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Abstract. In this paper, a mathematical model is proposed and analysedto
study the dynamics of one-prey two-predators system with ratio-dependent pre-
dators growth rate. Criteria for local stability, instability and global stability
of the nonnegative equilibria are obtained. The permanent co-existence of the
three species is also discussed. Finally, computer simulations are performed to
investigate the dynamics of the system.
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1 Introduction

The co-existence and extinction of interacting species have been of great impor-

tance and have been studied extensively in the past. The effect of two competing

predators on a single limited prey has also been studied [1–4]. In particular,

Hsu [3] proposed and analysed a model of two predators competing for asingle

prey. He showed that if the interference coefficient is small, then the winner

in purely exploitative system competes its rival successfully and if the interfer-

ence coefficient is large enough, then the competition outcome depends on the

initial population of predator species. Freedman and Waltman [1] considered

three level food webs – two competing predators feeding on a single prey and
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a single predator feeding on two competing prey species. They obtained criteria

for the system to be persistent. Cushing [5] studied a competition model of two

predator species competing for a single renewable resource prey species under

the assumption that the system parameters are periodic in time. Gopalsamy [6]

also described a model of two consumer species and one resource species and

found some sufficient conditions for the solutions of the system to converge to

its equilibrium. Mitraet al. [4] studied the permanent co-existence and global

stability of a model of a living resource supporting two competing predators.They

proved that the permanent co-existence of the system depends on the threshold of

the ratio between the coefficients of numerical responses of the two consumers.

Dubey [7] described a mathematical model of two species utilizing a common

resource and one of the species itself is an alternative resource for theother. Dubey

and Das [8] proposed and analysed a mathematical model based on the dynamics

of Gause-type model where the two predators are competing with interference for

a limited prey.

It may be pointed out here that all the above studies are based on the tra-

ditional prey dependent models. Recently, it has been observed that in some

situations, especially when predators have to search for food and therefore have

to share or compete for food, a more suitable predator-prey theory should be

based on the so-called ratio-dependent theory, in which the per capita predator

growth rate should be function of the ratio of prey to predator abundance, and

should be the so-called predator functional response [9–12]. This concept is

also supported by numerous field and laboratory experiments and observations

[11, 13, 14]. In prey-dependent models, predator has a vertical isocline and in

ratio-dependent models, predator has a slanted isocline. There are alsodifferences

in their prey isoclines. It has been shown that the ratio-dependent modelsare

capable of producing richer and more reasonable or acceptable dynamics [13,

15, 16]. Kuang and Beretta [17] investigated the global qualitative analysis of

a ratio-dependent predator-prey system. They showed that if the positive steady

state of the so-called Michaelis-Menten ratio-dependent predator-preysystem is

locally asymptotically stable, then the system has no nontrivial positive peri-

odic solutions. In this paper, some important questions on the global qualitative

behavior of solutions of the model were left open. These open questionsand
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uniqueness of limit cycles are resolved by Hsuet al. [18]. Berezovskayaet

al. [19] studied the stability properties and dynamic regimes of a predator-prey

model in which the functional response is a function of the ratio of prey and

predator abundances. They showed that there exists areas of coexistence, areas in

which both the species become extinct, and the areas of conditional coexistence

depending on the initial values. Xiao and Ruan [20] also investigated the quali-

tative behavior of a class of ratio-dependent predator-prey model, and they found

that there exists numerous kinds of topological structures in a neighbourhood

of the origin including the parabolic orbits, the elliptic orbits, the hyperbolic

orbits, and any combination of them. It may be pointed out here that a very

little attention has been paid to the qualitative analyses of food chains or multi-

species interaction models based on ratio-dependent approach. Recently, Kesh

et al. [21] proposed and analysed a mathematical model of two competing prey

and one predator species where the prey species follow Lotka-Volterradynamics

and predator uptake functions are ratio-dependent. They derived conditions for

the existence of different boundary equilibria and discussed their global stability.

They also obtained sufficient conditions for the permanence of the system.Hsuet

al. [18] studied the qualitative properties of a ratio dependent predator-prey model.

They showed that the dynamics outcome of interactions depend upon parameter

values and initial data. Hsuet al. [16] proposed a model to study the qualitative

properties of a ratio-dependent one-prey two-predators system. Butin this paper,

the proposed model is not well defined at(0, 0, 0). Also, in this investigation

the existence of interior equilibrium, its stability behavior and persistence of the

system are not discussed, which are biologically and ecologically very important.

Further, no interaction has been considered between the two predators.

Keeping the above in view, in this paper, a mathematical model of one prey

– two predators system in which the predator interference is of ratio-dependent is

proposed and analysed. Our proposed model is well defined at the origin and the

two predators are in the state of competition for the single prey. It may be pointed

out here that results on one prey – two predator system with prey dependent

trophic function are well known [3, 4, 8]. Here we are interested to investigate

changes in the qualitative behavior of the system when the trophic function isof

ratio-dependent.
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2 Mathematical model

Consider an ecosystem where we wish to model the interaction of two predators

competing for a single prey. It is assumed that prey species grows logistically and

the predator functional response is of ratio-dependent. Letx(t) be the density of

prey species andyi(t) (i = 1, 2) be the density of predator species that compete

with each other for the prey. Then the dynamics of the system may be governed

by the following system of autonomous differential equations.

dx

dt
= rx

(
1 −

x

K

)
−

a1xy1

1 + b1x+ y1 +my2

−
a2mxy2

1 + b2x+ y1 +my2

,

dy1

dt
= −δ1y1 − αy1y2 +

λ1a1xy1

1 + b1x+ y1 +my2

,

dy2

dt
= −δ2y2 − βy1y2 +

λ2a2mxy2

1 + b2x+ y1 +my2

,

x(0)> 0, yi(0) > 0, i = 1, 2.

(1)

In model (1),r is the intrinsic growth rate of prey species andK is its carrying

capacity.δi is the mortality rate coefficient of predator speciesyi andα, β are their

interspecific interference coefficient.a1, a2 are searching efficiency constants and

m is the relative predation rate ofy2 with respect toy1. λi is the food conversion

coefficient of the predator speciesyi. a1/b1 anda2m/b2 are the maximum per-

capita capturing rates fory1 andy2 respectively.

First of all, we re-scale the variables in model (1). Let

x = x/K, y1 = y1, y2 = my2, a1 = a1, a2 = a2

r = r, α = α, β = β, δ1 = δ1, δ2 = δ2,

b1 = b1K, b2 = b2K, λ1 = λ1K, λ2 = λ2Km.

Using the above variables and dropping bars from the resulting equation,we

obtain
dx

dt
= rx(1 − x) −

a1xy1

1 + b1x+ y1 + y2

−
a2xy2

1 + b2x+ y1 + y2

,

dy1

dt
= −δ1y1 − αy1y2 +

λ1a1xy1

1 + b1x+ y1 + y2

,

dy2

dt
= −δ2y2 − βy1y2 +

λ2a2xy2

1 + b2x+ y1 + y2

,

x(0)> 0, yi(0) > 0, i = 1, 2.

(2)
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In the next section we present the equilibrium analysis of model (2).

3 Equilibrium analysis

It can be checked that system (2) has five nonnegative equilibria, namely

E0(0, 0, 0), E1(1, 0, 0), E2(x, y1, 0), E3(x̃, 0, ỹ2) andE∗(x∗, y∗1, y
∗

2). The equi-

libria E0 andE1 obviously exist. We show the existence of other equilibria as

follows.

Existence ofE2(x, y1, 0).

Herex andy1 are the positive solutions of the following algebraic equations:

r(1 − x) −
a1y1

1 + b1x+ y1

= 0,

− δ1 +
λ1a1x

1 + b1x+ y1

= 0.
(3)

Solving (3), we get

x = L1(1 + y1),

y1 =
−B1 +

√
B2

1
− 4A1C1

2A1

,
(4)

where

L1 = δ1/(λ1a1 − δ1b1),

A1 = rL1(1 + b1L1),

B1 = r(1 + b1L1)[2L1 − 1] + a1,

C1 = r(1 + b1L1)[L1 − 1].

Thus, the equilibriumE2 exists if

0 < L1 < 1 (5)

holds.

Existence ofE3(x̃, 0, ỹ2).

As in the existence ofE2, it can be seen that

x̃ = L1(1 + ỹ2),

ỹ2 =
−B2 +

√
B2

2
− 4A2C2

2A2

,
(6)
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where

L2 = δ2/(λ2a2 − b2δ2),

A2 = rL2(1 + b2L2),

B2 = r(1 + b2L2)[2L2 − 1] + a2,

C2 = r(1 + b2L2)[L2 − 1].

Thus, the equilibriumE3 exists if

0 < L2 < 1 (7)

holds.

Existence ofE∗(x∗, y∗1, y
∗

2).

Herex∗, y∗1 andy∗2 is the positive solution of the system of algebraic equations

given below.

rx(1 − x) =
a1y1

1 + b1x+ y1 + y2

+
a2y2

1 + b2x+ y1 + y2

, (8a)

δ1 + αy2 =
λ1a1x

1 + b1x+ y1 + y2

, (8b)

δ2 + βy1 =
λ2a2x

1 + b2x+ y1 + y2

. (8c)

Solving (8b) and (8c), we get

f(y1, y2) ≡ (δ1 + αy2)(λ2a2 − b2δ2 − b2βy1)

− (δ2 + βy1)(λ1a1 − b1δ1 − b1αy2) = 0.
(9)

Using (8b) and (8c) in (8a), we obtain

g(y1, y2) ≡ rλ1λ2

(δ1+αy2)(1+y1+y2)

λ1a1−b1δ1−b1αy2

(
1−

(δ1+αy2)(1+y1+y2)

λ1a1−b1δ1−b1αy2

)

− (δ1 + αy2)λ2y1 − (δ2 + βy1)λ1y2 = 0.

(10)

From (9) we note the following: wheny2 → 0, theny1 → y1a, where

y1a =
L1(λ2a2 − b2δ2) − δ2

β(1 + b2L1)
. (11)
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We note thaty1a > 0 if

0 < L2 < L1. (12)

We also havedy1

dy2
= A

B
, where

A = α
[
λ2a2 + (δ2 + βy1)(b1 − b2)

]
,

B = β
[
λ1a1 + (δ2 + αy2)(b2 − b1)

]
.

It is clear thatdy1

dy2
> 0 if either

(i) A > 0 and B > 0, or
(13)

(ii) A < 0 and B < 0,

hold.

Remark. If b1 = b2, thendy1

dy2
> 0.

From (10) we note the following: wheny2 → 0, theny1 → y1b, where

y1b =
−B3 +

√
B2

3
− 4A3C3

2A3

,

A3 = rλ1λ2L
2
1,

B3 = rλ1λ2L1[2L1 − 1] + λ2δ1,

C3 = rλ1λ2L1[L1 − 1].

ClearlyC3 < 0 if inequality (5) is satisfied. We also have

dy1

dy2

= −
∂g

∂y2

/ ∂g

∂y1

.

We note thatdy1

dy2
< 0 if either

(i)
∂g

∂y1

> 0 and
∂g

∂y2

> 0, or

(14)
(ii)

∂g

∂y1

< 0 and
∂g

∂y2

< 0

hold.
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From the above analysis we note that the two isoclines (9) and (10) intersect

at a unique point(y∗2, y
∗

1) if in addition to conditions (5), (12)–(14), the following

inequality holds:

y1a < y1b. (15)

Knowing the values ofy∗1 andy∗2, the value ofx∗ can be calculated from

x∗ =
(δ1 + αy∗2)(1 + y∗1 + y∗2)

λ1a1 − b1δ1 − b1αy∗2
. (16)

It may be noted here that forx∗ to be positive we must have

λ1a1 > b1(δ1 + αy∗2). (17)

This completes the existence ofE∗.

4 Dynamical behaviour

The dynamical behaviour of equilibria can be studied by computing the variational

matrices corresponding to each equilibrium point. From these matrices and using

the Routh-Hurwitz criteria, we note the following.

1. The equilibrium pointE0 is a saddle point with locally stable manifold in the

y1 − y2 plane and with locally unstable manifold in thex direction.

2. (a) If inequalities (5) and (7) hold, thenE1 is a saddle point with locally

stable manifold in thex direction and with locally unstable manifold in

they1 − y2 plane.

(b) If λiai < δibi (i = 1, 2), then equilibriaE2 andE3 do not exist and in

such a case the equilibrium pointE1 is locally asymptotically stable in

thex− y1 − y2 space.

3. Let us denote

L3 = −δ2 − βy1 +
λ2a2x

1 + b2x+ y1

,

L4 = −δ1 − αỹ2 +
λ1a1x̃

1 + b1x̃+ ỹ2

.

(18)
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ThenE2 is locally stable or unstable along they2 direction according as

L3 < 0 or L3 > 0 andE3 is locally stable or unstable along they1 direction

according asL4 < 0 orL4 > 0.

We now state the local dynamical behavior of planer equilibriaE2 andE3

in the form of Theorem 1 and Theorem 2 respectively. The proofs of these two

theorems follow from the Routh-Hurwitz criteria and hence omitted.

Theorem 1. (i) If λ1 > b1, thenE2 is locally asymptotically stable in thex− y1

plane.

(ii) If λ1 > b1 andλ2a2 < b2δ2, thenE2 is locally asymptotically stable in

thex− y1 − y2 space.

(iii) If λ1 > b1 andL3 > 0, thenE2 is a saddle point with locally stable

manifold in thex−y1 plane and with locally unstable manifold in they2 direction.

Theorem 2. (i) If λ2 > b2, thenE3 is locally asymptotically stable in thex− y2

plane.

(ii) If λ2 > b2 andλ1a1 < b1δ1, thenE3 is locally asymptotically stable in

thex− y1 − y2 space.

(iii) If λ2 > b2 andL4 > 0, thenE3 is a saddle point with locally stable

manifold in thex−y2 plane and with locally unstable manifold in they1 direction.

Remark. (a) If λ1a1 < b1δ1, then the equilibrium pointE2 does not exist and in

such a caseL4 < 0.

(b) If λ2a2 < b2δ2, then the equilibrium pointE3 does not exist and in such

a caseL3 < 0.

In the next two theorems we show that planer equilibriaE2 andE3 are

globally asymptotically stable under certain parametric conditions.

Theorem 3. If λ1 > b1, thenE2 is globally asymptotically stable in the interior

of the positive quadrant ofx− y1 plane.
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Proof. Let

H(x, y1) =
1

xy1

,

h1(x, y1) = rx(1 − x) −
a1xy1

1 + b1x+ y1

,

h2(x, y2) = −δ1y1 +
λ1a1xy1

1 + b1x+ y1

.

Clearly,H(x, y1) > 0 in the interior of the positive quadrant ofx − y1 plane.

Then we have

∆(x, y1) =
∂

∂x
(h1H) +

∂

∂y1

(h2H) = −
r

y1

−
(λ1 − b1)a1

(1 + b1x+ y1)2
< 0.

Clearly∆(x, y1) does not change sign and is not identically zero in the positive

quadrant ofx−y1 plane. Therefore, by Bendixson-Dulac criterion,E2 is globally

asymptotically stable in the interior of the positive quadrant ofx− y1 plane.

Similarly we can prove the following theorem.

Theorem 4. If λ2 > b2, thenE3 is globally asymptotically stable in the interior

of the positive quadrant ofx− y2 plane.

Theorems 3 and 4 show that in ratio-dependent models, food conversion

coefficientsλi (i = 1, 2) play an important role in determining the dynamics

of planer equilibria.

In the next theorem we show that system (2) is uniformly persistent. By the

permanence or persistence of a system, we mean that all the species are present

and non of them will go to extinction. The persistence of a system have been

studied by several researchers [1,4,22–24].

Theorem 5. In addition to assumptions(5) and (7), let the hypotheses of Theo-

rem3 and Theorem4 hold. If

L3 > 0, L4 > 0 (19)

hold, then system(2) is uniformly persistent.
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Proof. We prove this theorem by the method of average Liapunov function [23].

Let the average Liapunov function for system (2) be

σ(X) = xpyp1

1
yp2

2
,

wherep, p1 and p2 are positive constants. Clearlyσ(X) is a nonnegativeC1

function defined inR3
+. Then we have

ψ(X) =
σ̇(X)

σ(X)
= p

ẋ

x
+ p1

ẏ1

y1

+ p2

ẏ2

y2

= p

[
r(1 − x) −

a1y1

1 + b1x+ y1 + y2

−
a2y2

1 + b2x+ y1 + y2

]

+ p1

[
− δ1 − αy2 +

λ1a1x

1 + b1x+ y1 + y2

]

+ p2

[
− δ2 − βy1 +

λ2a2x

1 + b2x+ y1 + y2

]
.

Since inequalities (5) and (7) hold, planer equilibriaE2 andE3 exits. Further,

hypotheses of Theorem 3 and 4 imply that there are no periodic orbits in the

interior of positive quadrant ofx − y1 plane andx − y2 plane. Thus, to prove

the uniform persistence of the system, it is enough to show thatψ(X) > 0 for all

equilibriaX ∈ bd R3
+, for a suitable choice ofp, p1, p2 > 0 i.e., the following

conditions must be satisfied for the system to be uniformly persistent.

ψ(E0) = pr − p1δ1 − p2δ2 > 0, (20a)

ψ(E1) = p1

[
− δ1 +

λ1a1

1 + b1

]
+ p2

[
− δ2 +

λ2a2

1 + b2

]
> 0, (20b)

ψ(E2) = p2L3 > 0, (20c)

ψ(E3) = p1L4 > 0. (20d)

We note that by increasingp to sufficiently large value,ψ(E0) can be made

positive. Thus, inequality (20a) holds. Equations (5) and (7) imply that (20b)

holds. If inequalities in equation (19) hold, then (20c) and (20d) are satisfied.

Hence the theorem follows.

Theorem 5 shows that system (2) is permanent or uniformly persistent if

prey-predator subsystems are globally asymptotically stable and death rate co-

efficient δi of predator speciesyi is less than a threshold value. This threshold
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value depends upon the equilibrium levels of prey and predators, food conversion

coefficients and capturing rates.

In the next theorem, we are able to find sufficient conditions under which the

given system is not persistent.

Theorem 6. If λiai < biδi (i = 1, 2), then system(2) is not persistent and both

predators will go to extinction.

Proof. Under the given hypothesis we note from (20b)–(20d) thatψ(E1) < 0,

ψ(E2) < 0 andψ(E3) < 0 for some positive constantsp1 andp2. As stated

in 2(b) of Section 4 of this article that under the given hypothesis of Theorem 6,

equilibriaE2 andE3 do not exist. Hence, distance to the boundary decreases

along orbits near the fixed pointE1. Using Theorem 3 of Amann and Hofbauer

[25], it follows that there is a positive invariant setM ⊂ ∂R3
+ containing the fixed

pointE1. Thus, the trajectory initiating inR3
+ must converge toE1. Hence, the

system is not permanent and both predator species will go to extinction.

In the following theorem we show that the positive equilibriumE∗ is locally

asymptotically stable. In this theorem we shall use the following notations:

B∗

1 = (1 + b1x
∗ + y∗1 + y∗2)

2, B∗

2 = (1 + b2x
∗ + y∗1 + y∗2)

2, (21a)

H∗ = r − a1b1y
∗

1/B
∗

1 − a2b2y
∗

2/B
∗

2 , (21b)

c1 =
1 + b1x

∗ + y∗2
λ1(1 + y∗

1
+ y∗

2
)
, c2 =

1 + b2x
∗ + y∗1

λ2(1 + y∗
1

+ y∗
2
)
. (21c)

Theorem 7. Let the following inequalities hold:

H∗ > 0, (22a)

(a2y
∗

2/B
∗

2)2 < c1λ1a1H
∗x∗/B∗

1 , (22b)

(a1y
∗

1/B
∗

1)2 < c2λ2a2H
∗x∗/B∗

2 , (22c)

(c1α+ c2β + c1λ1a1x
∗/B∗

1 + c2λ2a2x
∗/B∗

2)2

< c1c2λ1λ2a1a2x
∗2/(B∗

1B
∗

2). (22d)

Then the positive equilibriumE∗ is locally asymptotically stable.

Proof of the theorem is deferred to Appendix A.
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In the following theorem we show that the positive equilibrium is globally

asymptotically stable. In order to prove this theorem we need the following lemma

which establishes a region of attraction for system (2). The proof of this lemma is

deferred to Appendix B.

Lemma 1. The set

Ω =
{
(x, y1, y2) : 0 ≤ x ≤ 1, 0 ≤ x+ y1/λ1 + y2/λ2 ≤ ya

}
,

is a region of attraction for all solutions initiating in the interior of the positive

orthant, where

ya = (r + η)η, 0 < η ≤ min{δ1, δ2}.

Theorem 8. Let the following inequalities hold in the regionΩ:

G∗ = r −
a1b1y

∗

1

1 + b1x∗ + y∗
1

+ y∗
2

−
a2b2y

∗

2

1 + b2x∗ + y∗
1

+ y∗
2

> 0, (23a)

[ a2y
∗

2

1 + b2x∗ + y∗
1

+ y∗
2

]2

<
c1λ1a1x

∗G∗

(1 + b1 + 2λ1ya)(1 + b1x∗ + y∗
1

+ y∗
2
)
, (23b)

[ a1y
∗

1

1 + b1x∗ + y∗
1

+ y∗
2

]2

<
c2λ2a2x

∗G∗

(1 + b2 + 2λ2ya)(1 + b2x∗ + y∗
1

+ y∗
2
)
, (23c)

[
c1α+ c2β +

c1λ1a1x
∗

1 + b1x∗ + y∗
1

+ y∗
2

+
c2λ2a2x

∗

1 + b2x∗ + y∗
1

+ y∗
2

]2

<
N1

N2

, (23d)

where

N1 = c1c2a1a2λ1λ2x
∗2, (23e)

N2 = (1 + b1 + 2λ1ya)(1 + b2 + 2λ2ya)

× (1 + b1x
∗ + y∗1 + y∗2)(1 + b2x

∗ + y∗1 + y∗2), (23f)

c1 andc2 are same as defined in(21c).

Then the positive equilibriumE∗ is globally asymptotically stable with re-

spect to all solutions initiating in the interior of the positive orthantΩ.

Proof of this theorem is deferred to Appendix C.

Theorems 7 and 8 show that under certain parametric conditions the prey and

the competing predator species settle down at its equilibrium level. Conditions

(22a) and (23a) show that for system (2) to be globally asymptotically stable, the

intrinsic growth rate of prey species must be grater than a threshold value.
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Remark. It may be noted here that(23a)–(23d)⇒ (22a)–(22d)respectively. This

ensures that global stability always implies local stability.

5 Numerical simulations

In this section we present numerical simulations of model system (2). For this

purpose, we consider the following values of parameters in model (2):

r = 0.75, a1 = 4, b1 = 5.01, a2 = 0.5, b2 = 4.05,

δ1 = 0.4, α = 0.05, λ1 = 1.05, δ2 = 2, β = 1.5, andλ2 = 0.15.
(24)

For the above set of parameter values, it is found that the model system (2) ad-

mits a stable limit cycle (slc) solution. Numerical simulation also shows that the

dynamical outcomes of the interactions are very sensitive to parameter values and

initial data. The model system (2) is solved using the ODE workbench package

(AIP, New York). All the simulation are performed in the screen area(−2 ≤ X ≤

2)× (−2 ≤ Y ≤ 2) for the initial conditionx(0) = 1, y1(0) = 0.2, y2(0) = 1.5.

The main objective in this section is to show numerically that all the three

species can coexist either in the form of oscillatory solution (slc) or in the form of

steady state solution (stable focus) for some range of parameters and the predator

species can go to extinction in some other range of parametric values. The prey

speciesx become extinct only at the discrete point for the parameterδ1 = 0.001.

The results of simulation experiments are presented in Table 1. From this table,

it is found that the mortality rate coefficient of predator speciesy1 (i.e. δ1)

is the only parameter which is responsible for the extinction of all the species

in different parameter regimes. The predatory1 becomes extinct in the range

[0.75, 2.65] but at the same time other species rests on stable focus (y2 → 0). The

predatory2 becomes extinct in the range[0.07, 0.35] and other species rests on

limit cycle attractor in this range. The depletion rate coefficient of prey species due

to predatory1 (i.e.,a1) and the food conversion coefficient of this predator (λ1) are

responsible for the extinction of the predator speciesy1 andy2. The predatory1

becomes extinct in the ranges0.1 ≤ a1 ≤ 2.2, 0.001 ≤ λ1 ≤ 0.55 and predator

y2 doomed to extinction in the ranges4.3 ≤ a1 ≤ 10 and1.2 ≤ λ1 ≤ 4.05. The

other species rests either on limit cycle attractor or stable focus. The parameter

b1, δ2 andβ are responsible for the extinction of the predatory2 only but at the
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same time other species behaves in a oscillatory manner. All the species co-

exist either in the form of steady state or in the form of oscillatory solutions

for the parametersr andb2 in the range[0.01, 10] and fora2, α, λ2 in the range

[0.001, 10].

The analytical condition of Theorem 6 for the parametric values given in (24)

is well matched by our numerical results given in Table 1. The co-existenceof the

species in the form of positive steady state solution and in the form of oscillatory

solutions are shown by the time trajectory in Figs. 1, 2 and 3. It is found that in

no cases predatory2 rests on stable limit cycle solution. It either rests on stable

focus or goes to extinction.

Table 1. Results of simulation experiments of model system (2) with
parameter values which were kept constants at limit cycle attractor are
same as in (24) with the initial valuesx(0) = 1.0, y1(0) = 0.2,

y2(0) = 1.5

Parameter Varied Range in which
Parameter Dynamical Outcome
Varied x y1 y2

r 0.01–0.96 Limit Cycle Limit Cycle Stable Focus
0.01 ≤ r ≤ 10 0.97–10 Stable Focus Stable Focus Stable Focus

a1 0.1–2.2 Stable Focus Extinct Stable Focus
0.1 ≤a1≤ 10 2.25–3.75 Stable Focus Stable Focus Stable Focus

3.8–4.25 Limit Cycle Limit Cycle Stable Focus
4.3–10 Limit Cycle Limit Cycle Extinct

b1 0.01–3.35 Stable Focus Stable Focus Stable Focus
0.01 ≤b1≤ 10 3.4–3.6 Limit Cycle Limit Cycle Stable Focus

3.65–4.2 Limit Cycle Limit Cycle Extinct
4.25–6.05 Limit Cycle Limit Cycle Stable Focus
6.1–10 Stable Focus Stable Focus Stable Focus

a2 0.001–10 Limit Cycle Limit Cycle Stable Focus
0.001 ≤a2≤ 10

b2 0.01–10 Limit Cycle Limit Cycle Stable Focus
0.01 ≤b2≤ 10

δ1 0.001 Extinct Stable Focus Stable Focus
0.001 ≤δ1≤ 5 0.002–0.05 Limit Cycle Limit Cycle Stable Focus

0.07–0.35 Limit Cycle Limit Cycle Extinct
0.4 Limit Cycle Limit Cycle Stable Focus
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Parameter Varied Range in which
Parameter Dynamical Outcome
Varied x y1 y2

δ1 0.45–0.7 Stable Focus Stable Focus Stable Focus
0.001 ≤δ1≤ 5 0.75–2.65 Stable Focus Extinct Stable Focus

2.7–5 Stable Focus Stable Focus Extinct

α 0.001–5 Limit Cycle Limit Cycle Stable Focus
0.001 ≤ α≤ 5

λ1 0.001–0.55 Stable Focus Extinct Stable Focus
0.001 ≤λ1≤ 5 0.6–0.95 Stable Focus Stable Focus Stable Focus

1–1.15 Limit Cycle Limit Cycle Stable Focus
1.2–3.5 Limit Cycle Limit Cycle Extinct
3.55–4.05 Stable Focus Stable Focus Extinct
4.1–5 Stable Focus Stable Focus Stable Focus

δ2 0.01–1.65 Limit Cycle Limit Cycle Extinct
0.01 ≤δ2≤ 5 1.7–5 Limit Cycle Limit Cycle Stable Focus

β 0.01–0.55 Limit Cycle Limit Cycle Extinct
0.01 ≤ β ≤ 5 0.6–5 Limit Cycle Limit Cycle Stable Focus

λ2 0.001–5 Limit Cycle Limit Cycle Stable Focus
0.001 ≤λ2≤ 5

0

2

100t

x, y  y1 2

Fig. 1. This figure shows the solution of model system (2) whenr = 2, a1 = 4,
b1 = 5, a2 = 0.5, b2=4.05,δ1 = 0.5, α = 0.05, λ1 = 1.25, δ2 = 2, β = 1.5,
λ2 = 0.15, x(0) = 1, y1(0) = 0.2, y2(0) = 1.5. The solution tends to steady
state. The bottom curve near the time axis depicts the predator 2, the middle

curve depicts the prey species and the top curve depicts the predator 1.

322



Persistence and Extinction of One-Prey and Two-Predators System

0

300

2

400t

x, y1

Fig. 2. This figure shows thex, y1 components of a periodic orbit of system
(2). Here initial values arex(0) = 1, y1(0) = 0.1, y2(0) = 0.01 and model
parameters arer = 0.9, a1 = 4, b1 = 5, a2 = 0.5, b2 = 4, δ1 = 0.5, α = 0.25,
λ1 = 2.25, δ2 = 2, β = 1.5, λ2 = 0.15. The predatory2 becomes extinct at this
parameter space. The bottom curve depicts the prey species and the top curve

depicts the predator 1.

1.5

0

100 1000

x

t

Fig. 3. This figure shows the time series of the prey speciesx whenr = 0.75,
a1 = 4, b1 = 5, a2 = 0.5, b2 = 4.05, δ1 = 0.4, α = 0.05, λ1 = 1.05, δ2 = 2,

β = 1.5, λ2 = 0.15, x(0) = 1, y1(0) = 0.2, y2(0) = 1.5.

6 Conclusions

In this paper, a mathematical model of one prey-two predator system with ratio-

dependent predators growth rates has been proposed and analysed. Dynamical
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behavior of all feasible equilibria has been investigated. It has been shown that

the role of food conversion coefficients of predators in ratio-dependent models

are crucial in determining the stability behavior of planer equilibria. Sufficient

conditions for the system to be uniformly persistent have been derived. It has

been shown that if mortality rates of predators are less than a threshold value, then

the system is uniformly persistent. However, if the mortality rate coefficients of

predators increase beyond a threshold value (δi > λiai/bi), then both the predator

species will be extinct and the system will not be permanent.

It may be pointed out here that in Theorem 3.4 of Hsu [3] it has been shown

that the interior equilibrium of one prey-two predator system in prey-dependent

case is always unstable. In fact, it is an unstable saddle point with two dimensional

stable manifold through the interior equilibrium point. But in the case of ratio-

dependent growth rates, the dynamics of the interior equilibrium is changedand

we have found sufficient conditions under which all the three species coexist and

the positive equilibrium is globally asymptotically stable.

Our numerical computations show that the dynamical outcomes of the inter-

acting species in the ratio-dependent model are very sensitive to parameter values

and initial data. An important conclusion is that the predatory2 faces high risk

of extinction depending upon the complexity of the system. The prey species find

safe habitats in the complex ecosystem. Due to competitive exclusion outcome,

this model is never expected to generate chaotic solution.

Appendix A: Proof of Theorem 7

We first linearize system (2) using the following transformations:

x = x∗ +X, y1 = y∗1 + Y1, y2 = y∗2 + Y2, (A1)

whereX,Y1 andY2 are small perturbations aboutE∗. Then the linear form of

model (2) is given by

Ẋ = −H∗x∗X +

[
a2x

∗y∗2
B∗

2

−
a1x

∗(1 + b1x
∗ + y∗2)

B∗

1

]
Y1

+

[
a1x

∗y∗1
B∗

1

−
a2x

∗(1 + b2x
∗ + y∗1)

B∗

2

]
Y2,

(A2)
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Ẏ1 =
λ1a1y

∗

1(1+y∗1+y∗2)

B∗

1

X−
λ1a1x

∗y∗1
B∗

1

Y1−

[
αy∗1+

λ1a1x
∗y∗1

B∗

1

]
Y2,

Ẏ2 =
λ2a2y

∗

2(1+y∗1+y∗2)

B∗

2

X−

[
βy∗2 +

λ2a2x
∗y∗2

B∗

2

]
Y1−

λ2a2x
∗y∗2

B∗

2

Y2.

(A2)

We consider the following positive definite function,

U =
1

2x∗
X2 +

c1
2y∗

1

Y 2
1 +

c2
2y∗

2

Y 2
2 . (A3)

DifferentiatingU with respect to timet along the solutions of linear model (A2)

it can be seen thaṫU is negative definite under conditions (22a)–(22d) (detail

computations can be carried out similar to the proof of Theorem 8). Hence,

Theorem 7 follows from Liapunov-LaSalle’s invariance principle [26].

Appendix B: Proof of Lemma 1

From first equation of model (2) we have

dx

dt
≤ rx(1 − x),

and hencelim supt→∞
x(t) ≤ 1.

DefineW (t) = x(t) + y1(t)/λ1 + y2(t)λ2. Then we have

dW

dt
+ ηW = (r + η)x− (δ1 − η)

y1

λ1

− (δ2 − η)
y2

λ2

− rx2 −
αy1y2

λ1

−
βy1y2

λ2

≤ (r + η) − (δ1 − η)
y1

λ1

− (δ2 − η)
y2

λ2

≤ (r + η), since η ≤ min(δ1δ2).

By the theory of differential inequality [27], we have

0 ≤W (t) ≤
r + η

η
(1 − e−ηt) +W (0)e−ηt.

Whent→ ∞, we have0 ≤W (t) ≤ r+η
η

, proving the lemma.
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Appendix C: Proof of Theorem 8

Consider the following positive definite function aboutE∗

V =
(
x− x∗ − x∗ ln(x/x∗)

)
+ c1

(
y1 − y∗1 − y∗1 ln(y1/y

∗

1)
)

+ c2
(
y2 − y∗2 − y∗2 ln(y2/y

∗

2)
)
.

(C1)

DifferentiatingV with respect to timet along the solutions of model (2), we get

V̇ = (x− x∗)
ẋ

x
+ c1(y1 − y∗1)

ẏ1

y1

+ c2(y2 − y∗2)
ẏ2

y2

. (C2)

Using system of equations (2), we get after some algebraic manipulations as

V̇ = −

[
r −

a1b1y
∗

1

M1

−
a2b2y

∗

2

M2

]
(x− x∗)2

− (y1 − y∗1)
2

[
c1λ1a1x

∗

M1

]
− (y2 − y∗2)

2

[
c2λ2a2x

∗

M2

]

+ (x− x∗)(y1 − y∗1)

[
−
a1(1 + b1x

∗ + y∗2)

M1

+
c1λ1a1(1 + y∗1 + y∗2)

M1

+
a2y

∗

2

M2

]

+ (x− x∗)(y2 − y∗2)

[
−
a2(1 + b2x

∗ + y∗1)

M2

+
c2λ2a2(1 + y∗1 + y∗2)

M2

+
a1y

∗

1

M1

]

+ (y1 − y∗1)(y2 − y∗2)

[
− c1α− c2β −

c1λ1a1x
∗

M1

−
c2λ2a2x

∗

M2

]
,

(C3)

where

M1 = (1 + b1x+ y1 + y2)(1 + b1x
∗ + y∗1 + y∗2),

M2 = (1 + b2x+ y1 + y2)(1 + b2x
∗ + y∗1 + y∗2).

The above equation can further be written as sum of the quadratics

V̇ = −
1

2
a11(x− x∗)2 + a12(x− x∗)(y1 − y∗1) −

1

2
a22(y1 − y∗1)

2

−
1

2
a11(x− x∗)2 + a13(x− x∗)(y2 − y∗2) −

1

2
a33(y2 − y∗2)

2

−
1

2
a22(y1 − y∗1)

2 + a23(y1 − y∗1)(y2 − y∗2) −
1

2
a33(y2 − y∗2)

2,

(C4)
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where

a11 = r −
a1b1y

∗

1

M1

−
a2b2y

∗

2

M2

,

a22 =
c1λ1a1x

∗

M1

, a33 =
c2λ2a2x

∗

M2

,

a12 = −
a1(1 + b1x

∗ + y∗2)

M1

+
c1λ1a1(1 + y∗1 + y∗2)

M1

+
a2y

∗

2

M2

,

a13 = −
a2(1 + b2x

∗ + y∗1)

M2

+
c2λ2a2(1 + y∗1 + y∗2)

M2

+
a1y

∗

1

M1

,

a23 = −c1α− c2β −
c1λ1a1x

∗

M1

−
c2λ2a2x

∗

M2

.

Sufficient conditions forV̇ to be negative definite are that the following

inequalities hold:

a11 > 0, (C5)

a2
12 < a11a22, (C6)

a2
13 < a11a33, (C7)

a2
23 < a22a33. (C8)

We note that (23a)⇒ (C5), (23b)⇒ (C6), (23c)⇒ (C7) and (23d)⇒ (C8). Hence

V is a Liapunov function with respect toE∗, whose domain contains the region

of attractionΩ, proving the theorem.
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