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1 Introduction

Let s = σ + it be a complex variable, and letN, R andC denote the sets of all

positive integers, real and complex numbers, respectively. The seriesof the form

∞∑

m=1

ame−λms, (1)

wheream ∈ C, and{λm} is an increasing sequence of real numbers,lim
m→∞

λm =

+∞, is called a general Dirichlet series. Ifλm = log m, then we obtain an

ordinary Dirichlet series

∞∑

m=1

am

ms
.

Suppose that series (1) converges absolutely forσ > σa and has the sumf(s).

Thenf(s) is an analytic function in the region{s ∈ C : σ > σa}.
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In [1] limit theorems on the complex plane for the functionf(s) were ob-

tained. Suppose thatf(s) is meromorphically continuable to the half-plane

{s ∈ C : σ > σ1}, σ1 < σa, and that all poles off(s) in this region are included

in a compact set. Moreover, we require that, forσ > σ1, the estimates

f(s) = O
(
|t|a

)
, |t| ≥ t0 > 0, a > 0 (2)

and
T∫

0

∣∣f(σ + it)
∣∣2dt = O(T ), T → ∞, (3)

should be satisfied. Denote byB(S) the class of Borel sets of the spaceS, and let,

for T > 0,

νT (. . .) =
1

T
meas

{
t ∈ [0, T ] : . . . },

wheremeas {A} is the Lebesgue measure of a measurable setA ⊂ R, and in

place of dots a condition satisfied byt is to be written. On
(
C,B(C)

)
define the

probability measurePT (A) by

PT,σ(A) = νT

(
f(σ + it) ∈ A

)
.

The first result of [1] is the following theorem.

Theorem A. Suppose that for the functionf(s) conditions (2) and (3) are sa-

tisfied. Then on
(
C,B(C)

)
there exists a probability measurePσ such that the

measurePT,σ converges weakly toPσ asT → ∞.

For the identification of the limit measurePσ in Theorem A some additional

conditions are necessary. Also, for the definition ofPσ we need some topological

structure. Letγ =
{
s ∈ C : |s| = 1

}
be the unit circle on the complex plane, and

let

Ω =
∞∏

m=1

γm,

whereγm = γ for all m ∈ N. With the product topology and pointwise multi-

plication the infinite-dimensional torusΩ is a compact topological Abelian group.
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Therefore, on
(
Ω,B(Ω)

)
the probability Haar measuremH exists, and we obtain

a probability space
(
Ω,B(Ω), mH

)
. Let ω(m) denote the projection ofω ∈ Ω to

the coordinate spaceγm. Suppose, that the exponentsλm satisfy the inequality

λm ≥ c(log m)δ (4)

with some positive constantsc andδ. Then in [1] it was proved (Lemma 3) that,

for σ > σ1,

f(σ, ω) =
∞∑

m=1

amω(m)e−λmσ (5)

is a complex-valued random variable defined on the probability space(
Ω,B(Ω), mH

)
. Then [1] contains the following statement.

Theorem B. Suppose that the system of exponents{λm} is linearly independent

over the field of rational numbers, satisfies inequality (4), and for the functionf(s)

conditions (2) and (3) are satisfied. Then the probability measurePT,σ converges

weakly to the distribution of the random variablef(σ, ω) asT → ∞.

Condition (4) restricts the choice of sequence of exponents{λm} for which

Theorem B is true. The aim of this note is to replace condition (4) by a certain

average condition. Suppose that, forσ > σ1, the series

∞∑

m=1

|am|2e−2λmσ log2 m (6)

converges. Later, it will be proved that the convergence of series (6) is a sufficient

condition thatf(σ, ω) defined by (5) should be a complex-valued random variable

for σ > σ1.

Theorem 1. Suppose that the system of exponents{λm} is linearly independent

over the field of rational numbers, series(6) converges, and for the functionf(s)

conditions(2) and (3) are satisfied. Then the probability measurePT,σ converges

weakly to the distribution of the random variablef(σ, ω) asT → ∞.
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2 The random variablef(σ, ω)

In this section we will prove that, if series (6) converges, thenf(σ, ω), σ > σ1, is

a complex-valued random variable. For this, we will use Rademacher’s theorem

on series of pairwise orthogonal random variables, for the proof, see, for example,

[2]. Denote byEξ the expectation of the random elementξ.

Lemma 2 [2]. Suppose that{Xm} is a sequence of pairwise orthogonal random

variables and that
∞∑

m=1
E|Xm|2 log2 m < ∞. Then the series

∞∑
m=1

Xm converges

almost surely.

Theorem 2. Let σ > σ1. Thenf(σ, ω) is a complex-valued random variable

defined on the probability space
(
Ω,B(Ω), mH

)
.

Proof. Let, for σ > σ1,

ξm(ω) = amω(m)e−λmσ.

Then{ξm : m ∈ N} is a sequence of complex-valued random variables defined

on the probability space
(
Ω,B(Ω), mH

)
. We have

E(ξmξk) =

∫

Ω

ξm(ω)ξk(ω)dmH = amake
−(λm+λk)σ

∫

Ω

ω(m)ω(k)dmH

=

{
0, if m 6= k,

|am|2e−2λmσ, if m = k.

(7)

This means that{ξm : m ∈ N} is a sequence of pairwise orthogonal complex-

valued random variables. Since by (7)

E|ξm|2 = |am|2e−2λmσ

and series (6) converges, we have that, forσ > σ1,

∞∑

m=1

E|ξm|2 log2 m < ∞.

Therefore, by Lemma 2 forσ > σ1 the series

∞∑

m=1

amω(m)e−λmσ
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converges for almost allω ∈ Ω with respect to the Haar measuremH . This shows

thatf(σ, ω), for σ > σ1, is a random variable on
(
Ω,B(Ω), mH

)
.

Clearly, there exists general Dirichlet series with small exponents, for which

series (6) converges. For example, ifλm = log log2 m and am = O(1/m),

then series (1) converges absolutely forσ ≥ 1. Suppose that it is analytically

continuable to some regionσ > σ1 with σ1 < 1. Then we have that

∞∑

m=1

|am|2e−2λmσ log2 m �
∞∑

m=1

log2−2σ m

m2
< ∞.

3 Limit theorems for Dirichlet polynomials

In the sequel we suppose that the system of exponents{λm} is linearly indepen-

dent over the field of rational numbers. Let, forn ∈ N and fixedω̂ ∈ Ω,

gN,n(s) =
N∑

m=1

amv(m, n)e−λms

and

gN,n(s, ω) =
N∑

m=1

amv(m, n)ω(m)e−λms,

wherev(m, n) = exp{−e(λm−λn)σ2}, σ2 > 0, and on
(
C,B(C)

)
define two

probability measures

PT,N,n,σ(A) = νT

(
gN,n(σ + it) ∈ A

)

and

P̂T,N,n,σ(A) = νT

(
gN,n(σ + it, ω̂) ∈ A

)
.

Theorem 3. On (C,B(C)) there exists a probability measurePN,n, such that

the probability measuresPT,N,σ and P̂T,N,σ both converge weakly toPN,n,σ as

T → ∞.

Proof. For the proof of Theorem 3, we introduce one more probability measure

QT (A) = νT

(
(eitλm)m∈N ∈ A

)
, A ∈ B(Ω).
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The dual group ofΩ is izomorphic to

⊕

m∈N

Zm,

whereZm = Z for all m ∈ N. k = {km : m ∈ N} ∈
⊕

m∈N

Zm, where only a finite

number of integerskm are non-zero, acts onΩ by

k → ωk =
∞∏

m=1

ωkm(m), ω ∈ Ω.

Therefore, the linear independence of{λm} shows that the Fourier transform

gT (k) of the measureQT is of the form

gT (k) =

∫

Ω

( ∞∏

m=1

ωkm(m)
)
dQT =

1

T

T∫

0

(
∞∏

m=1

eitλmkm)dt

=






1, if km = 0 for all m ∈ N,

exp{iT
∞∑

m=1
λmkm} − 1

iT
∞∑

m=1
λmkm

, otherwise.

Hence we find that

lim
T→∞

gT (k) =

{
1, if km = 0 for all m ∈ N,

0, otherwise,

and a continuity theorem for probability measures on locally compact group,see,

for example, [3], implies that the probability measureQT converges weakly to the

measuremH .

Let h : Ω → C be given by the formula

h
(
{ω(m) : m ∈ N}

)
=

∞∑

m=1

amv(m, n)e−λmσ

ω(m)
.

The functionh is continuous and satisfies

h
(
{eiλmt : m ∈ N}

)
= gN,n(σ + it).
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Therefore, Theorem 5.1 of [4] and the weak convergence of the probability mea-

sureQT show thatPT,N,n,σ = QT h−1 converges weakly tomHh−1 asT → ∞.

Now defineh1 : Ω → Ω by

h1

(
{ω(m) : m ∈ N}

)
=

(
{ω(m)ω̂−1(m) : m ∈ N}

)
,

whereω̂ is a fixed element ofΩ. Then we have that

gN,n(σ + it, ω̂) =
N∑

m=1

amv(m, n)e−λm(σ+it)

ω̂−1(m)
= h

(
h1({e

iλmt : m ∈ N})
)
.

Hence, similarly as above, we obtain that the probabilityPT,N,n,σ = QT (hh1)
−1

converges weakly to the measuremH(hh1)
−1 = (mHh−1

1 )h−1 = mHh−1,

because the Haar measuremH is invariant with respect to translations by points

from Ω. The theorem is proved.

Note that in [1] an another proof of Theorem 3 based on the study of a finite-

dimensional torus has been given.

4 Limit theorems for absolutely convergent Dirichlet series

In this section we construct a general Dirichlet series related to series (1) which

converges absolutely forσ > σ1. We also correct some inaccuracies of [1].

We takeσ2 > σa − σ1 > 0 and define, forσ > σ1,

gn(s) =
1

2πi

σ2+i∞∫

σ2−i∞

f(s + z)ln(z)
dz

z
,

where

ln(s) =
s

σ2
Γ
( s

σ2

)
eλns.

Using Mellin’s inversion formula and the definition ofln(s), we find that

gn(s) =

∞∑

m=1

ame−λms

2πiσ2

σ2+i∞∫

σ2−i∞

Γ
( z

σ2

)
e−(λm−λn)zdz

=
∞∑

m=1

amexp{−e(λm−λn)σ2}e−λms =
∞∑

m=1

amv(m, n)e−λms.

(8)
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It remains to prove that the later series converges absolutely forσ > σ1. Clearly,

gn(s) =
∞∑

m=1

aman(m)e−λms, (9)

where

an(m) =
1

2πiσ2

σ2+i∞∫

σ2−i∞

Γ
( z

σ2

)
e−(λm−λn)sds �n e−λmσ2 .

This and (9) yield the absolute convergence of series (8) forσ > σ1.

Define, forω ∈ Ω,

gn(s, ω) =
∞∑

m=1

amω(m)v(m, n)e−λms.

The aim of this section is to obtain limit theorems for probability measures

PT,n,σ(A) = νT

(
gn(σ + it) ∈ A

)

and

P̂T,n,σ(A) = νT

(
gn(σ + it, ω) ∈ A

)
,

whereA ∈ B(C).

Theorem 4. Let σ > σ1. Then on
(
C,B(C)

)
there exists a probability measure

Pn,σ such that the probability measuresPT,n,σ and P̂T,n,σ both converge weakly

to Pn,σ asT → ∞.

Proof. We will give a shortened proof, because it only in some details differs from

that given in [1].

By Theorem 3 the probability measuresPT,N,n,σ andP̂T,N,n,σ both converge

weakly to the measurePN,n,σ as T → ∞. We will prove that the family of

probability measures{PN,n,σ} is tight. By the Chebyshev inequality, for any

positiveM ,

PT,N,n,σ

(
{z ∈ C : |z| > M}

)
= νT

(
|gN,n(σ + it)| > M

)

≤
1

MT

T∫

0

|gN,n(σ + it)|dt.
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Since the series forgn(s) converges absolutely forσ > σ1, there exists a constant

C > 0 such that

sup
N∈N

lim sup
T→∞

1

T

T∫

0

∣∣gN,n(σ + it)
∣∣dt ≤ C.

For arbitraryε > 0, let M = C/ε. Then we deduce from the last two inequalities

that

lim sup
T→∞

PT,N,n,σ

(
{z ∈ C : |z| > M}

)
≤ ε. (10)

The functionh : C → R, z → |z|, is continuous and so, by Theorem 3, the

probability measure

νT

(
|gN,n(σ + it)| ∈ A

)
, A ∈ B(R),

converges weakly toPN,n,σh−1 asT → ∞. This, the properties of the weak

convergence, and (10) imply

PN,n,σ

(
{z ∈ C : |z| > M}

)
≤ lim inf

T→∞
PT,N,n,σ

(
{z ∈ C : |z| > M}

)

≤ lim sup
T→∞

PT,N,n,σ

(
{z ∈ C : |z| > M}

)
≤ ε.

DefineKε = {z ∈ C : |z| ≤ M}. ThenKε is a compact set, and

PN,n,σ(Kε) ≥ 1 − ε

for all N ∈ N. This shows the tightness of the family{PN,n,σ}. Hence by

the Prokhorov theorem, see, for example, [4], the family{PN,n,σ} is relatively

compact.

Now let a random variableθT be defined on a certain probability space(
Ω̂,B(Ω̂), P

)
and uniformly distributed on[0, T ]. We put

XT,N,n(σ) = gN,n(σ + iθT ).

Then, by Theorem 3,

XT,N,n(σ)
D
−→

T→∞
XN,n(σ), (11)
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where
D
→ means the convergence in distribution, andXN,n(σ) is a complex-

valued random variable with the distributionPN,n,σ. Moreover, the relative com-

pactness implies the existence of{PN1,n,σ} ⊂ {PN,n,σ} such thatPN1,n,σ con-

verges weakly to some measurePn,σ asN1 → ∞. Then

XN1,n(σ)
D
−→

N1→∞
Pn,σ. (12)

This, (11), the relation

lim
N→∞

lim sup
T→∞

νT

(
|gN,n(σ + it) − gn(σ + it)| ≥ ε

)
= 0

and Theorem 4.2 of [4] show that

XT,n(σ)
D
−→

T→∞
Pn,σ, (13)

where

XT,n(σ) = gn(σ + iθT ).

Hence the measurePT,n,σ converges weakly toPn,σ asT → ∞. By (13) the

measurePn,σ does not depends on the choice ofN1, and we have that

XN,n(σ)
D
−→

N→∞
Pn,σ. (14)

To complete the proof of the theorem it remains to repeat the above argumentsfor

random variables

X̂T,N,n(σ) = gN,n(σ + iθT , ω)

and

X̂T,n(σ) = gn(σ + iθT , ω),

and to use (14).

5 Proof of Theorem 1

First we observe that the method of the contour integration shows that the function

f(s) is approximated in the mean by the functiongn(s). More precisely, we have,

for σ > σ1,

lim
n→∞

lim sup
T→∞

1

T

T∫

0

∣∣f(σ + it) − fn(σ + it)
∣∣dt = 0. (15)

244



Value Distribution of General Dirichlet Series. VI

An analogous assertion is also valid for the functionf(s, ω), namely, forσ > σ1,

lim
n→∞

lim sup
T→∞

1

T

T∫

0

∣∣f(σ + it, ω) − fn(σ + it, ω)
∣∣dt = 0. (16)

The details of the proof of (15) and (16) can be found in [1].

We introduce one more probability measure on
(
C,B(C)

)
. Let

P̂T,σ(A) = νT

(
f(σ + it, ω) ∈ A

)
, A ∈ B(C).

Theorem 5. Let σ > σ1. Then on
(
C,B(C)

)
there exists a probability measure

Pσ asT → ∞.

Proof. We argue similarly to the proof of Theorem 4. Repeating the proof of

Theorem 4 withfn(σ+it) andfn(σ+it, ω) in place offN,n(σ+it) andfN,n(σ+

it, ω), respectively, and withf(σ + it) andf(σ + it, ω) in place offn(σ + it)

andfn(σ + it, ω), respectively, and using (15), (16) and Theorem 4.2 of [4], we

obtain the theorem.

Proof of Theorem 1.Define the one parameter group{ϕt : t ∈ R} of measurable

measure preserving transformations onΩ by ϕt(ω) = atω, ω ∈ Ω, whereat =

{e−iλmt : m ∈ N}. Then the group{ϕt : t ∈ R} is ergodic [1]. LetA be a

continuity set of the measurePσ in Theorem 5. Then by Theorem 5

lim
T→∞

P̂T,σ(A) = Pσ(A). (17)

Taking

θ(ω) =

{
1, if f(σ, ω) ∈ A,

0, if f(σ, ω) 6= A,

we have thatθ is a random variable on
(
Ω,B(Ω), mH

)
, and

E(θ) =

∫

Ω

θdmH = mH

(
ω ∈ Ω: f(σ, ω) ∈ A

)
= Pf (A), (18)
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wherePf is the distribution off(σ, ω). Moreover, the processθ
(
ϕt(σ)

)
is er-

godic, therefore by the classical Birkhoff-Khinchine theorem

E(θ) = lim
T→∞

1

T

T∫

0

θ
(
ϕT (ω)

)
dt (19)

for almost allω with respect to the measuremH . On the other hand,

1

T

T∫

0

θ
(
ϕt(ω)

)
dt = P̂T,σ(A).

This, (18) and (19) show that

lim
T→∞

P̂T,σ(A) = Pf (A),

and in view of (17) we conclude thatPσ(A) = Pf (A) for all continuity setsA of

Pσ. HencePσ coincides withPf , and the theorem is proved.
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