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Abstract. The load-carrying capacity of the member with imperfections under
axial compression is analysed in the present paper. The study is divided
into two parts: (i) in the first one, the input parameters are considered to
be random numbers (with distribution of probability functions obtained from
experimental results and/or tolerance standard), while (ii) in the other one,
the input parameters are considered to be fuzzy numbers (with membership
functions). The load-carrying capacity was calculated by geometrical nonlinear
solution of a beam by means of the finite element method. In thecase (ii),
the membership function was determined by applying the fuzzy sets, whereas
in the case (i), the distribution probability function of load-carrying capacity
was determined. For (i) stochastic solution, the numericalsimulation Monte
Carlo method was applied, whereas for (ii) fuzzy solution, the method of the
so-calledα cuts was applied. The design load-carrying capacity was determined
according to the EC3 and EN1990 standards. The results of thefuzzy, stochastic
and deterministic analyses are compared in the concluding part of the paper.

Keywords: fuzzy set, membership function, stochastic, steel, imperfection.

1 Introduction

In this paper, methods will be presented on behalf of which the indeterminateness

can be modelled. The indeterminateness has (at least) two complementary facets:
∗The present paper was elaborated under the GACzR research projects Reg. No. 103/03/0233

and within the Research Centre Project Reg. No. 1M6840770001.
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randomness [1] and fuzziness [2]. The fuzziness can be modelled by the fuzzy set

theory, whereas the randomness, on behalf of the probability theory. Witha little

exaggeration, it can be said that the fuzzy set theory answers the question, “what

set in as a matter of fact” whereas the probability theory answers the question

whether “anything set in”.

In project practice, the design reliability is basically ensured by standard rules

for design. The contemporary approach is based on the method of partialreliabili-

ty factors of ultimate limit state, which is, in general, newly introduced by the Eu-

ropean unified documents (EUROCODES). The steel beam design load-carrying

capacity can be calculated deterministically according to the Eurocode 3 Standard

[3]. At the calculation, the input characteristics are considered by characteristic

or nominal values. Surely, the deterministic load-carrying capacity calculation

method cannot be considered to be fully convenient but another approach is not

viable in the project practice. Alternatively, the design load-carrying capacity

can be determined by statistical calculation, applying the statistical characteristics

of input (material and geometrical) random quantities according to the EN1990

Standard [4] procedure. The standard [4] stipulates, for the load-carrying capacity

limit state, the determination of the design value as a quantity obtained from

several possible distribution types, see [4]. For the target reliability indexβ = 3.8,

the design load-carrying capacity can be determined as 0.1% quantile.

In the preset paper, the load-carrying analysis is analysed on a simple ex-

ample of a member under axial compression. The fuzzy analysis result hasbeen

compared with the results of stochastic analysis elaborated by applying the nume-

rical simulation Monte Carlo method. Further on, the deterministic load-carrying

capacity values are given for the load-carrying capacity ultimate limit state ac-

cording to the standards [3] and [4].

2 Fuzzy sets

For the first time, the notion “fuzzy” was used by Prof. Lotfi Zadeh in 1962[5]. In

1965, L. Zadeh published the paper, legendary at present, “Fuzzy sets” [6]. The

fuzzy sets theory or the fuzzy logic is based on the idea that each element ina

certain system can get one value within the interval0 to 1. Mathematically, it can

be expressed as follows. Let beX a classical set which generates a space, and its
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elements let be markedx. The membership of the setA, which is the subset of the

spaceX, can be described by the membership functionµA, which gets the values

{0; 1}, as follows:

µA =

{

1, if and only if x ∈ A,

0, otherwise.
(1)

If the membership function can get real values within the interval, the setA

is called fuzzy set, and expresses the grade of membership ofx to the setA. The

more the value approximates to the value1, the more sox belongs to the setA.

At the value zero, the element does not belong to the set, at the value1, it belongs

to that fully; in the other cases, it belongs to the set partly. It is admissible fora

fuzzy element to belong to more sets, namely to each series with various gradeof

membership [2].

The grade of membership has nothing in common with the probability. If we

wanted to speak about the probability, we would have to study a phenomenon,

whether it would or wouldn’t take place. On behalf of the fuzzy sets, however, it

is possible to describe the vague notions in themselves.

3 Fuzzy number

Fuzzy numbers are the fuzzy sets, defined on the set of real numbers.Usually,

they are supposed to have the special form presented in Fig. 1.

Fig. 1. Membership function of the number “abouta0” (triangle distribution).

A fuzzy number intuitively represents the value which is inaccurate, i.e.,

the value which can be characterized in words by the expressions “about a0”.

Typical examples are “about 5”, “roughly 1205”, “approximately1 m”, etc. [2].

In practice, we met, quite entirely, the numbers which are fuzzy. When measuring
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the dimensions of a table by a common metre, the result may be, e.g.,55 cm.

However, it means in reality “about55 cm” because our measurement is rather

rough and we cannot be sure whether it might not be, e.g.,55.001 cm, or similar.

Let us realize that the measurement results are always inaccurate namely also in

the case that we apply the most accurate measuring system which exists.

Let us imagine that, e.g., we will measure the heights of manufactured, hot-

rolled beam IPE140, see Fig. 2. When studying the probability, our interest will

Fig. 2. Geometry of IPE140.

be focused on the occurrence frequency of values within the interval near to the

nominal value of140 mm. On the contrary, the fuzzy set theory informs on to

what verity degree it is possible to assume that a hot-rolled IPE140 profile is

concerned. The larger the deviation from the nominal value –140 mm will be, the

less it will be true that the IPE140 profile is concerned. The probability informs

on the frequency of a phenomenon, whereas the fuzzy set theory determines the

phenomenon.

The absolute majority of phenomena in the reality are determined just by

vague notions which are dealt with by means of a natural language. In traditional

logic, the use of exact notions is assumed which, however, are applicablein case

of an ideal idea only. The endeavour at reaching the incessantly better exactness

leads to disproportionate increase of definitions, and of the scope of treatises on

practically simple things. The limit exactness means the capacity of describing
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each phenomenon in reality. So, the science gets into the situation of telling

always more on an always smaller reality part. Fuzzy words correspondto the

reality far better – maybe yes, maybe not, a little, moderately, etc.

4 Input quantities as random and fuzzy numbers

Member with lengthL = 1.57 m was analysed. The corresponding non-dimen-

sional strut slenderness calculated by [3] isλ̄ = 1.0. The loading of a steel strut is

demonstrated as an example, see Fig. 3 The load-carrying capacity is limited by

geometrical and material characteristics the uncertainty of which conditions also

the uncertainty of the load-carrying capacity.

Fig. 3. Member under axial compression.

For the first alternative, the input quantities are assumed to be random [1].

Buckling in the direction of the axis perpendicular to the web plane was taken

into account. The initial curvature of the member axis was introduced as one half-

wave of the sine function with random amplitudee0. The Gaussian distribution

function of the initiation curvature amplitudee0 was introduced. Its statistical

characteristics were calculated so that the frequency of the occurrence of random

realizations within the interval was 95%. For geometrical characteristics of cross-

sectionh (cross-section height),b (flange width),t1 (web thickness),t2 (flange

thickness), Gaussian distribution is assumed with the mean value equalling the

nominal value. The standard deviationSX has been derived, based on the as-

sumption that 95% of all the realizations (rule2SX ) lie within tolerance limits

of the Standard [7]. For yield strength of the steel S235, Gaussian distribution

with statistical characteristics was considered according to experimental research

results [8]. For Young’s modulusE, the study was based on the data given in

literature [9, 10]. The influence of deviations of physical-mechanical material

characteristics (e.g., heterogeneousness), is included in the Young’s modulus va-

riability.
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For the second alternative, the input characteristics are considered to be fuzzy

numbers. The membership functions are assumed to be identical in form with

the probability functions, see Tab. 1. It means that the courses of membership

functions are nonlinear.

Table 1. Statistical characteristics of input random quantities

No. Quan- Name of random Type of Dimen- Mean Standard
tity quantity distribution sions value deviation

1. h Cross-section height Gauss mm 140 1.25
2. b Flange width Gauss mm 73 1.25
3. t1 Web thickness Gauss mm 4.7 0.35
4. t2 Flange thickness Gauss mm 6.9 0.75
5. e0 Amplitude of curvature Lognormal mm 0.524 0.62
6. fy Yield strength Gauss MPa 297.3 16.8
7. E Young’s modulus Gauss GPa 210 12.6

The maximum value of the membership function equals 1, see Figs. 4–10.

Fig. 4. Membership functions of heighth.

Fig. 5. Membership functions of heightb.

If the IPE140 cross-section height equals140 mm, the membership function gets

the value 1 (i.e., the statement is absolutely true). For the membership function of
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the initial curvature amplitude in the form of lognormal distribution, the maximum

is not identical with mean value, see Fig. 8.

Fig. 6. Membership functions of heightt1.

Fig. 7. Membership functions of heightt2.

Fig. 8. Membership of amplitude of initial imperfectione0.

Fig. 9. Membership functions of yield strengthfy.
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Fig. 10.Membership functions of Young’s modulusE.

5 Nonlinear computational model for steel plane beam analysis

Member geometries may be modelled by means of the beam element with initial

curvature in the form of a parabola of the 3rd degree [11]. The member was

meshed into 10 beam elements. The steel member was solved by the nonli-

near Euler incremental method and combined with the Newton-Raphson method.

Geometrical and material nonlinearities were considered. The first criterion for

the load-carrying capacity is a loading at which plastification of the flange is

initiated. The second criterion for the load-carrying capacity is represented by a

loading corresponding to a decrease of the determinant to zero. The ultimateone-

parametric loading is defined as the lowest value of load-carrying capacity. This

phenomenon occurs at high yield point values with small geometrical member

imperfections. In each step of the simulation method, the load-carrying capacity

was determined to an accuracy of 0.1%. The load-carrying capacity was evaluated

for the basic element material only [11].

6 Conclusion

The results obtained by application of the fuzzy set theory and by probability dis-

tribution were compared to clear up the difference between the fuzzy distribution

and the probability distribution. As both methods applied are based on different

assumptions, the comparison of results is difficult. However, the informativevalue

of each method is of a different type.

The full line in Fig. 11 represents the membership function obtained on be-

half of the so-calledα-cuts [2, 12] for ten layers. The histogram of the relative

frequency of random load-carrying capacity was obtained by the MonteCarlo

72



Fuzzy Sets Theory in Comparison with Stochastic Methods

method for10000 simulation runs. The mean load-carrying capacity of the his-

togram is314.8 kN; the standard deviation is50.8 kN. The value of the member-

ship function for mean load-carrying capacity is0.93 (in the ascendant part of the

diagram), i.e., the verity of the statement that the strut load-carrying capacityis

314.8 kN represents only 93%.

Fig. 11.Comparison of the fuzzy, stochastic and deterministic analysis.

It has been confirmed by the Chi-square test that the Gauss distribution func-

tion can be assumed for the random load-carrying capacity. The design load-car-

rying capacity determined according to [4] from the Gaussian probability distri-

bution for the reliability indexβ = 3.8 (as 0.1% quantile) has the value249.7 kN.

This value is by 11% higher than the value224.56 kN calculated according to the

procedures of the Standard for design of steel structures, EC3 [3].The compari-

son of design values according to the standards [3, 4] represents oneamong the

possibilities how to calibrate and verify the standard design procedures, or, as the

case may be, how to analyse the steel structure reliability by applying the data

experimentally found.

The stochastic and fuzzy set theories cannot be considered to be an om-

nipotent mean which will solve all the problems automatically. They have to be

understood as an appropriate instrument for modelling the indeterminateness. As

the main objective of fuzzy sets is the modelling of the semantics of a natural
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language there exist numerous specialisations in which the fuzzy sets can be

applied. In the field of the design of building structures, the papers [13,14] can be

mentioned.
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