x) > 0$ in Ω , $|\nabla \phi_1^{(i)}| > 0$ on $\partial \Omega$ (this is possible since by the Maximum

principle $\partial \phi_1^{(i)} / \partial n < 0$ for $x \in \partial \Omega$ where *n* denotes the outward normal, see [9]), and $||\phi_1^{(i)}||_{\infty} = 1$ for i = 1, 2, ..., n. We shall verify that

$$(\psi_1, \psi_2, \dots, \psi_n) = \left(k\left(\frac{(p_1-1)}{p_1}\right) (\phi_1^{(1)})^{\frac{p_1}{p_1-1}}, \dots, k\left(\frac{(p_n-1)}{p_n}\right) (\phi_1^{(n)})^{\frac{p_n}{p_n-1}}\right),$$

is a subsolution of (1), where k > 0 is small and specified later. Let $w_i \in W_0^{1,p_i}$ with $w_i \ge 0$ (i = 1, 2, ..., n). A calculation shows that

$$\begin{split} \int_{\Omega} |\nabla \psi_i|^{p_i - 2} \nabla \psi_i \nabla w_i \, dx \\ &= k^{p_i - 1} \int_{\Omega} \phi_1^{(i)} |\nabla \phi_1^{(i)}|^{p_i - 2} \nabla \phi_1^{(i)} \nabla w_i dx \\ &= k^{p_i - 1} \bigg\{ \int_{\Omega} |\nabla \phi_1^{(i)}|^{p_i - 2} \nabla \phi_1^{(i)} \nabla (\phi_1^{(i)} w_i) dx - \int_{\Omega} |\nabla \phi_1^{(i)}|^{p_i} w_i dx \bigg\} \\ &= k^{p_i - 1} \int_{\Omega} \left(\lambda_1^{(i)} \, (\phi_1^{(i)})^{p_i} - |\nabla \phi_1^{(i)}|^{p_i} \right) w_i dx, \end{split}$$

for i = 1, 2, ..., n. Since $\phi_1^{(i)} = 0$ and $|\nabla \phi_1^{(i)}| > 0$ on $\partial \Omega$, for i = 1, 2, ..., n, there is $\delta > 0$ such that for i = 1, 2, ..., n, we have

$$\lambda_1^{(i)} (\phi_1^{(i)})^{p_i} - |\nabla \phi_1^{(i)}|^{p_i} \le 0, \quad x \in \bar{\Omega}_{\delta},$$

with $\bar{\Omega}_{\delta} = \{x \in \Omega \mid d(x, \partial \Omega) \leq \delta\}$. Now on $\bar{\Omega}_{\delta}$ we have

$$k^{p_i-1} \left(\lambda_1^{(i)} \left(\phi_1^{(i)} \right)^{p_i} - |\nabla \phi_1^{(i)}|^{p_i} \right) \le 0 \le \lambda \prod_{j=1}^n \psi_j^{\alpha_{ij}} \quad (i = 1, 2, \dots, n).$$

Next, we note that $\phi_1^{(i)}(x) \ge \eta > 0$ in $\Omega_0 = \Omega \setminus \overline{\Omega}_{\delta}$ for some $\eta > 0$, and i = 1, 2, ..., n. Since for i = 1, 2, ..., n we have $\sum_{j=1}^n \alpha_{ij} < p_i - 1$, then there is $k_0 > 0$ such that if $k \in (0, k_0)$ we have

$$k^{p_{i}-1} \lambda_{1}^{(i)} (\phi_{1}^{(i)})^{p_{i}-\alpha_{ii} p_{i}/(p_{i}-1)} \\ \leq \lambda k^{\sum_{j=1}^{n} \alpha_{ij}} \left(\prod_{j=1}^{n} \left(\frac{p_{j}-1}{p_{j}} \right)^{\alpha_{ij}} \right) \left(\eta^{\sum_{j=2}^{n} \frac{(\alpha_{ij})p_{j}}{p_{j}-1}} \right) \\ \leq \lambda \left(\prod_{j=1}^{n} \left(\frac{p_{j}-1}{p_{j}} \right)^{\alpha_{ij}} \right) \left(\prod_{j=2}^{n} (\phi_{1}^{(i)})^{\frac{(\alpha_{ij})p_{j}}{p_{j}-1}} \right), \quad x \in \Omega_{0},$$

for $i = 1, 2, \ldots, n$. Then in Ω_0

$$k^{p_i-1} \left(\lambda_1^{(i)} \, (\phi_1^{(i)})^{p_i} - |\nabla \phi_1^{(i)}|^{p_i} \right) \le \lambda \, \prod_{j=1}^n \psi_j^{\alpha_{ij}},$$

for i = 1, 2, ..., n. Hence

$$\begin{split} \int_{\Omega} |\nabla \psi_i|^{p_i - 2} \nabla \psi_i \nabla w_i \, dx \\ &= \int_{\overline{\Omega}_{\delta}} |\nabla \psi_i|^{p_i - 2} \nabla \psi_i \nabla w_i \, dx + \int_{\Omega_0} |\nabla \psi_i|^{p_i - 2} \nabla \psi_i \nabla w_i \, dx \\ &= k^{p_i - 1} \int_{\overline{\Omega}_{\delta}} \left(\lambda_1^{(i)} \, (\phi_1^{(i)})^{p_i} - |\nabla \phi_1^{(i)}|^{p_i} \right) w_i \, dx \\ &+ k^{p_i - 1} \int_{\Omega_0} \left(\lambda_1^{(i)} \, (\phi_1^{(i)})^{p_i} - |\nabla \phi_1^{(i)}|^{p_i} \right) w_i \, dx \\ &\leq \lambda \int_{\overline{\Omega}_{\delta}} \prod_{j=1}^n \psi_j^{\alpha_{ij}} \, w_i \, dx + \lambda \int_{\Omega_0} \prod_{j=1}^n \psi_j^{\alpha_{ij}} \, w_i \, dx \\ &= \lambda \int_{\Omega} \prod_{j=1}^n \psi_j^{\alpha_{ij}} \, w_i \, dx, \end{split}$$

for i = 1, 2, ..., n, i.e. $(\psi_1, \psi_2, ..., \psi_n)$ is a subsolution of (1). Next, let $\zeta_i(x)$ (i = 1, 2, ..., n) be the positive solution of

$$\begin{cases} -\Delta_{p_i}\zeta_i = 1, & x \in \Omega, \\ \zeta_i = 0, & x \in \partial\Omega, & i = 1, 2, \dots, n. \end{cases}$$

For existence results of positive solutions for above boundary value problems see [9]. Let

$$(z_1, z_2, \ldots, z_n) = (C_1 \zeta_1(x), C_2 \zeta_2(x), \ldots, C_n \zeta_n(x)),$$

where $C_i > 0$ are large numbers to be chosen later. We shall verify that (z_1, z_2, \ldots, z_n) is a supersolution of (1). To this end, let $w_i(x) \in W_0^{1,p_i}$, with

$$w_i \ge 0$$
, for $i = 1, 2, \ldots, n$. Then we have

$$\int_{\Omega} |\nabla z_i|^{p_i - 2} \nabla z_i \nabla w_i \, dx = C_i^{p_i - 1} \int_{\Omega} |\nabla \zeta_i|^{p_i - 2} \nabla \zeta_i \nabla w_i \, dx$$
$$= C_i^{p_i - 1} \int_{\Omega} w_i dx,$$

for i = 1, 2, ..., n. Let $l_i = ||\zeta_i||_{\infty}$, i = 1, 2, ..., n. It is easy to prove that there exist positive large constants $C_1, C_2, ..., C_n$ such that

$$C_1^{p_1-1-\alpha_{11}} \ge \lambda \left(\prod_{j=2}^n C_j^{\alpha_{1j}}\right) \left(\prod_{j=1}^n l_j^{\alpha_{1j}}\right)$$

...
$$C_n^{p_n-1-\alpha_{nn}} \ge \lambda \left(\prod_{j=1}^{n-1} C_j^{\alpha_{nj}}\right) \left(\prod_{j=1}^n l_j^{\alpha_{nj}}\right).$$

Then for $i = 1, 2, \ldots, n$ we have

$$C_i^{p_i-1} \ge \lambda \left(\prod_{j=1}^n (C_j \, l_j)^{\alpha_{ij}}\right) \ge \lambda \left(\prod_{j=1}^n (C_j \, \zeta_j)^{\alpha_{ij}}\right) = \lambda \left(\prod_{j=1}^n z_j^{\alpha_{ij}}\right)$$

and therefore

$$\int_{\Omega} |\nabla z_i|^{p_i - 2} \nabla z_i \nabla w_i \, dx \ge \lambda \int_{\Omega} \prod_{j=1}^n z_j^{\alpha_{ij}} \, w_i \, dx,$$

for i = 1, 2, ..., n, i.e. $(z_1, z_2, ..., z_n)$ is a supersolution of (1) with $z_i \ge \psi_i$ in Ω for large C_i , i = 1, 2, ..., n. Thus, by the comparison principle, there exists a solution $(u_1, u_2, ..., u_n)$ of (1) with $\psi_i \le u_i \le z_i$, for i = 1, 2, ..., n. This completes the proof of Theorem 1.

References

- 1. P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, *J. Diff. Eqns.*, **51**, pp. 126–150, 1984.
- 2. Z. Yang, Q. Lu, Non-existence of positive solution to a quasilinear elliptic system and blow-up estimates for a reaction-diffusion system, *Communications in Nonlinear Science and Numerical Simulation.*, **6**(4), pp. 222–226, 2001.

- 3. G. Astarita, G. Marrucci, *Principles of non-Newtonian fluid mechanics*, McGraw-Hill, 1974.
- 4. J. R. Esteban, J. L. Vazquez, On the equation of turbulent filteration in onedimensional porous media, *Nonl. Anal.*, **10**, pp. 1303–1325, 1986.
- 5. L. Boccardo, D. G. Figueiredo, Some remarks on a system of quasilinear elliptic equations, *Nonl. Diff. Eqns. Appl.*, **9**, pp. 231–240, 2002.
- A. Djellit, S. Tas, On some nonlinear elliptic systems, *Nonl. Anal.*, 59, pp. 695–706, 2004.
- 7. D. D. Hai, On a class of semilinear elliptic problems, *J. Math. Anal. Appl.*, **285**, pp. 477–486, 2003.
- 8. P. Drabek, J. Hernandez, Existence and uniqueness of positive solutions for some quasilinear elliptic problem, *Nonl. Anal.*, **44**, pp. 189–204, 2001.
- 9. P. Drabek, P. Kerjci, P. Takac, *Nonlinear Differential Equations*, Chapman and Hall/CRC, 1999.