On Some Extremal Problems on Linearly Invariant Classes

E.G. Kiriyatzkii, J. Kirjackis

Vilnius Gediminas Technical University Saulėtekio av. 11, LT-10223 Vilnius, Lithuania eduard.kiriyatzkii@takas.lt; ekir@takas.lt

Received: 13.11.2004 Accepted: 27.12.2004

Abstract. In present paper the definition of linearly invariant class of analytical in the right half-plane is given and some extremal problems on introduced class are solved. For solving we use method based on variational formulas with specially introduced omega-operator, defined on these classes. In case when domain is unit disk similar linearly invariant classes were considered by Ch. Pommerenke, V. Starkov, E.G. Kiriyatzkii.

Keywords: analytic functions, linearly invariant classes, omega-operator, normalizing operator, variational formula, half-plane.

1 Major notational conventions, and definitions and auxiliary statements

Let Π is a half-plane Re z > 0, $A_n(\Pi)$ – class of analytical in Π functions F(z)with condition $F^{(n)}(z) \neq 0$, $\forall z \in \Pi$, $\widetilde{A}_n(\Pi)$ – class of analytical in Π functions F(z) from $A_n(\Pi)$, which are normalized by conditions:

$$F(1) = F'(1) = \dots = F^{(n-1)}(1) = 0, \quad F^{(n)}(1) = n!.$$

Obviously, that for any fixed $m \geq 2$ every function F(z) of $\widetilde{A}_n(\Pi)$ can be represented in form

$$F(z) = (z-1)^n + \sum_{k=2}^m a_{k,n}(z-1)^{n+k-1} + \Psi_m(z),$$

where $\Psi_m(z)$ – dependent on F(z) analytical in Π function. Number

$$a_{k,n} = \frac{F^{(n+k-1)}(1)}{(n+k-1)!}$$

we call by k-th coefficient of function F(z). Let us introduce the operator

$$N_n[F] = \frac{F(z) - F(1) - F'(1)(z-1) - \dots - \frac{1}{(n-1)!}F^{(n-1)}(1)(z-1)^{n-1}}{\frac{1}{n!}F^{(n)}(1)},$$

which we call by normalizing operator. This operator transfers any function from $A_n(\Pi)$ to a function of class $\widetilde{A}_n(\Pi)$.

Denote by $A(\Pi)$ class of analytical in domain Π functions. The *n*-th order divided difference of function $F(z) \in A(\Pi)$ define (see [1,2]) by formula

$$\left[F(z); z_0, \ldots, z_n\right] = \frac{1}{2\pi i} \int_{\Gamma} \frac{F(\xi)d\xi}{(\xi - z_0) \ldots (\xi - z_n)},$$

where Γ is a simple closed contour, located in Π and covering all the points $z_0, \ldots, z_n \in \Pi$. In above formula among the points $z_0, \ldots, z_n \in \Pi$ may occur coincident.

Note that if P(z) is a polynomial of the degree no higher than n-1, then

$$[P(z); z_0, \dots, z_n] = 0, \quad \forall z_0, \dots, z_n \in \Pi.$$

Denote by L a set of functions of shape w = tz, where t > 0. Every function of L univalently maps half-plane Π onto itself.

Let us arbitrarily choose $w \in L$ and introduce omega-operator of *n*-th order by formula

$$\Omega_n^w[F] = \frac{(z-1)^n \left[F(z); w(z), \overbrace{t, \dots, t}^n \right]}{\frac{1}{n!} F^{(n)}(t)}$$

This operator for any fixed w = tz is defined on class $A_n(\Pi)$ and transfers every function of class $A_n(\Pi)$ to the function of class $\widetilde{A}_n(\Pi)$.

As it will be seen, the linearly invariant classes are defined using operators Ω_n^w , $w \in L$, so we find useful to give without proof some properties of these operators as four theorems formulated below [3].

Theorem 1. For arbitrarily fixed $w = tz \in L$ and any function $F(z) \in A_n(\Pi)$, the equation

$$\Omega_n^w \big[F(z) \big] = N_n \big[F(tz) \big] \tag{1}$$

is valid.

Theorem 2 (On chain). Let $w_1, w_2 \in \Lambda$ and $F_2 = \Omega_n^{w_1}[F_1]$, $F_3 = \Omega_n^{w_2}[F_2]$. Then $F_3 = \Omega_n^{w_3}[F_1]$, where $w_3 = w_1(w_2) \in L$.

Theorem 3. Only function $\Phi_{n,a}(z) = N_n[z^s]$, where $s \neq 0, 1, 2, ..., n-1$, s = (n+1)a + n and $a = \frac{\Phi_{n,a}^{(n+1)}(1)}{(n+1)!}$, is a fixed point (fixed function) of operator Ω_n^w for any $w \in L$, i.e., $\Omega_n^w[\Phi_{n,a}] = \Phi_{n,a}$, $\forall w \in L$. This function belongs to class $\widetilde{A}_n(\Pi)$.

Function $\Phi_{n,a}(z)$ is called by *main* one. Its expansion about point z = 1 has a shape

$$\Phi_{n,a}(z) = (z-1)^n + \sum_{k=2}^{\infty} c_{k,n}(z-1)^{n+k-1},$$

where for coefficients $c_{k,n}$, k = 2, 3, 4, ... formula

$$c_{k,n} = \frac{n!}{(n+k-1)!} (n+1)a((n+1)a-1)\dots((n+1)a-(k-2))$$
(2)

is valid. In particular, $c_{2,n} = a$.

Let k-th coefficient of some function $F(z) \in \widetilde{A}_n(\Pi)$ is equal to number b_k , where $k \ge 2$. If b_k is the k-th coefficient of function $F(z;t) = \Omega_n^w [F(z)]$ for any $w \in L$, then k-th coefficient of function F(z) we will call by *invariant coefficient* of this function.

Theorem 4. Let equation

$$\frac{n!}{(n+k-1)!} \prod_{m=0}^{k-2} \left((n+1)a - m \right) = b_k$$

with respect to a has k - 1 of pairwise different roots a_1, \ldots, a_{k-1} . Then only functions of form

$$F(z) = \sum_{m=1}^{k-1} c_m \Phi_{n,a_m}(z), \quad c_1 + \ldots + c_{k-1} = 1$$

has number b_k as theirs k-th invariant coefficient.

Let us give the definition of linearly invariant class. Set S of functions F(z) of $\widetilde{A}_n(\Pi)$ we will call by linearly invariant class of n-th order, if from belonging $F(z) \in S$ follows $\Omega_n^w[F(z)] \in S$ for any $w \in L$ [4].

Let us give some examples of linearly invariant classes of n-th order.

Example 1. $\widetilde{A}_n(\Pi)$ is a linear invariant class. Note that $\widetilde{A}_n(\Pi)$ contains any of linearly invariant classes.

Example 2. Let us fix in $\widetilde{A}_n(\Pi)$ function F(z) and make up the class of functions $\Psi_w(z) = \Omega_n^w [F(z)]$, where w vary over all set L. Due to Theorem 2 (on chain), such class must be linearly invariant one. We will call this class as *simple* linearly invariant class and denote it by $\widetilde{\mathfrak{R}}_n(\Pi; F)$. Function F(z) we will call by generator of simple class. For simple class we have the following

Property. If $F_1(z) \in \widetilde{\mathfrak{R}}_n(\Pi; F)$, then $F(z) \in \widetilde{\mathfrak{R}}_n(\Pi; F_1)$ for any $w \in L$. In other words, if function F(z) is the generator of simple class and $F_1(z) \in \widetilde{\mathfrak{R}}_n(\Pi; F)$, then function $F_1(z)$ must be the generator of this simple class too.

Properties of simple class was investigated in [4].

Example 3. Simple linearly invariant class generated by main function $\Phi_{n,a}(z)$ consists only of this function.

Union of a set of linearly invariant classes of *n*-th order denote by $\widetilde{\mathfrak{F}}_n(\Pi)$. Denote by $K_n(\Pi)$ class of analytic in Π functions F(z) such, that $[F(z); z_0, \ldots, z_n] \neq 0$ for any set of pairwise distinct $z_0, \ldots, z_n \in \Pi$. For n = 1 one has, as it easily seen, class $K_1(\Pi)$ of all univalent in Π functions, which play a large role in conformal mapping theory and in geometrical theory of analytical functions (see [5–7]).

In class $K_n(\Pi)$ one can extract subclass $\widetilde{K}_n(\Pi)$ normalized functions

 $F(z) = (z-1)^n + a_{2,n}(z-1)^{n+1} + \dots$

Example 4. Class $\widetilde{K}_n(\Pi)$ is a linearly invariant class [4].

In case when n = 1 and domain is unit disc *E* linearly invariant classes were considered by Ch. Pommerenke and by V. Starkov (see [8–10]).

2 Some variational formulas

Using the definition of normalizing operator N_n , and denoting $\Omega_n^w[F(z)]$ by F(z;t), statement (1) of Theorem 1 we can rewrite in the form

$$F(z;t) = \Omega_n^w \left[F(z) \right] = \frac{F(tz) - P(z;t)}{\frac{1}{n!} F^{(n)}(t) t^n},$$

where

$$P(z;t) = F(t) + \frac{F'(t)t}{1!}(z-1) + \dots + \frac{F^{(n-1)}(t)t^{n-1}}{(n-1)!}(z-1)^{n-1}.$$

Function F(z;t) represent in form

$$F(z;t) = (z-1)^n + \sum_{k=2}^m a_{k,n}(t)(z-1)^{n+k-1} + \Psi_m(z;t) \in \widetilde{A}_n(\Pi), \quad (3)$$

where k-th coefficient $a_{k,n}(t)$ in (3) is representable by formula

$$a_{k,n}(t) = \frac{F^{(n+k-1)}(1)t^{k-1}n!}{(n+k-1)!F^{(n)}(t)}.$$
(4)

Represent also function F(z; t) using Taylor's formula

$$F(z;t) = F(z;1) + F'_t(z;1)(t-1) + o(z;t-1),$$
(5)

where $\frac{o(z;t-1)}{t-1} \to 0$ when $t \to 1$ uniformly whit respect to z inside Π . It is easy to come to the conclusion that

$$F(z;1) = F(z).$$
(6)

For derivative with respect to t of function F(z; t) at the point t = 1 the formula

$$F'_t(z;1) = zF'(z) - ((n+1)a_{2,n} + n)F(z) - n(z-1)^{n-1}$$
(7)

is valid. Formula (5), taking into account (6) and (7) is called by *variational* formula for function $F(z) \in \widetilde{A}_n(\Pi)$. Represent function $a_{k,n}(t)$ using Taylor's formula

$$a_{k,n}(t) = a_{k,n}(1) + a'_{k,n}(1)(t-1) + o(t-1),$$
(8)

$$\frac{o(t-1)}{t-1} \to 0$$
 when $t \to 1$. It is easy to see that

$$a_{k,n}(1) = a_{k,n},\tag{9}$$

$$a_{k,n}'(1) = (n+k)a_{k+1,n} + (k-1)a_{k,n} - (n+1)a_{k,n}a_{2,n}.$$
(10)

Formula (8), taking into account (9) and (10) is called by *variational formula* for coefficient $a_{k,n}(t)$.

3 Applications of variational formulas

Using variational formulas we establish several theorems.

Theorem 5. Let $F_0(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$ and at the point $z_0 \in \Pi$, where $z_0 \neq 1$, the condition

$$|F_0(z_0)| \ge |F(z_0)|, \quad \forall F(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$$
 (11)

or condition

$$0 < |F_0(z_0)| \le |F(z_0)|, \quad \forall F(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$$
(12)

holds. Then in both cases equality

$$\operatorname{Re}\left\{\bar{F}_{0}(z_{0})\left(z_{0}F_{0}'(z_{0})-\left((n+1)a_{2,n}+n\right)F(z_{0})-n(z_{0}-1)^{n-1}\right)\right\}=0$$
 (13)

is true. Here

$$a_{2,n} = \frac{1}{(n+1)!} F_0^{(n+1)}(1).$$

Proof. Let us consider first case, i.e., when condition (11) holds. Variational formula (5) for function $F_0(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$ at the point z_0 , is of following shape:

$$F_0(z_0;t) = F_0(z_0) + F_{0t}'(z_0;1)(t-1) + o(z_0;t-1) \in \widetilde{\mathfrak{F}}_n(\Pi),$$
(14)

for any value of t which is sufficiently close to unit. For such t according to condition (11) of Theorem 1, we have inequality

$$|F_0(z_0)| \ge |F_0(z_0;t)|$$

This inequality due to (14) we can substitute by inequality

$$\left|F_{0}(z_{0})\right|^{2} \ge \left|F_{0}(z) + F_{0t}'(z_{0};t)(t-1) + o(z_{0};t-1)\right|^{2}$$
(15)

for sufficiently small values of |t-1|. Carrying out operations in (15) we will get

$$\left|F_{0}(z_{0})\right|^{2} \ge \left|F_{0}(z_{0})\right|^{2} + 2\operatorname{Re}\left\{\bar{F}_{0}(z_{0})F_{0t}'(z_{0};1)\right\}(t-1) + 2\operatorname{Re}\left\{o(z_{0};t-1)\right\}$$

or

$$0 \ge \operatorname{Re}\left\{\bar{F}_0(z_0)F_{0t}'(z_0;1)\right\}(t-1) + \operatorname{Re}\left\{o(z_0;t-1)\right\}$$
(16)

for sufficiently small values of |t - 1|, where values of t - 1 may be of opposite signs. Then, considering (16), come to the conclusion

 $\operatorname{Re}\left\{\bar{F}_{0}(z_{0})F_{0t}'(z_{0};1)\right\}=0.$

Now, using formula (7) at $z = z_0$, we get (13).

Analogously, if in theorem the condition (12) holds, we come to the equality (13). \Box

Theorem 6. Let $F_0(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$ and at the point $z_0 \in \Pi$, where $z_0 \neq 1$, the condition

$$\operatorname{Re}\left\{F_{0}(z_{0})\right\} \geq \operatorname{Re}\left\{F(z_{0})\right\}, \quad \forall F(z) \in \widetilde{\mathfrak{F}}_{n}(\Pi)$$
(17)

or condition

$$\operatorname{Re}\left\{F_{0}(z_{0})\right\} \leq \operatorname{Re}\left\{F(z_{0})\right\}, \quad \forall F(z) \in \widetilde{\mathfrak{F}}_{n}(\Pi)$$
(18)

holds. Then in both cases equality

$$\operatorname{Re}\left\{z_0 F_0'(z_0) - \left((n+1)a_{2,n} + n\right)F_0(z_0) - n(z_0 - 1)^{n-1}\right\} = 0$$
(19)

holds. Here

$$a_{2,n} = \frac{F_0^{(n+1)}(1)}{(n+1)!}.$$

Proof. Let us consider first case, i.e., when condition (17) holds. Variational formula (5) for function $F_0(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$ at the point z_0 , is of following shape:

$$F_0(z_0;t) = F_0(z_0) + F_0'_t(z_0;1)(t-1) + o(z_0;t-1) \in \widetilde{\mathfrak{F}}_n(\Pi),$$
(20)

for any value of t which is sufficiently close to unit. For such t according to condition (17) of Theorem 2, we have inequality

 $\operatorname{Re}\left\{F_0(z_0)\right\} \ge \operatorname{Re}\left\{F_0(z_0;t)\right\}.$

Due to (20), this inequality may be substituted by inequality

$$\operatorname{Re}\{F_0(z_0)\} \ge \operatorname{Re}\{F_0(z_0)\} + \operatorname{Re}\{F_{0t}(z_0;1)\}(t-1) + \operatorname{Re}\{o(z_0;t-1)\},\$$

or by inequality

$$0 \ge \operatorname{Re}\left\{F_{0t}'(z_0; 1)\right\}(t-1) + \operatorname{Re}\left\{o(z_0; t-1)\right\}$$
(21)

for sufficiently small values of |t - 1|, where values of t - 1 may be of opposite signs. Thus, considering (21) come to the conclusion, that

 $\operatorname{Re}\left\{F_{0t}'(z_0;1)\right\} = 0.$

Using formula (7), we get (19). Similarly, if in theorem the condition (18) holds, we come to the equality (19). \Box

Remark 1. Considering equalities (13) and (19) one can come to the conclusion, that main function $\Phi_{n,a}(z)$ satisfy the differential equation of first order

$$zF'(z) - ((n+1)a + n)F(z) - n(z-1)^{n-1} = 0.$$

Theorem 7. Let for some fixed $k = m \ge 2$ the coefficient $a_{m,n}^*$ of function $F_*(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$ has property:

$$|a_{m,n}^*| = \frac{1}{(n+m-1)!} |F_*^{(n+m-1)}(1)| \ge |a_{k,n}|$$
$$= \frac{1}{(n+m-1)!} |F^{(n+m-1)}(1)|$$

for any function $F(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$. Then equality

$$\operatorname{Re}\left\{\bar{a}_{m,n}^{*}\left((n+m)a_{m+1,n}^{*}+(m-1)a_{m,n}^{*}-(n+1)a_{m,n}^{*}a_{2,n}^{*}\right)\right\}=0$$
 (22)

holds. Here $a_{2,n}^*, a_{m,n}^*, a_{m+1,n}^*$ are coefficients of function $F_*(z)$.

Proof. Let us represent variational formula (8) for coefficient $a_{m,n}^*$ of function $F_*(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$:

$$a_{m,n}^{*}(t) = a_{m,n}^{*} + a_{m,n}^{*}'(1)(t-1) + o(t-1),$$
(23)

where $a_{m,n}^*$ is a coefficient of function $F_*(z;t) \in \widetilde{\mathfrak{F}}_n(\Pi)$. From here and taking into account that $|a_{m,n}^*| \ge |a_{m,n}^*(t)|$ we get inequality

 $|a_{m,n}^*|^2 \ge |a_{m,n}^* + a_{m,n}^*'(1) + o(t-1)|^2.$

After several transformations we can reduce it to inequality

$$0 \ge \operatorname{Re}\left\{\bar{a}_{m,n}^{*} a_{m,n}^{*}'(1)\right\}(t-1) \operatorname{Re}\left\{o(t-1)\right\},\tag{24}$$

which holds true for sufficiently small values of |t - 1| where t - 1 may be of opposite signs. Then from (24) follows equality

$$\operatorname{Re}\{\bar{a}_{m,n}^*a_{m,n}^{*'}(1)\}=0.$$

Using formula (10) we come to (22).

Analogously one can prove

Theorem 8. Let for some fixed $k = m \ge 2$ the coefficient $a_{m,n}^*$ of function $F_*(z) \in \widetilde{\mathfrak{F}}_n(\Pi)$ has property

$$\operatorname{Re}\left\{a_{m,n}^{*}\right\} \geq \operatorname{Re}\left\{a_{m,n}\right\}, \quad \forall F(z) \in \widetilde{\mathfrak{F}}_{n}(\Pi)$$

or property

$$\operatorname{Re}\left\{a_{m,n}^{*}\right\} \leq \operatorname{Re}\left\{a_{m,n}\right\}, \quad \forall F(z) \in \widetilde{\mathfrak{F}}_{n}(\Pi).$$

Then in both cases equality

$$\operatorname{Re}\left\{(n+m)a_{m+1,n}^{*} + (m-1)a_{m,n}^{*} - (n+1)a_{m,n}^{*}a_{2,n}^{*}\right\} = 0$$
(25)

holds. Here $a_{2,n}^*, a_{m,n}^*, a_{m+1,n}^*$ are coefficients of function $F_*(z)$.

Remark 2. Considering equalities (22) and (25) one can come to the conclusion, that coefficients $c_{k,n}$, k = 2, 3, 4, ... of main function $\Phi_{n,a}(z)$, i.e., coefficients (2), where $c_{2,n} = a$, satisfy the equation

$$(n+k)c_{k+1,n} - ((n+1)a - (k-1))c_{k,n} = 0.$$

Thus, the main function $\Phi_{n,a}(z)$ has the property, that in many extremal problems it satisfy the extremal conditions.

References

- 1. I.I. Ibragimov. *Interpolation methods for functions and some of their applications*, Moskow, Nauka, p. 518, 1971 (in Russian).
- 2. A.O. Gelfond. *Calculus of finite differences*, Moscow, Nauka, p. 370, 1967 (in Russian).
- 3. J. Kirjackis, E.G. Kiriyatzkii. On Some Properties of Omega-Operator, Defined on Class of Analytic in the Half-Plane Functions, *Nonlinear Analysis and Control*, **9**(2), pp. 117–128, 2004.
- 4. J. Kirjackis, E.G. Kiriyatzkii. Linear Invariant Classes of Functions Analytical in the Half-Plane, *Nonlinear Analysis and Control*, **9**(4), pp. 117–128, 2004.
- 5. E.G. Kiriyatzkii. On some properties of functions with nonzero divided difference, *Lith. Math. J.*, **12**(1), pp. 129–137, 1972 (in Russian).
- 6. I.A. Aleksandrov. *Methods of geometrical theory of analytical functions,* Tomsk University, p. 220, 2001 (in Russian).
- 7. G.M. Goluzin. *Geometrical theory of functions of complex variable*, Moscow, Nauka, p. 628, 1965 (in Russian).
- Ch. Pommerenke. Linear-invariante Familien analytischer Funktionen, *I. Math. Ann.*, 155(Hf.2), pp. 108–154, 1964 (in German).
- 9. V.V. Starkov. Regularity theorems for universal linear-invariant families, in: *Proc.* of *International Conference of constructive functions theory*, *Varna 84*, Sofia, pp. 76–80, 1984 (in Russian).
- 10. V.V. Starkov. Directions of intensive growth of locally univalent functions, *Complex analysis and applications*, Sofia, pp. 78–85, 1988.