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Abstract. Authors of article analysed influence of variability of yield strength
over cross-section of hot rolled steel member to its load-carrying capacity.
In calculation models, the yield strength is usually taken as constant. But
yield strength of a steel hot-rolled beam is generally a random quantity.
Not only the whole beam but also its parts have slightly different material
characteristics. According to the results of more accuratemeasurements, the
statistical characteristics of the material taken from various cross-section points
(e.g. from a web and a flange) are, however, more or less different. This variation
is described by one dimensional random field. The load-carrying capacity of
the beam IPE300 under bending moment at its ends with the lateral buckling
influence included is analysed, nondimensional slenderness according to EC3
is λ̄ = 0.6. For this relatively low slender beam the influence of the yield
strength on the load-carrying capacity is large. Also the influence of all the
other imperfections as accurately as possible, the load-carrying capacity was
determined by geometrically and materially nonlinear solution of very accurate
FEM model by the ANSYS programme.
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1 Introduction

This article is focused on the influence of the yield strength variation over the

cross-section. Analyzing this influence by experimental manner is very com-
∗The present paper was elaborated under the projects No. 103/03/0233and No. 103/05/2059 and

also within the Research Centre Project Reg. No. 1M6840770001.
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plicated. The authors of the experimental research usually concentrate on the

microstructure of the material, not on its characteristics as seen by engineers

– these are to be found rarely [1]. Here, the steel profile characteristics are

enumerated, the variability of the yield stress, however, is not commonly ana-

lyzed. The results of the experimental research were extrapolated by numeri-

cal studies analyzing influence of other characteristics distribution over cross-

section, for example residual stress [2]. They showed an important impact of

different diagrams of residual stress over cross-section on the load-carrying ca-

pacity. Taking these diagrams into consideration means to create a complicated

computational model based on shell finite elements. For this reason, the material

properties of the whole member tend to be diminished. The development of

numerical simulations and increasing computer performance make it possible to

look into so far neglected phenomena. The yield stress considerably influences on

the load-carrying capacity. Since measuring its distribution over cross-section

is very complicated (usually one web specimen and one flange specimen are

being extracted), the authors of this article decided to analyze the impact of a

random yield stress distribution on the load-carrying capacity of a bendedbeam

by using a numerical model. The spatial variability of mechanical and geometrical

properties of a system can be conveniently represented by means of random fields

[3]. Besides other possibilities, the randomness can be taken into accountdirectly

in the material model [4]. For the study described in this article, a discrete

approach was opted for. Because of the discrete nature of the finite element

formulation, the random field must also be discredited into random variables [5].

Both approaches are amplified in a number of areas; no references were found

about their usage it for the description of yield stress distribution over cross-

section was not found.

It can be expected that, due to manufacturing technology in general, the

yield strength of each cross-section segment will be different. Further,it can

be anticipated that the yield strength of neighbouring segments will show strong

correlation. By evaluating on larger number of bodies (cross-sections)of two

neighbouring segments, we will obtain values the correlation of which will be

higher than that of more distant segments. The decrease in the correlation among

the segment i, the neighbouring segmentsi + 1, i + 2 etc. can be described by
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the auto-correlation function. The determination of this auto-correlation function

based on the results of real material tests would be very valuable but at thesame

time, also highly demanding both from the economic and time aspects.

Therefore it is advantageous to study these problems using simulation meth-

ods. In this connection, several fundamental questions arise:

1. In what way does the yield strength variability over the cross-section influ-

ence the load-carrying capacity?

2. How does this influence change with the beam slenderness?

3. What is the real correlation function among individual cross-section seg-

ments?

Note: The last question can be answered only by means of experiments.

2 Random fields

Only the decreasing character of the auto-correlation function can be stated with

certainty. If a sufficient number of experimental data from material tests was

obtained, this function could be determined based on measurements results. The

majority of real random phenomena occurring in the nature can be described by a

correlation function, which decreases approximately exponentially. In our studies,

it will be supposed that the numbers of a correlation matrix can be determined ac-

cording to the relation (2), given in the paper [6], considering the auto-correlation

function in Gaussian form:

ci,j = S2 · e
−

(

ξi,j

Lcor

)

2

. (1)

In the relation (1), the coefficientci,j is dependent both on the so-called

correlation lengthLcor, standard deviationS of a random field, and further on,

on the distanceζi,j between individual segments, see Fig. 1.

The correlation coefficientρi,j of the correlation matrix can be determined as:

ρi,j =
ci,j√

ci,i · cj,j

. (2)

The random field was introduced for the yield strength of segments in one

half of a flange and an adjacent half of the web. So, the problem was defined
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Fig. 1. Segments of IPE profiles.

by the one-dimensional correlation function (1) with variable parameterLcr. The

yield strength for the other elements was introduced in a symmetrical manner

(as in the case of the biaxially symmetrical cross-section). The yield strength

realizations were determined by means of the numerical simulation method LHS

[3], elaborated by improving the standard Monte Carlo method (see, e.g., [7]). An

example of one yield strength realization in dependence on the correlation length

Lcor can be seen in Fig. 2.

Fig. 2. Virtual segments of the IPE300 profile – yield strength variability over
cross section.

3 Initial random parameters

Not only yield strength was calculated as random characteristic. From author’s

recent studies [2] is known influence of random distribution of material and ge-

ometrical characteristics, namely: geometry of the section (tolerances of plate
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elements and section shape), geometry of the beam (initial curvature and twist),

residual stresses, yield strength and modulus of elasticity. The initial geometry

of the beam section was considered according to Fig. 3. Apart from tolerances of

elements thickness and section dimensions, also the cross-section shape imperfec-

tions characterized by parametersk1, k2, f andm (see Fig. 3(b), (c)) were taken

into account. Statistical characteristics of quantitiesk1, k2, f, m were determined

on the assumption that, at the same time, nominal values were also mean values,

and that 95% of all the values measured lay within the tolerance limits of the

standard [8].

Fig. 3. Initial geometrical imperfections of the beam section.

Statistical characteristics both of the yield strength and the quantitiesh, b, t1,

t2 were considered according to the histograms determined experimentally [9],

see also [6], Table 1. Geometrical deviations of the initial beam curvature were

introduced in form of sinusoids both for initial course in the bending plane defined

by axesx-z and for planex-y. In both cases, the amplitudes of the maximal

initial deflection were supposed to be random quantities, distributed in the interval

−2.3 mm to2.3 mm in a uniform manner. Young’s modulusE was considered, as

based on two independent experimental results [10, 11], to be a randomquantity

with mean valuemE = 210 GPa and with standard deviationSE = 12.6 GPa. An

ideally elastic-plastic material was supposed.

The statistic independence was supposed for all the random quantities given

in Table 2. A simplified correlation1.0 was considered between the thickness and
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width of the lower and upper flanges. The residual stress was introduced with

the mean valuemrs = 60 MPa and with standard deviationSrs =20 MPa, with

triangular distribution both on the flanges and on the web [12].

With statistical characteristics of the yield stress given in Table 2, the web

Table 1. Values of statistical characteristics of the output load-carrying capacity

Correlation lengthLcor [m]
0 mm 110 mm 220 mm ∞mm Trend

S
ta

tis
tic

al
m

om
en

ts Mean [kNm] 153.880 154.320 154.270 154.320 –
S. deviation [kNm] 7.724 9.691 10.021 10.193 ↗
S. skewness 0.424 0.391 0.252 0.201 –
S. kurtosis 3.481 3.339 3.254 3.208 –

0.
1

pe
rc

en
til

e

Gauss [kNm] 130.01 124.37 123.30 122.82 ↘
Lognormal [kNm] 131.62 126.87 125.97 125.58 ↘
Hermite [kNm] 131.64 127.02 124.78 123.97 ↘

Table 2. Statistical characteristics of input random quantities

Quan- Name of random Type of Dimen- Mean Standard
No. tity quantity distribution sions value deviation

1. fy Flange yield strength Gauss MPa297.30 16.80

2. fy Web yield strength Gauss MPa307.30 16.80

3. E Young’s modulus Gauss GPa210.00 12.60

4. h Cross-section height Gauss mm300.30 1.33

5. b Flange width Gauss mm 151.80 1.54

6. t1 Web thickness Gauss mm 7.49 0.30

7. t2 Flange thickness Gauss mm 10.60 0.47

8. k1 Upper flange displace Gauss mm 0 1.00

9. k2 Lower flange displace Gauss mm 0 1.00

10. f Initial web deflection Gauss mm 0 0.75

11. m Web out of symmetry Gauss mm 0 1.75

12. rs Residual stress Gauss MPa 60.00 20.00

13. e0 Amplitude of curvature Rectangular in the interval〈– 2.3; 2.3 mm〉

yield stress with a higher mean value – compared to the flange yield stress – was

considered. This corresponds to the results of an experimental research [9, 12].

When covering this section by finite element mesh, for each cross-section element,

the yield stress was assumed as a random quantity. The correlation according
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to (2) was given among the elements. The correlation among the random field

elements is given by the correlation length in (1). This is the main parameter of

the random field used for modelling the variability of the yield stress over cross-

section. Using three different correlation length values can be seen in Fig. 2. The

main objective of this article is the analysis of the influence of the yield stress

variability over cross-section on the load-carrying capacity.

4 Nonlinear computation model

The fine shell computation model was elaborated by means of the ANSYS pro-

gramme [13]. The beam under in web plane bending momentMy at its ends,

which was made of hot rolled steel profile IPE300 with lengthL = 2.3 m, with

nondimensional slendernessλ̄ = 0.6, was analysed.

Fig. 4. Nonlinear finite shell element model – lateral beam buckling.

Geometry was formed using 540 elements SHELL181. It is a four-node

element with twenty Gauss points (while four being located in an area, and five

through the thickness of an element). This model is not limited by a beam theory

(i.e., cross-section planarity). The symmetry along the beam axis was used with

regard to the very exacting character of the problem solved. At the end of the

beam on the web, zero displacement in the direction perpendicular to the webwas

prescribed. On the lower flange vertical displacement was fixed. The upper flange

was left free.

It was supposed that the steel plastification occurred when the Misses stress

exceeded the yield strength. Bilinear kinematic hardening of material was con-

sidered for steel S235. The Euler method based on incremental loading combined

with the Newton Raphson method was applied for the nonlinear problem solution.
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In each run of the LHS method, we searched for such a loading level at which the

determinant of the tangential stiffness matrixKt of the structure would approach

zero with satisfactory exactness. The number of the LHS method runs applied

was 200.

In each run there was solved the load-carrying capacity by a geometrically

and materially nonlinear FEM computation which factually was the simulation of

results of real 200 ultimate loading tests. The realizations of the yield strength in-

put values by the LHS method are near the experimentally found material charac-

teristics of the steel beams of steel S235, and the other geometrical characteristics

correspond to available statistic results of measured quantities, as well.

5 Statistic analysis of load-carrying capacity

The results of a statistical analysis are given in Table 1. The design value was

determined as the 0.1 percentile, based on design reliability conditions of EC1

having been presented, e.g., in [14]. The statistical characteristics of theload-

carrying capacity are influenced by all random quantities given in Table 2. The

variability of the yield stress over cross-section (see Fig. 2) changes in accordance

with the change of the correlation length. The correlation length infinity means

that the flange yield stress and the web yield stress are two independent random

quantities, see Fig. 2(c). The correlation length zero, on the contrary, means that

the yield stress of each random field element is an independent random quantity,

see Fig. 2(a). The valuesLcr = 0 andLcr = ∞ represent two limit states of

an analyzed phenomenon. It is obvious that the change in the correlation length

influences esp. on a considerable deviation of the load-carrying capacity.

6 Conclusion

It is evident from the results presented in Table 1 that the standard deviation

increases with increasing the correlation length which influences the load-carrying

capacity design value. Opposite to this, the mean value is sensitive to the correla-

tion length change only very little.

The results obtained from the theoretical analysis refer to the fact that for hot-

rolled beams the influence of material characteristics variability along the cross-
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section cannot be neglected. The yield strength determination on the samples

taken from one cross section point (mostly from one third of the flange) is not

sufficient. Real correlation lengths can be determined, however, only byexperi-

mental research. According to [12], the yield strength on flanges was, on average,

by till 26% lower than on the web. For hot rolled cross sections, more samplesto

be analysed should be taken both from the flange and the web.
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