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Abstract. This paper describes a Voronoi analysis method to analyze a soccer
game. It is important for us to know the quantitative assessment of contribution
done by a player or a team in the game as an individual or collective behavior.
The mean numbers of vertices are reported to be 5–6, which is alittle less
than those of a perfect random system. Voronoi polygons areas can be used in
evaluating the dominance of a team over the other. By introducing an excess
Voronoi area, we can draw some fruitful results to appraise aplayer or a team
rather quantitatively.
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1 Introduction

In 1908, Voronoi [1] found a way of partitioning all space amongst a collection of

points using specially constructed polygons. A Voronoi diagram is one ofthe most

important structures in computational geometry [2]. It has information aboutwhat

is close to what. More precisely, each point is surrounded by a unique limiting

convex polygon such that all points within a point’s polygon are closer to this

point than all the other points.

Voronoi analysis was widely used in characterizing a structure of the soft

condensed matter [3]. If Voronoi polygons are constructed around apoint, such as

in a crystal, all the area in the unit cell will be apportioned to the points.Voronoi

construction quantify a packing with Voronoi polygons.

In this paper, we will check whether this method is useful in analyzing a

computer soccer game or not. In fact we have already reported some interesting

results of a soccer game, in particular fractal behaviors of a ball [4].
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2 Voronoi cell analysis

Here we will consider the Voronoi analysis only in a 2-D system. The Voronoi

cell is defined as follows: Consider a set of coplanar pointsP . For each point−→xi

in the setP , we can draw a boundary enclosing all the intermediate points lying

closer to−→xi than to any other points in the setP . Such a boundary is called a

Voronoi polygon or Voronoi cell, and the set of all Voronoi polygonsfor a given

point setP is called a Voronoi diagram of the point setP .

A Voronoi polygon can be determined by the following procedures:

1. Draw lines to connect a given point to all nearby points.

2. At midpoints and normal to these lines, draw new lines.

3. The smallest area enclosed in this way is called a Voronoi polygon of a given

point.

The Voronoi cell associated with a single point is a constructed polygonal

area for which all the points contained within the area are nearest to the associated

point. The space is partitionized into a set of polygons with all points that are

closer to a particular point than to any others belonging to its polygon. Points can

be regarded as adjacent if their polygons share a common line, thus we define

the neighborhood of a point uniquely. Each point is surrounded by a single

convex polygon and allocated space within it. A large area implies a cavity. In

condensed matter physics, the polygons themselves are considerable interest since

the interactions between molecules can influence their geometrical propertiesin

the molecular system [3]. Note that the mean number of vertices for random

system is just 6 [5].

Given a set of coplanar pointsP , a Delaunay triangulation is a set of lines

connecting each point to its natural neighbors. In other words, it is a setof

triangles such that no points are contained in any triangle’s circumcircle. Thus

it is dual to the Voronoi diagram.

3 Results

As we pointed out in earlier paper [4], generally speaking, we actually have

enormous difficulties to get the coordinates of the moving players and a ball from
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a real-world game, so we must get around. If we play the electronic soccer game

in the computer, fortunately, we feel that it seems to be quite similar with a real-

world soccer game. The electronic soccer game which we adopted in our analysis

is FIFA Soccer 2003 by EA Sports. In this game, if we set the RADAR, we

have the small inset which shows the motions of all the players and the ball. We

captured these small insets to make them into a video file. We measured the

locations of all the players and the ball by using standard image/video processing

techniques [6]. The formation of starting positions is as follows: A team F has

a 4-4-2 formation, and the opponent team S has a 4-3-3 formation. The Voronoi

diagram for their starting formation is shown in Fig. 1. The numbers in the figure
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Fig. 1. The Voronoi diagram for starting formation. The numbers in the figure
represent the players. For example, 2 and 13 stand for a goalkeeper for each
team, respectively. Number 1, which corresponds to the ball, is deliberately

omitted here.

stand for players and a ball. For example, 2 and 13 represent a goalkeeper of each

team, respectively. Inner Voronoi polygons are determined by a standard method

[5]. Since the playing ground has an outer boundary, to construct outer Voronoi

polygons, however, we should take this fact into consideration. The boundary

point at the boundary of the rectangular soccer field is determined by drawing a

line starting from a vertex with equal distant from adjacent outer points to a point

with equal distant from the same adjacent outer points. Thus the outer Voronoi

polygons may have a somewhat different meaning from the ones with standard

Voronoi polygons. Notice a symmetry along the direction of the touch line since
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the formation itself has a symmetry in configuration.

Now we will describe the state of affairs. The discrete time is counted in the

unit of a frame. During the time interval from time stept = 1 to t = 325, team S

gets a goal. Att = 812, team F gets a goal. Att = 2358, team F gets a second

goal. At t = 3075, the first half is over. Att = 3698, team F gets a third goal. At

t = 4012, team F gets a fourth goal. Att = 5979, the game is over.

A typical Voronoi diagram in our soccer game is shown in Fig. 2. Notice

that the symmetry is broken in this situation. The calculated results for the 1st

half are summarized in Table 1. Object 1 corresponds to the ball. The ball has

mean vertices of5.23 and has its standard deviation of1.11. Also it has the

smallest Voronoi area of188.23. The relatively large standard deviation indicates

that the distribution of Voronoi areas are rather broad. As shown in Table 1, the

average number of vertices range within5–6. These values are comparable to

the value of 6 for a random point set. The area covered by a Voronoi cell can

be interpreted as the allotted responsible area of the numbered player or a control

area of corresponding player. In general, outer Voronoi polygonshave larger areas

than the inner Voronoi polygons and the ball has the smallest area. Also, of course,

goalkeepers have the largest area in their team, as expected.
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Fig. 2. A typical Voronoi diagram. The symbols are the same asin Fig. 1 except
that Number 1, which corresponds to the ball, is included.

Player 21 has the broadest distribution in Voronoi areas and player 7 the

narrowest. This can be explained as follows: Player 21 is involved in the vigorous
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activity and waiting for the ball since it is a foremost forwarder. Likewise,player

7 steadily involved in the game since it is a member of middle fielder. These facts

are reflected in the values.

Table 1. Calculated results of mean numbers of vertices and Voronoi polygon
areas in the 1st half of the game. Their standard deviations are also shown.

Areas are measured in a unit of pixels

Number of Number of
Object vertices Area Object vertices Area

1 5.23±1.11 188.23± 135.79 13 5.24±1.05 1254.10±830.58

2 6.08±0.97 1904.60±1020.50 14 5.85±1.22 721.45±451.93

3 5.57±0.99 983.95± 477.99 15 5.17±1.09 457.30±412.15

4 5.01±1.01 332.87± 206.01 16 5.52±1.30 562.07±469.45

5 5.20±1.07 469.86± 448.64 17 5.45±1.10 392.10±357.54

6 5.40±1.14 749.71± 502.87 18 5.47±1.29 272.72±197.15

7 5.47±0.98 636.92± 285.44 19 5.72±1.30 257.13±239.88

8 5.74±1.25 194.28± 113.06 20 5.45±1.18 283.21±208.17

9 5.77±1.28 200.82± 112.80 21 5.45±1.23 260.19±284.70

10 5.25±1.10 410.94± 314.15 22 5.64±1.38 272.61±203.39

11 5.43±1.14 246.30± 186.71 23 5.29±1.17 179.76±133.26

12 5.53±1.22 368.89± 324.78

If we compare total Voronoi areas of the two teams concerned in a game,

we can determine a “dominant ratio” of a team over the other team. If a team

dominate the other team in a given period, then the team’s Voronoi area is larger

than that of the other team. This fact is confirmed, as shown in Table 2. In this

meaning, we can say that team S dominate team F, for example, in the period of

frames 1–1581 with a ratio of areas, i.e.6126.9/5285.7 = 1.16. In the 1st half,

we have a ratio of 1.39. In the 2nd half, on the other, we have a ratio of 0.95. Thus

we can say that team S dominate in the 1st half and team F, on the other hand,

dominate in the 2nd half. If we divide the 1st half into several smaller periods,

we can see the effect more in detail. This is also appended to the lower part of

Table 2. During the time period from 1 to 325, team S dominate team F with a

ratio of areas of2.5. In fact, team S scores a goal during this period. Furthermore,

in a smaller period than this period, i.e. during the time period fromt = 233

to t = 325 (team S scores a goal during this period), team S dominate team F

with a further higher ratio of4.3. On the other hand, during the time period from
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t = 326 to t = 517, team F dominate team S with a ratio of1.3. This is related

with the fact that team F made a counterattack. So the team’s Voronoi areas were

smoothed out in this time period. Since they did not score a goal during the time

period fromt = 518 to t = 2358, the ratio becomes closer to the value of 1. This

period is a state of lull and they made a tedious offensive and defensive battle.

Table 2. Shows the total Voronoi areas of each team. First column denotes
number of frame from start to end. Second column is the total Voronoi area

for team S and third column for team F

Frames Team S Team F
1–1581 6126.9 5285.7

1582–2358 7366.8 4035.1
2359–3074 6393.0 5032.3
3075–4730 5439.7 6028.0
4731–5979 5919.8 5915.9

1–233 8127.9 3194.0
233–325 9332.0 2192.3
326–517 4891.9 6549.3
518–2358 6423.5 4985.3

To see more specific contribution of each player, we calculated the Voronoi

areas for their starting formation, the Voronoi diagram of which is alreadyshown

in Fig. 1. These areas will be used for reference. Now we subtracted the area of

the starting formation from the value of average area of the corresponding player.

This subtracted area is defined as an excess Voronoi area. The calculated results

are summarized in Table 3.

From Table 3, we can draw the following conclusions.

1. The goalkeeper’s excess area of team S is significantly greater than that of

team F. Thus we can deduce that team S is dominant in the game with a ratio

of 5.3.

2. From the fact that left members of team S have positive excess areas and right

members of team S, on the other hand, have negative excess areas, we can get

the fact that team F mostly takes a left attack route.

3. Again from the fact that left members of team F have negative excess areas
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and center members of team F have positive excess areas, we can get thefact

that team S takes a side attack route.

4. Since the excess area of attack members of team S is larger than that of

team F, team S dominate the attack in the period. In other words, the attack

members of team S have more chances of engagement in the game.

Table 3. Calculated excess areas in the period fromt = 1 to t = 1592, which
is shown in 4th column. Averaged Voronoi areas are in 2nd column. Reference

Voronoi areas for starting formation are in 3rd column

Averaged Reference Excess Averaged Reference Excess
Object area area area Object area area area

2 1642.6 569.3 1073.3 13 1448.4 1245.6 202.8
3 1006.7 881.4 125.4 14 881.5 932.3 −50.7
4 341.7 337.4 4.3 15 543.1 393.0 150.0
5 332.2 323.5 8.7 16 554.8 1291.9 −737.1
6 773.3 929.6 −156.3 17 349.6 233.6 116.0
7 748.5 637.3 111.2 18 226.7 604.5 −377.9
8 235.3 404.2 −168.9 19 282.3 163.0 119.4
9 232.4 378.3 −145.8 20 269.5 729.8 −460.3

10 421.1 750.2 −329.1 21 325.4 167.9 157.5
11 238.8 152.5 86.3 22 331.0 161.2 169.8
12 234.9 177.4 57.6 23 180.3 136.4 43.9

4 Discussions and conclusions

We presented here a method of Voronoi analysis in analyzing a soccer game. Even

if a team dominate the opponent team in the Voronoi analysis, as a matter of fact,

the team may not win the game. This fact is usually experienced in the game. But,

in most cases, to score a goal, the team should have a larger area ratio.

This analysis method can be used in accessing a player or a team in an

individual or collective level. If a player or a team has a stronger poweror

potential, it may have a larger Voronoi area than its average value.

If a team has a stronger teamwork than the opponent team, it has a stronger

ability for a group of players to work together.
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As a defence strategy, one usually takes two choices: One is zone defence and

the other is man-to-man defence. The former will have smaller excess Voronoi

areas and the latter will have more fluctuating excess Voronoi areas.

Furthermore, if we collect the cases of scoring a goal, we will classify the

characteristics of the scoring positions. By doing so, we can increase thechance

of winning.

We can also use these results to improve teamwork or team’s organizing

ability.
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