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Abstract. This paper presents a numerical exploration on the unsteady three-dimensional
hydromagnetic flow of Carreau nanofluid over a slendering stretchable sheet in the presence
of thermal radiation and chemical reaction. Furthermore, the effects of velocity slip, thermal
slip, solutal slip, Soret and Dufour are taken into account. The prevailing time-dependent partial
differential equations are metamorphosed into a system of coupled nonlinear ordinary differential
equations by using the appropriate similarity transformations. The resultant nonlinear coupled
differential equations are solved numerically by using the Runge–Kutta fourth-order method along
with shooting scheme. The sway of sundry parameters on velocity, temperature, concentration,
shear stress, temperature gradient and concentration gradient has been premeditated, and numerical
results are presented graphically and in tabular form. Comparison amid the previously published
results, and the current numerical results are made for the limiting cases, which are found to be in
a virtuous agreement.

Keywords: MHD, slendering stretchable sheet, thermal radiation, Soret and Dufour effects and
chemical reaction.

1 Introduction

Nanofluids are solid-liquid materials, which contain nanometer-sized solid particles or
else nanofibers with sizes 1–100 nm dispersed in a liquid such as oil, ethylene glycol,
lubricants, water, biofluids and polymer solutions. During the recent decades, it has been
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demonstrated that nanofluids exhibit improved thermos-physical properties such as al-
tered viscosity, density, density thermal conductivity, thermal diffusivity and enhanced
heat transfer rate when compared with traditional base fluids. Heat transfer of nanofluids
are much interest in various areas of science, engineering and technology, chemical and
nuclear industries and biomechanics. The term “nanofluid” was first formulated by Choi
[5] to describe a new class of fluid. Later on, Buongiorno [4] employed a regenerated
of convective transport in nanofluid flow by considering the effect of Brownian motion
and thermophoresis. He noticed that Brownian motion and thermophoresis dominate the
other important slip mechanisms in the nonappearance of turbulent effects. When small
particles such as dust can be suspended in a gas with a temperature gradient, a power can
be experienced in the direction of temperature gradient. The velocity of these particles,
which efforts is from hot surface region to the cold surface region, is called thermophoretic
velocity, and the force experienced by the deferred particle due to the temperature gra-
dient is called thermophoretic force. The random movement of the suspended particles
in a fluid is known as Brownian motion. So, it plays a vital role in many industrial
applications such as in aerosol collection, nuclear reactor safety and removing small
particles from gas streams. Sheikholeslami and Rashidi [32] investigated the variable
magnetic field on nanofluid hydrothermal treatment considering Brownian motion and
thermophoresis effects in a semi-annulus enclosure via CVFEM. The combined effects of
variable viscosity, inclined Lorentz force on Williamson nanofluid flow over a variable
stretching sheet was explored by Khan et al. [16]. Garoosi et al. [10] addressed the
numerical simulation of the nanofluid in heat exchange square cavity using a Buongiorno
model. The effect of nonuniform magnetic field in a lid driven semi-annulus enclosure
filled with Fe3O4-water nanofluid was presented by Sheikholeslami et al. [33]. Das and
Chatterjee [6] analyzed the thermophoresis and Brownian motion effect in heat transfer
behaviour of a three-phase distribution transformer filled with nanofluid. The results of
the parametric study show that nanofluid circulated with the magnetite nanoparticles has
greater in maximum temperature (∼ 11 K) followed by silica nanoparticles (∼ 7.3 K) and
quartz nanoparticles (∼ 6 K). The combined effects of the thermophoresis and Brownian
motion on convection heat transfer in an L-shape enclosure filled with a nanofluid using
the control volume based finite element method was developed by Sheikholeslami et
al. [31]. More recently, nanofluid models subject to various surfaces can be listed by
several authors [3, 8, 9, 13, 14, 17, 18, 24, 30, 36].

The boundary layer flow over a stretching surface problem has been actively studied
for decades because of its wide range applications such as aerodynamic extrusion of
plastic sheets, the boundary layer along a liquid film in condensation processes, MHD
generators, paper production, artificial fibers, drawing of copper wires, glass blowing,
cooling of metallic sheets or electronic chips, metal spinning and many others. The com-
bined effects of viscoelasticity and a magnetic field over a stretching surface was made
by Andersson [2]. Rayapole and Jakkula [25] investigated the properties of Brownian
motion and thermophoresis hydromagnetic flow on a stretching surface with inconsistent
thickness. The effect of variable thickness on the steady 2D boundary layer flows of
a nanoparticles TiO2 and Ag with base fluid water through a slendering stretching sheet
can be found by Acharya at al. [1]. Reddy et al. [29] investigated the effect of chemical
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reaction as well as heat and mass transfer on the magneto-fluid dynamics flow of blood
over an inclined permeable stretching surface with an acute angle α to the vertical in
the presence of a nonuniform heat source/sink. The 3D flow of water-based SWNT and
MWCNT nanofluids due to slendering nonlinear stretching sheet with slip effects were
covered by Hayat et al. [11]. Many researchers [7,12,15,21,23,26–28,34,35] investigated
the different flow problems over a stretching surface.

In all the above studies, Soret–Dufour effects were assumed to be negligible since
the order of magnitude is lesser than the effect described by Fourier’s and Fick’s laws.
It is significant when the species are introduced at a surface in the fluid domain with
different (lower) density than the surrounding fluid. The phenomenon of thermo-diffusion
in liquids was presented by Soret in 1879, and the difference of temperature caused by
the gradient of species concentration was developed by Dufour in 1872. These effects
play an important role in the field of geosciences, oceanography, chemical engineering
and air pollution. Keeping in view its important applications, combined thermophoresis,
Brownian motion and Dufour effects on natural convective heat transfer on nanofluids
were investigated simultaneously by Pakravan and Yaghoubi [19]. Postelnicu [22] ad-
dressed the influence of a magnetic field over a vertical surface embedded in porous media
considering diffusion-thermo and thermal-diffusion effects. Influence of thermophoresis
and Soret and Dufour effects on hydromagnetic flow over a nonisothermal wedge with
thermal radiation and ohmic dissipation was developed by Pal and Mondal [20].

To the best of authors’ familiarity, no exploration has been made so far to examine
the effects of Soret and Dufour on the hydromagnetic flow of slendering stretchable sheet
in the presence of chemical reaction and thermal radiation. The current work ambitious
to fill the gap in the existing literature. This type of studies finds their vigorous applica-
tions in heating development, cool organism, oceanography, artificial fibers etc. Inspired
by the above-mentioned applications, the authors has focused on the problem, which
addresses the numerical exploration on the unsteady three-dimensional MHD flow of
Carreau nanofluid over a slendering stretchable sheet with thermal radiation and chemical
reaction. Furthermore, the effects of velocity slip, thermal slip, solutal slip, Soret and
Dufour are taken into account.

2 Governing equations and mathematical formulation

We consider the three-dimensional, incompressible MHD flow of an electrically conduct-
ing of Carreau nanofluid induced by a slendering stretchable sheet with multiple slip
effects. We assume z = J(1−mt)1/2(x+y+ c)(1−n)/2, where n represents the velocity
power index parameter. Here n = 1 signifies the shape of surface yields to flat sheet,
n < 1 and n > 1 are the shape of surface yields to outer convex and inner convex
respectively, which are due to increment and reduction of wall thicknesses, and J is
assumed small enough to keep the sheet adequately thin so that pressure gradient along
the sheet may be ignored. Let x-axis be along the plane in an upward direction, y-axis
is normal to it, and z-axis is normal to xy-plane. The coordinate system and flow model
are shown in Fig. 1. At the time t = 0, the sheet is impulsively stretched with velocities
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Figure 1. Physical configuration of the problem.

uw, vw along x- and y-axes, respectively. A magnetic field B is applied perpendicular
to the sheet. To disregard the induced magnetic field, we take the magnetic Reynolds
number as a very small quantity. Thermophoresis, Brownian motion, Soret–Dufour and
time-dependent chemical reaction effects have been considered in this problem. Under
these assumptions, the governing boundary layer along with the continuity, momentum,
energy and concentration species can be written as (Das and Chatterjee [6], Pakravan and
Yaghoubi [19] and Pal and Mondal [20])
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The boundary conditions are
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In the above expressions, u, v and w are the components of velocities in x, y and
z directions, respectively, Γ ∗ is the characteristic time constant, n∗ is the power law
index, ρf is the density of the nanofluid, σ is the electrical conductivity, σ∗ is the Stefan–
Boltzmann constant, k∗ is the mean absorption coefficient, T is the temperature of the
fluid, cp is the specific heat at constant pressure, cs is the concentration susceptibility, α is
the thermal diffusivity, C is the concentration of the fluid, Dm is the coefficient of mean
diffusivity, kT is the thermal diffusion ratio, Tm is the mean fluid temperature, DB is the
Brownian diffusion coefficient, DT is the thermophoresis diffusion coefficient, kc is the
chemical reaction rate, h∗1 is the dimensional velocity slip variable, h∗2 is the dimensional
temperature jump variable, h∗3 is the dimensional concentration jump variable, f1 is the
Maxwell’s reflection coefficient, b and d are the thermal and concentration accommo-
dation coefficients, γ1 is the ratio of specific heat, ξ1, ξ2, ξ3 are the constants (mean
free path), T0, C0 are the reference temperature and concentration of the fluid, T∞, C∞
are the temperature and concentration of the ambient fluid. The above partial differential
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equations (1)–(5) and the corresponding boundary conditions can be rehabilitated into
a system of coupled nonlinear ODE’s by using the following similarity transformations
(see Rayapole and Jakkula [25] and Acharya et al. [1]):
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where ζ is the similarity variable, and ψ is the stream function. Now substituting (6) into
Eqs. (1)–(5), we get the following equations:
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where ′ denotes the differentiation with respect to ζ, A, We, M , Pr , R, Nb, Nt, Dr ,
Sr , Sc and Γ are the unsteadiness parameter, local Weissenberg number, magnetic pa-
rameter, Prandtl number, radiation parameter, Brownian motion, thermophoresis param-
eter, Dufour number, Soret number, Schmidt number and chemical reaction parameter,
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respectively, which are given by
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Here λ is the wall thickness variable, τ1 is the velocity slip variable, τ2 is the temperature
jump parameter, τ3 is the concentration jump parameter:
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.

Equations (7)–(11) are nonlinear and coupled having the domain [λ,∞). In order to
make the computations easier, it should be transformed as [0,∞). So, we establish a new
function (see Khan et al. [16])

F (ζ) = f(ζ − λ) = f(η), G(ζ) = g(ζ − λ) = g(η),

Θ(ζ) = θ(ζ − λ) = θ(η), Φ(ζ) = φ(ζ − λ) = φ(η).

So, Eqs. (7)–(11) becomes
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under the boundary conditions
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For the sake of engineering interest, skin friction coefficient, heat and mass transfer rates
are
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(
1 + n

2

)1/2

φ′(0).

Here ′ denotes the differentiation with respect to η (Eqs. (12)–(14)), Rex = uw(x+y+c)/
νf is the local Reynolds number.

3 Discussion

The dimensionless governing flow equations (12)–(15) subject to the boundary condi-
tions (16) are solved numerically by means of a proficient Runge–Kutta method of fourth-
order using shooting scheme. The CPU took averagely 1.35 seconds to obtain the various
profiles. We measured the values of nondimensional parameters as We = 0.5, n =
0.6, τ1 = 0.2, λ = 0.7, M = 0.5, n∗ = 0.3, Pr = 0.72, R = 0.2, Nb = 0.3,
Nt = 0.1, τ2 = 0.2, Dr = 0.2, Sr = 0.4, Sc = 0.6, τ3 = 0.2 and Γ = 0.5. These
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Figure 2. Effect of We on f ′.
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Figure 3. Effect of We on g′.
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Figure 4. Effect of M on f ′.
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Figure 5. Effect of M on g′.

values have been not different all through the study apart from the values showed in
figures. The effects of innumerable parameters are explored on the velocities, tempera-
ture and nanoparticle concentration profiles for both steady and unsteady cases, which
are revealed in Figs. 2–24. Figures 2 and 3 represents the velocities profiles for the
various values of local Weissenberg number (We). From these figures, it is perceived
that the velocities of fluid decreases for hefty values of Weissenberg number in shear
thinning fluid for both the cases of steady and unsteady. The impression of a magnetic
parameter on the velocities profiles are demonstrated in Figs. 4 and 5. From these we
detected that the velocities profile diminutions for both steady and unsteady cases with
for soaring magnetic parameter. This is owed to the fact that an upsurge in magnetic
parameter implies an enrichment of Lorentz force, thus falling the magnitude of the
velocity. Figures 6 and 7 show the effect of velocities profiles for dissimilar values of wall
thickness variable (λ). From these figures it is revealed that the velocities decrease with
rising in wall thickness variable for the cases of steady and unsteady. The dimensionless
velocities for numerous values of velocity slip variable (τ1) are illustrated in Figs. 7 and
8. We observed that falls the velocities profile for both steady and unsteady cases with an
increasing value of velocity slip variable. Figures 10 and 11 reveal the sway of velocities
profiles for different values of power law index (n∗). It can be comprehended that the
velocities enhance with an increase in power law index for both steady and unsteady
cases. The outcome of temperature profiles for different values of Prandtl number (Pr )
for both steady and unsteady cases is exhibited in Fig. 12. It is apparent that the thermal
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Figure 6. Effect of λ on f ′.
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Figure 7. Effect of λ on g′.
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Figure 8. Effect of τ1 on f ′.

Τ1 = 0.1, 0.5, 1.0

Steady

Unsteady

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

Η

g
'

Figure 9. Effect of τ1 on g′.
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Figure 10. Effect of n∗ on f ′.
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Figure 11. Effect of n∗ on g′.

boundary layer is decreases due to an increase in Prandtl number for both steady and
unsteady cases. Physically, thermal conductivity diminutions by increasing the Prandtl
number lead to temperature profiles diminutions. Figure 13 illustrates the temperature
profiles for different values of thermal radiation parameter (R). Here we witnessed from
Fig. 13 that the temperature enriches (i.e., thermal boundary layer thickness increases)
with increasing the values of thermal radiation parameter for both steady and unsteady
cases. This is owed to fact that a rise in the values of R = 4σ∗T 3

∞/(kk
∗) forgiven T∞

and k means a diminution in the Rosseland radiation absorptivity k∗. According to the
radiative heat flux with Rosseland approximation, the divergence of the radiative heat
flux ∂qr/∂y rises as k∗ diminutions, which in turn leads to intensifications of the rate
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Figure 12. Effect of Pr on θ.
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Figure 13. Effect of R on θ.
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Figure 14. Effect of τ2 on θ.
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Figure 15. Effect of Nt on θ.

Steady

Unsteady

  Nt = 0.1, 0.3, 0.5    

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Η

Φ

Figure 16. Effect of Nt on φ.
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Figure 17. Effect of Nb on θ.

of radiative heat transferred to the fluid and hence the fluid temperature intensifications.
The variations in the temperature profiles for changes in the temperature jump parameter
(τ2) are presented in Fig. 14. It can be inferred that an increase in the temperature jump
parameter, decreases the temperature for both steady and unsteady cases. The impression
of the thermophoresis parameter (Nt) on the temperature and concentration profiles is
demonstrated in Figs. 15 and 16. From Fig. 15 we detected the temperature profiles inten-
sifications for both steady and unsteady cases with for soaring thermophoresis parameter.
Tangibly, thermophoresis is a mechanism in which small particles hauled away from the
hot surface to the cold surface due to this reason temperature increases. From Fig. 16
we perceived the concentration profiles intensifications for both steady and unsteady
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Figure 18. Effect of Nb on φ.
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Figure 19. Effect of Dr on θ.
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Figure 20. Effect of Dr on φ.
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Figure 21. Effect of Sr on φ.

cases with the soaring thermophoresis parameter. Figures 17 and 18 show the effect of
temperature and concentration profiles for dissimilar values of Brownian motion (Nb).
From Fig. 17 it is revealed that the temperature profiles increase with the rise in Brownian
motion for the cases of steady and unsteady. Figure 18 exposes the concentration profiles
diminutions with rise in Brownian motion for the cases of steady and unsteady. This is
due to the fact that, by increasing the values of Brownian motion parameter, the random
motion of the microscopic particles increases, which diminishes the mass transfer rate.
The dimensionless temperature and concentration distributions for numerous values of
Dufour number (Dr ) are illustrated in Figs. 19 and 20. We observed that temperature
profiles increase and the concentration profiles decrease with rising in Dufour number
for the cases of steady and unsteady. Figure 21 portrays the variation of concentration
distribution for different values of Soret number (Sr ). It can be perceived that the concen-
tration distribution increases with increasing values of Soret number for both steady and
unsteady cases. Figure 22 exemplifies the nanoparticle concentration profiles for different
values of chemical reaction parameter (Γ ). We beheld from Fig. 22 that the concentration
diminishes with increasing the values of chemical reaction parameter (Γ ) for both steady
and unsteady cases. Concentration profile extremely diminishes with the generative chem-
ical reaction Γ < 0 when compared to destructive chemical reaction Γ > 0 due to the
fact that as Γ < 0, the last term in the momentum equation becomes positive and plays
a crucial role. The variations in the concentration profiles for changes in the Schmidt
number (Sc) are presented in Fig. 23. It can be inferred that the concentration profiles
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Figure 22. Effect of Γ on φ.
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Figure 23. Effect of Sc on φ.

Steady

Unsteady

 Τ3 = 0.1, 0.5, 1.0

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Η

Φ

Figure 24. Effect of τ3 on φ.

Table 1. Comparison of −f ′′(0) for several values of velocity power index n with A = 0, We = 0, M = 0,
R = 0, Nb = 0, Sc = 0, Γ = 0, Sr = 0, Dr = 0, λ = 0, τ1 = 0, τ2 = 0, τ3 = 0, n∗ = 0.

n 10 5 3 2 1 0.5 0 −0.5

Fang et al. [7] 1.0603 1.0486 1.0359 1.0234 1 0.9799 0.9576 1.1667
Khader and Megahed [15] 1.0603 1.0486 1.0358 1.0234 1 0.9798 0.9577 1.1666
Present results 1.06034 1.04862 1.03588 1.02342 1 0.97994 0.95764 1.16666

decrease with an increase in the Schmidt number for both steady and unsteady cases.
Tangibly, Schmidt number defined as the momentum to mass diffusivities ratio. Thus,
for higher Schmidt number, the mass diffusivity diminutions, which is responsible for
the reduction of concentration profiles. Figure 24 portrays the variation of concentration
distribution for different values of velocity slip concentration jump parameter (τ3). It can
be perceived that the concentration distribution diminutions with increasing values of
concentration jump parameter for both steady and unsteady cases.

In order to assess the precision of the present numerical results, we compared our
numerical results with Fang et al. [28] and Khader and Megahed [25] for the limited case.
This comparison is shown in Table 1. It can be perceived that the results are found to
be in tremendous agreement with that of previous studies. Table 2 pageants the effects
of the skin-friction coefficient for sundry values of pertinent parameters. It can be noted
that the skin-friction coefficient increases with an increase in the wall thickness variable
(λ), velocity slip variable (τ1) and velocity power index (n), whereas the reverse trend is
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Table 2. Values of f ′′(0) and CfRe
1/2
x for various values of We, n, M , A, λ

and τ1 with n∗ = 0.3, Pr = 0.72, R = 0.2, Nb = 0.1, Nt = 0.1, τ2 = 0.3,
Dr = 0.2, Sr = 0.4, Sc = 0.6, τ3 = 0.1, and Γ = 0.5.

We n M A λ τ1 F ′′(0) CfRe
1/2
x

0.5 0.6 0.5 0.5 1.0 0.5 −0.850467 −1.65412
1 0.6 0.5 0.5 1.0 0.5 −0.89758 −3.56462
0.5 0.8 0.5 0.5 1.0 0.5 −0.829215 −1.7066
0.5 0.6 1 0.5 1.0 0.5 −0.912696 −1.7876
0.5 0.6 0.5 0.7 1.0 0.5 −0.852051 −1.65749
0.5 0.6 0.5 0.5 1.5 0.5 −0.848556 −1.65005
0.5 0.6 0.5 0.5 1.0 0.7 −0.707503 −1.35485

Table 3. Values of −θ′(0) and NuxRe
−1/2
x for various values of Pr , A, R,

Nb, Nt, Dr and τ2 with n∗ = 0.3, We = 0.5, n = 0.6, τ1 = 0.5, λ = 1.0,
M = 0.5, Sr = 0.4, Sc = 0.6, τ3 = 0.1, and Γ = 0.5.

Pr A R Nb Nt Dr τ2 −θ′(0) NuxRe
−1/2
x

0.72 0.5 0.2 0.1 0.1 0.2 0.3 0.421992 0.478092
1 0.5 0.2 0.1 0.1 0.2 0.3 0.49365 0.559276
0.72 0.7 0.2 0.1 0.1 0.2 0.3 0.428619 0.485601
0.72 0.5 0.4 0.1 0.1 0.2 0.3 0.387301 0.531166
0.72 0.5 0.2 0.3 0.1 0.2 0.3 0.395182 0.447718
0.72 0.5 0.2 0.1 0.2 0.2 0.3 0.432336 0.489812
0.72 0.5 0.2 0.1 0.1 0.4 0.3 0.381748 0.432498
0.72 0.5 0.2 0.1 0.1 0.2 0.5 0.385565 0.552549

Table 4. Values of −φ′(0) and ShxRe
−1/2
x for various values of Sc, A, Γ ,

Nb, Nt, Sr and τ3 with n∗ = 0.3, We = 0.5, n = 0.6, τ1 = 0.5, λ = 1.0,
M = 0.5, Pr = 0.72, R = 0.2, τ2 = 0.3, and Dr = 0.2.

Sc A Γ Nb Nt Sr τ3 −φ′(0) ShxRe
−1/2
x

0.6 0.5 0.5 0.1 0.1 0.4 0.1 0.599481 0.536192
0.8 0.5 0.5 0.1 0.1 0.4 0.1 0.738383 0.66043
0.6 0.7 0.5 0.1 0.1 0.4 0.1 0.58426 0.522578
0.6 0.5 1 0.1 0.1 0.4 0.1 0.819842 0.733289
0.6 0.5 0.5 0.3 0.1 0.4 0.1 0.714181 0.638783
0.6 0.5 0.5 0.1 0.2 0.4 0.1 0.425803 0.38085
0.6 0.5 0.5 0.1 0.1 0.6 0.1 0.578884 0.51777
0.6 0.5 0.5 0.1 0.1 0.4 0.3 0.512378 0.458254

observed by increasing the values of local Weissenberg number (We), magnetic parameter
(M ) and the unsteadiness parameter (A). Further, from Table 3 one can note that the
Nusselt number increases with an increase in the unsteadiness parameter (A), Prandtl
number (Pr ), and thermophoresis parameter (Nt), while it decreases with the increase
of radiation parameter (R), Brownian motion (Nb), temperature jump parameter (τ2) and
Dufour number (Dr ). Moreover, from Table 4 it can be found that the values of Sherwood
number decreases as the unsteadiness parameter (A), thermophoresis parameter (Nt),
Soret number (Sr ) and concentration jump parameter (τ3) increases, whereas the opposite
effect is observed by increasing the values of the Schmidt number (Sc), chemical reaction
parameter (Γ ) and Brownian motion (Nb).
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4 Main findings

A numerical solution has been presented for the unsteady, three-dimensional hydromag-
netic flow of Carreau nanofluid over a slendering stretchable sheet with diffusion-thermo
and thermal-diffusion effects. Thermal radiation, chemical reaction, thermophoresis,
Brownian motion, velocity slip, thermal slip and concentration slips are considered. The
governing nonlinear ordinary differential equations are solved numerically by using the
Runge–Kutta fourth-order method along with shooting scheme. The main interpretations
from this study can be abridged as follows:

1. Governing equations are nonlinear and coupled having the domain [λ,∞).
2. The velocities decrease with rising in the values of local Weissenberg number and

wall thickness variable for the cases of steady and unsteady cases, whereas the
opposite effect is observed by increasing in power law index for both steady and
unsteady cases.

3. The temperature distribution increases with increasing values of Soret number for
both steady and unsteady cases.

4. The concentration profile extremely diminishes with the generative chemical reac-
tion Γ < 0 when compared to destructive chemical reaction Γ > 0.

5. The skin-friction coefficient increases with an increase in the wall thickness vari-
able, velocity slip variable and velocity power index, whereas the reverse trend is
observed by increasing the values of local Weissenberg number, magnetic param-
eter and the unsteadiness parameter.

6. The Nusselt number increases with an increase in the thermophoresis parameter,
while it decreases with the increase of radiation parameter and Dufour number.

7. The Sherwood number decreases as the thermophoresis parameter, Soret number
and concentration jump parameter increases, whereas the opposite effect is ob-
served by increasing the values of the chemical reaction parameter and Brownian
motion.
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