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Abstract. In present paper the definition of linearly invariant class of analytical
in the right half-plane is given and some extremal problems on introduced
class are solved. For solving we use method based on variational formulas
with specially introduced omega-operator, defined on theseclasses. In case
when domain is unit disk similar linearly invariant classeswere considered by
Ch. Pommerenke, V. Starkov, E.G. Kiriyatzkii.
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1 Major notational conventions, and definitions and auxiliary state-
ments

Let Π is a half-planeRe z > 0, An(Π) – class of analytical inΠ functionsF (z)

with conditionF (n)(z) 6= 0, ∀z ∈ Π, Ãn(Π) – class of analytical inΠ functions

F (z) from An(Π), which are normalized by conditions:

F (1) = F ′(1) = . . . = F (n−1)(1) = 0, F (n)(1) = n! .

Obviously, that for any fixedm ≥ 2 every functionF (z) of Ãn(Π) can be

represented in form

F (z) = (z − 1)n +
m∑

k=2

ak,n(z − 1)n+k−1 + Ψm(z),
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whereΨm(z) – dependent onF (z) analytical inΠ function. Number

ak,n =
F (n+k−1)(1)

(n + k − 1)!

we call byk-th coefficient of functionF (z). Let us introduce the operator

Nn[F ] =
F (z) − F (1) − F ′(1)(z − 1) − . . . − 1

(n−1)!F
(n−1)(1)(z − 1)n−1

1
n!F

(n)(1)
,

which we call by normalizing operator. This operator transfers any function from

An(Π) to a function of class̃An(Π).

Denote byA(Π) class of analytical in domainΠ functions. Then-th order

divided difference of functionF (z) ∈ A(Π) define (see [1,2]) by formula

[
F (z); z0, . . . , zn

]
=

1

2πi

∫

Γ

F (ξ)dξ

(ξ − z0) . . . (ξ − zn)
,

whereΓ is a simple closed contour, located inΠ and covering all the points

z0, . . . , zn ∈ Π. In above formula among the pointsz0, . . . , zn ∈ Π may occur

coincident.

Note that ifP (z) is a polynomial of the degree no higher thann − 1, then

[
P (z); z0, . . . , zn

]
= 0, ∀z0, . . . , zn ∈ Π.

Denote byL a set of functions of shapew = tz, wheret > 0. Every function of

L univalently maps half-planeΠ onto itself.

Let us arbitrarily choosew ∈ L and introduce omega-operator ofn-th order

by formula

Ωw
n [F ] =

(z − 1)n
[
F (z); w(z),

n︷ ︸︸ ︷
t, . . . , t

]

1

n!
F (n)(t)

.

This operator for any fixedw = tz is defined on classAn(Π) and transfers every

function of classAn(Π) to the function of class̃An(Π).

As it will be seen, the linearly invariant classes are defined using operators

Ωw
n , w ∈ L, so we find useful to give without proof some properties of these

operators as four theorems formulated below [3].
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Theorem 1. For arbitrarily fixed w = tz ∈ L and any functionF (z) ∈ Ãn(Π),

the equation

Ωw
n

[
F (z)

]
= Nn

[
F (tz)

]
(1)

is valid.

Theorem 2 (On chain). Let w1, w2 ∈ Λ and F2 = Ωw1
n [F1], F3 = Ωw2

n [F2].

ThenF3 = Ωw3
n [F1], wherew3 = w1(w2) ∈ L.

Theorem 3. Only functionΦn,a(z) = Nn[zs], wheres 6= 0, 1, 2, . . . , n − 1,

s = (n + 1)a + n anda =
Φ

(n+1)
n,a (1)
(n+1)! , is a fixed point (fixed function) of operator

Ωw
n for anyw ∈ L, i.e.,Ωw

n [Φn,a] = Φn,a, ∀w ∈ L. This function belongs to class

Ãn(Π).

FunctionΦn,a(z) is called bymainone. Its expansion about pointz = 1 has

a shape

Φn,a(z) = (z − 1)n +
∞∑

k=2

ck,n(z − 1)n+k−1,

where for coefficientsck,n, k = 2, 3, 4, . . . formula

ck,n =
n!

(n + k − 1)!
(n + 1)a

(
(n + 1)a − 1

)
. . .

(
(n + 1)a − (k − 2)

)
(2)

is valid. In particular,c2,n = a.

Let k-th coefficient of some functionF (z) ∈ Ãn(Π) is equal to numberbk,

wherek ≥ 2. If bk is thek-th coefficient of functionF (z; t) = Ωw
n

[
F (z)

]
for any

w ∈ L, thenk-th coefficient of functionF (z) we will call by invariant coefficient

of this function.

Theorem 4. Let equation

n!

(n + k − 1)!

k−2∏

m=0

(
(n + 1)a − m

)
= bk

with respect toa hask − 1 of pairwise different rootsa1, . . . , ak−1. Then only

functions of form

F (z) =
k−1∑

m=1

cmΦn,am
(z), c1 + . . . + ck−1 = 1

has numberbk as theirsk-th invariant coefficient.
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Let us give the definition of linearly invariant class. SetS of functionsF (z)

of Ãn(Π) we will call by linearly invariant class ofn-th order, if from belonging

F (z) ∈ S follows Ωw
n

[
F (z)

]
∈ S for anyw ∈ L [4].

Let us give some examples of linearly invariant classes ofn-th order.

Example 1. Ãn(Π) is a linear invariant class. Note that̃An(Π) contains any of

linearly invariant classes.

Example 2. Let us fix in Ãn(Π) functionF (z) and make up the class of func-

tionsΨw(z) = Ωw
n

[
F (z)

]
, wherew vary over all setL. Due to Theorem 2 (on

chain), such class must be linearly invariant one. We will call this class assimple

linearly invariant class and denote it bỹRn(Π; F ). FunctionF (z) we will call by

generator of simple class. For simple class we have the following

Property. If F1(z) ∈ R̃n(Π; F ), thenF (z) ∈ R̃n(Π; F1) for anyw ∈ L. In other

words, if functionF (z) is the generator of simple class andF1(z) ∈ R̃n(Π; F ),

then functionF1(z) must be the generator of this simple class too.

Properties of simple class was investigated in [4].

Example 3. Simple linearly invariant class generated by main functionΦn,a(z)

consists only of this function.

Union of a set of linearly invariant classes ofn-th order denote bỹFn(Π). De-

note by Kn(Π) class of analytic in Π functions F (z) such, that[
F (z); z0, . . . , zn

]
6= 0 for any set of pairwise distinctz0, . . . , zn ∈ Π. Forn = 1

one has, as it easily seen, classK1(Π) of all univalent inΠ functions, which play

a large role in conformal mapping theory and in geometrical theory of analytical

functions (see [5–7]).

In classKn(Π) one can extract subclass̃Kn(Π) normalized functions

F (z) = (z − 1)n + a2,n(z − 1)n+1 + . . .

Example 4. ClassK̃n(Π) is a linearly invariant class [4].

In case whenn = 1 and domain is unit discE linearly invariant classes were

considered by Ch. Pommerenke and by V. Starkov (see [8–10]).
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2 Some variational formulas

Using the definition of normalizing operatorNn, and denotingΩw
n

[
F (z)

]
by

F (z; t), statement (1) of Theorem 1 we can rewrite in the form

F (z; t) = Ωw
n

[
F (z)

]
=

F (tz) − P (z; t)
1
n!F

(n)(t)tn
,

where

P (z; t) = F (t) +
F ′(t)t

1!
(z − 1) + · · · +

F (n−1)(t)tn−1

(n − 1)!
(z − 1)n−1.

FunctionF (z; t) represent in form

F (z; t) = (z − 1)n +
m∑

k=2

ak,n(t)(z − 1)n+k−1 + Ψm(z; t) ∈ Ãn(Π), (3)

wherek-th coefficientak,n(t) in (3) is representable by formula

ak,n(t) =
F (n+k−1)(1)tk−1n!

(n + k − 1)!F (n)(t)
. (4)

Represent also functionF (z; t) using Taylor’s formula

F (z; t) = F (z; 1) + F ′

t(z; 1)(t − 1) + o(z; t − 1), (5)

whereo(z; t−1)
t−1 → 0 whent → 1 uniformly whit respect toz insideΠ. It is easy

to come to the conclusion that

F (z; 1) = F (z). (6)

For derivative with respect tot of functionF (z; t) at the pointt = 1 the formula

F ′

t(z; 1) = zF ′(z) −
(
(n + 1)a2,n + n

)
F (z) − n(z − 1)n−1 (7)

is valid. Formula (5), taking into account (6) and (7) is called byvariational

formula for functionF (z) ∈ Ãn(Π). Represent functionak,n(t) using Taylor’s

formula

ak,n(t) = ak,n(1) + a′k,n(1)(t − 1) + o(t − 1), (8)
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o(t−1)
t−1 → 0 whent → 1. It is easy to see that

ak,n(1) = ak,n, (9)

a′k,n(1) = (n + k)ak+1,n + (k − 1)ak,n − (n + 1)ak,na2,n. (10)

Formula (8), taking into account (9) and (10) is called byvariational formula

for coefficientak,n(t).

3 Applications of variational formulas

Using variational formulas we establish several theorems.

Theorem 5. Let F0(z) ∈ F̃n(Π) and at the pointz0 ∈ Π, wherez0 6= 1, the

condition

∣∣F0(z0)
∣∣ ≥

∣∣F (z0)
∣∣, ∀F (z) ∈ F̃n(Π) (11)

or condition

0 <
∣∣F0(z0)

∣∣ ≤
∣∣F (z0)

∣∣, ∀F (z) ∈ F̃n(Π) (12)

holds. Then in both cases equality

Re
{
F̄0(z0)

(
z0F

′

0(z0)−
(
(n + 1)a2,n + n

)
F (z0)−n(z0 − 1)n−1

)}
= 0 (13)

is true. Here

a2,n =
1

(n + 1)!
F

(n+1)
0 (1).

Proof. Let us consider first case, i.e., when condition (11) holds. Variational

formula (5) for functionF0(z) ∈ F̃n(Π) at the pointz0, is of following shape:

F0(z0; t) = F0(z0) + F0
′

t(z0; 1)(t − 1) + o(z0; t − 1) ∈ F̃n(Π), (14)

for any value oft which is sufficiently close to unit. For sucht according to

condition (11) of Theorem 1, we have inequality

∣∣F0(z0)
∣∣ ≥

∣∣F0(z0; t)
∣∣.
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This inequality due to (14) we can substitute by inequality

∣∣F0(z0)
∣∣2 ≥

∣∣F0(z) + F0
′

t(z0; t)(t − 1) + o(z0; t − 1)
∣∣2 (15)

for sufficiently small values of|t− 1|. Carrying out operations in (15) we will get

∣∣F0(z0)
∣∣2 ≥

∣∣F0(z0)
∣∣2 + 2Re

{
F̄0(z0)F0

′

t(z0; 1)
}
(t− 1) + 2Re

{
o(z0; t− 1)

}

or

0 ≥ Re
{
F̄0(z0)F0

′

t(z0; 1)
}
(t − 1) + Re

{
o(z0; t − 1)

}
(16)

for sufficiently small values of|t − 1|, where values oft − 1 may be of opposite

signs. Then, considering (16), come to the conclusion

Re
{
F̄0(z0)F0

′

t(z0; 1)
}

= 0.

Now, using formula (7) atz = z0, we get (13).

Analogously, if in theorem the condition (12) holds, we come to the equality

(13).

Theorem 6. Let F0(z) ∈ F̃n(Π) and at the pointz0 ∈ Π, wherez0 6= 1, the

condition

Re
{
F0(z0)

}
≥ Re

{
F (z0)

}
, ∀F (z) ∈ F̃n(Π) (17)

or condition

Re
{
F0(z0)

}
≤ Re

{
F (z0)

}
, ∀F (z) ∈ F̃n(Π) (18)

holds. Then in both cases equality

Re
{
z0F

′

0(z0) −
(
(n + 1)a2,n + n

)
F0(z0) − n(z0 − 1)n−1

}
= 0 (19)

holds. Here

a2,n =
F

(n+1)
0 (1)

(n + 1)!
.
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Proof. Let us consider first case, i.e., when condition (17) holds. Variational

formula (5) for functionF0(z) ∈ F̃n(Π) at the pointz0, is of following shape:

F0(z0; t) = F0(z0) + F0
′

t(z0; 1)(t − 1) + o(z0; t − 1) ∈ F̃n(Π), (20)

for any value oft which is sufficiently close to unit. For sucht according to

condition (17) of Theorem 2, we have inequality

Re
{
F0(z0)

}
≥ Re

{
F0(z0; t)

}
.

Due to (20), this inequality may be substituted by inequality

Re
{
F0(z0)

}
≥ Re

{
F0(z0)

}
+ Re

{
F0

′

t(z0; 1)
}
(t − 1) + Re

{
o(z0; t − 1)

}
,

or by inequality

0 ≥ Re
{
F0

′

t(z0; 1)
}
(t − 1) + Re

{
o(z0; t − 1)

}
(21)

for sufficiently small values of|t − 1|, where values oft − 1 may be of opposite

signs. Thus, considering (21) come to the conclusion, that

Re
{
F0

′

t(z0; 1)
}

= 0.

Using formula (7), we get (19). Similarly, if in theorem the condition (18) holds,

we come to the equality (19).

Remark 1. Considering equalities(13)and(19)one can come to the conclusion,

that main functionΦn,a(z) satisfy the differential equation of first order

zF ′(z) −
(
(n + 1)a + n

)
F (z) − n(z − 1)n−1 = 0.

Theorem 7. Let for some fixedk = m ≥ 2 the coefficienta∗m,n of function

F∗(z) ∈ F̃n(Π) has property:

|a∗m,n| =
1

(n + m − 1)!

∣∣F (n+m−1)
∗ (1)

∣∣ ≥ |ak,n|

=
1

(n + m − 1)!

∣∣F (n+m−1)(1)
∣∣

for any functionF (z) ∈ F̃n(Π). Then equality

Re
{
ā∗m,n

(
(n + m)a∗m+1,n + (m − 1)a∗m,n − (n + 1)a∗m,na∗2,n

)}
= 0 (22)

holds. Herea∗2,n, a∗m,n, a∗m+1,n are coefficients of functionF∗(z).
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Proof. Let us represent variational formula (8) for coefficienta∗m,n of function

F∗(z) ∈ F̃n(Π):

a∗m,n(t) = a∗m,n + a∗m,n
′(1)(t − 1) + o(t − 1), (23)

wherea∗m,n is a coefficient of functionF∗(z; t) ∈ F̃n(Π). From here and taking

into account that|a∗m,n| ≥
∣∣a∗m,n(t)

∣∣ we get inequality

|a∗m,n|
2 ≥

∣∣a∗m,n + a∗m,n
′(1) + o(t − 1)

∣∣2.

After several transformations we can reduce it to inequality

0 ≥ Re
{
ā∗m,na∗m,n

′(1)
}
(t − 1)Re

{
o(t − 1)

}
, (24)

which holds true for sufficiently small values of|t − 1| wheret − 1 may be of

opposite signs. Then from (24) follows equality

Re
{
ā∗m,na∗m,n

′(1)
}

= 0.

Using formula (10) we come to (22).

Analogously one can prove

Theorem 8. Let for some fixedk = m ≥ 2 the coefficienta∗m,n of function

F∗(z) ∈ F̃n(Π) has property

Re
{
a∗m,n

}
≥ Re

{
am,n

}
, ∀F (z) ∈ F̃n(Π)

or property

Re
{
a∗m,n

}
≤ Re

{
am,n

}
, ∀F (z) ∈ F̃n(Π).

Then in both cases equality

Re
{
(n + m)a∗m+1,n + (m − 1)a∗m,n − (n + 1)a∗m,na∗2,n

}
= 0 (25)

holds. Herea∗2,n, a∗m,n, a∗m+1,n are coefficients of functionF∗(z).

Remark 2. Considering equalities(22)and(25)one can come to the conclusion,

that coefficientsck,n, k = 2, 3, 4, . . . of main functionΦn,a(z), i.e., coefficients

(2), wherec2,n = a, satisfy the equation

(n + k)ck+1,n −
(
(n + 1)a − (k − 1)

)
ck,n = 0.

Thus, the main functionΦn,a(z) has the property, that in many extremal

problems it satisfy the extremal conditions.
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