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Abstract. A new information transmission concept based model of excitable
media with continuous outputs of the model’s cells and variable excitation
time is proposed. Continuous character of the outputs instigates infinitesimal
inaccuracies in calculations. It generates countless number of the cells’ ex-
citation variants that occur in front of the wave even in the homogenous and
isotropic grid. New approach allows obtain many wave propagation patterns
observed in real world experiments and known simulation studies. The model
suggests a new spiral breakup mechanism based on tensions and gradually
deepening clefts that appear in front of the wave caused by uneven propagation
speed of curved and planar segments of the wave. The analysishints that the
wave breakdown and daughter wavelet bursting behavior possibly is inherent
peculiarity of excitable media with weak ties between the cells, short refractory
period and granular structure. The model suggested is located between cellular
automaton with discrete outputs and differential equationbased models and
gives a new tool to simulate wave propagation patterns in applied disciplines. It
is also a new line of attack aimed to understand wave bursting, propagation and
annihilation processes in isotropic homogenous media.

Keywords: arrhythmia, bursting, cellular automatons, chaos, daughter wavelets,
spirals, wave breakdown.

1 Introduction

Excitable media are spatially distributed systems which have the ability to pro-

pagate signals without damping. Such system can be considered as a group of
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individual elements tied to each other. Each element can transfer the information

to its neighbors. A signal over a certain threshold initiates a wave of activity

moving across the excitable media [1, 2]. Traveling waves have been observed

in autocatalytic chemical reactions, biological cells and tissues, ecology, meteo-

rology, cosmology and seismology [2]–[8]. In real world applications, computer

simulations and experiments performedin numerocan yield information that can-

not be obtained in any other way [9].

Despite the obvious differences, signal propagation in all excitable media

share many characteristics. Underlying mathematical modes to analyze excitable

media in chemistry and biological tissues are systems of differential equations

and cellular automata (CA) [1, 3, 5, 9, 10]. Helpful systematization of physical

phenomena as well as computerized numerical models of the wave propagation,

uniform and turbulent wave processes in excitable media have been presented in

monograph [3] and especially in Chapter 12 written by Winfree. Good review of

modern cellular automaton based models is presented in Gil Bub thesis [2].

Mathematical models of excitable media can be formulated as systems of

differential equations or finite difference equations which characterizethe rate

of change of certain variables over the time. Differential equations are valid in

absolutely homogeneous media. Very popular are Fitzhugh-Nagumo dynamics

and Hodgkin-Huxley [9, 10] systems of differential equations originally suggested

to analyze a quantitative description of the membrane current in nerve.

Accurate simulation of traveling waves becomes computationally expensive

as complexity of the underlying models increases. If a large number of spatially

discrete points are required, simulations may require a prohibitive amount ofcom-

puter time [9, 11]. In addition, the variables of the model are mutually dependent.

Changing one variable can change more than one characteristic of the model.

Therefore, complex models are not appropriate for generating all-purpose results

applicable to all excitable media. Moreover, real media is not homogeneous.

Therefore, often excitable media is simulated using discrete time models, called

cellular automatons [1, 11]. These models consist of a grid of nodes. In first

models, each element in the node (cell) could exist in one of three states: resting,

excited or refractory. There is a set of rules that determine future statesof the

cells in the grid based on the present state of the grid. A resting cell updates
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its state in reliance on the activity of its neighbors. The excited and refractory

cells renew their state based on the element’s history. A resting cell remains at

rest until a certain number of neighboring cells become excited. In such case,

the cell becomes excited in the next time moment. The excited cells become

refractory and the refractory cells return to rest. Thus, cellular automaton models

simplify the dynamic description of a system by mapping the systems behavior

onto a few discrete states. It is a level of abstraction over differential equations

as a number of underlying variables are encompassed into a single state. They

are more intuitively transparent and computer simulations run far faster. The

simplicity of cellular automata makes them popular as models for physical and

biological systems [1, 2].

Cellular automatons research in excitable media was first investigated in a

biological context by Wiener and Rosenblueth [6], who modeled waves rotating

around the obstacles in models of excitable cardiac muscle. The first computer

simulations were performed by Farley [12], who laid out virtual neural network

(NN) on the rectangular grid, utilized 0 or 1 outputs of each cell and measured a

time in periodic time moments. Moe, Rheinbolt and Abildskov [13], Balakhovskij

[14], Krinsky [15], Greenberg and Hastings [16] developed the CA approach

further. In later research, models where a number of excited states are greater

than one and more than one neighbor must be active in order to induce a resting

cell to the excited state were developed. A weighing function where cell’s relative

contribution to excitability decreases as a function of distance from the wave

front and the relative refractory period (where cells have a higher threshold than

resting cells but can still be excited) were introduced. Gerhardt and colleagues

[11, 17] make an excitation threshold a decreasing function of time. Marcusand

Hess [18] and Kurrer and Schulten [19] randomize the grid in circular orsquare

neighborhoods. To diminish difference between the differential equations and

cellular automata approaches continuous differential equation models begun to be

used in each element of the CA grid [2, 20, 21].

Differential equations and cellular automata methodologies allow to model

a number of signal propagation patterns observed experimentally in various real

excitable media: regular uniform of wave propagation outwards from a center

of starting excitation, spiral waves (rotors) generation after their initiation,or
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hitting the wave a non-conductive obstacle, disorganized activity, broken waves

propagation in one or several directions, annihilations of two colliding waves and

their breakdown as they reach border of excitable media or near a tip of the

spiral. It was found that wave propagation speed depends on recovery time of

the medium. The speed near the spiral tip is influenced by a shape of the tip

and excitability of the media. The wave speed depends on a curvature of thewave

front. Relationships between spiral core size and period for stationary spirals were

established analytically [22]. A number of realistic 2D and 3D models that explain

regular and chaotic phenomena in chemical reactions and mammalian heart were

developed [8].

Nevertheless, in spite of great number of CA and differential equation based

models a number of important questions remain to be unsolved. Practical appli-

cations of wave research have had little therapeutic impact to date in the arrhyth-

mia problems [23]. Most of the spiral solutions assume that excitation occurs

much faster than recovery, which is not valid in real systems [11]. In synthetic

models, the spiral birth are caused only by specially planned artificial excitations

[24]–[26], assigning a random probability for non refractory grid points to fire

output signal [1, 2], a presence of non-conductive obstacles, non-homogeneities

in refractory period, the excitation threshold or conductance of excitablemedia

[6, 7, 27]. In practice, however, spontaneous birth and termination of spiral waves

was observed. Mechanisms of wave bursting and break up, however,is not well

understood [23, 28, 29].

One of possible ways to increase explanation of numerous experimental ob-

servations of the wave propagation patterns is utilization of different modeltypes

to simulate the same behavior of the wave initiation, propagation and breakdown.

Possibly, a large number of models could suggest diverse mechanisms of these

phenomena. Another way is to develop models that are intermediate between CA

and differential equation based models.

Characteristic peculiarity of excitable media is that, not the physical signal,

however, the information transmitted from one media element to other ones is

very important.An objective of present paperis to consider the wave initiation,

propagation and breakdown from a point of view of information transmission.

Granular artificial neural network [30] based models will be considered. Contrary
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to standard CA approach with discrete outputs of the automaton, we utilize sin-

gle layer perceptron (SLP) with smooth sigmoid function that gives continuous

outputs.

The SLP is the nature inspired model of information processing and trans-

mission.Continuous cells’ outputs, varying magnitudes of the weights (connec-

tion strengths between the neurons) used to calculate weighted sums of several

adjacent cells, the smooth activation function award the SLP certain universality

properties [31]. Only in a limit where the weights are large, the activation function

saturates and begins to behave like a discrete threshold function with outputs0

and 1. Theory shows that magnitudes of the weighs are very important in defining

properties of classification and prediction rules obtained while training the SLP

[32]–[34]. An increase in perceptron weights also affects the networks ability to

learn new information [35]. Encouraged by these findings I tried not to move

away too far from basic neuron model in constructing cellular models of excitable

media. One of important particularities of present analysis is utilization of very

simple idealized 2D models that assumea homogeneous and isotropic medium.

The paper is organized as follows. In the second section 2D cellular media

model is introduced and used to analyze stimulus propagation. In third sectionI

analyze an influence of the magnitude of the weights, refractory period and other

media’s parameters. New explanation of the curvature effect, spontaneous wave

birth, development of the wave fronts and breakdown in isotropic homogenous

grid is suggested. The fourth section summarizes the model and its features.

2 Two dimensional excitable media model

Basic model of CA consist of a grid of nodes spaced on a regular grid. In

new model, each element (cell) in the node is represented by the SLP. Cell-cell

interaction is limited to adjacent neighbors. The SLP has a number (sayp) of

inputsx1, x2, . . . , xp, one outputo and performs operationo = f(arg), where

arg =
p
∑

i=1

wixi is a weighted sum of inputs, andw1, w2, . . . , wp are the weights

(connection strengths between the cells).

In isotropic excitable media model, the weights are equal among themselves,

i.e. w1 = w2 = . . . = wp = w. In anisotropic model some of the weights can
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differ. Here coefficient (weights)wj determines the connection strength between

s-th node and its neighbor inj-th direction. It is assumed that bilateral connection

strengths are equal. In the hexagonal model,p = 6. It means that each cell transfer

their output signals to six neighboring ones. Exceptions are cells on a boundary

of the grid. Activation (transfer) function,f(arg), is a non-linear soft-limiting

transfer function which saturates at its both ends. We will make use of sigmoid

function f(arg) = 1/
(

1 + exp(−arg)
)

habitually utilized in artificial neural

network studies. This function is bounded from underneath and on topside: it is

equal or close to zero if the weighted sum,arg, is strongly negative, and is close

to 1 if this sum is large positive.

The non-linear character and saturation of activation function are very

important elements of the mathematical model. To make use of this model to

simulate and analyze signal propagation in excitable media, we assume thatarg

can take onlypositive values. For this purpose a number of alternatives of the

function were considered. In this paper we report results obtained with utilization

of following function:

f(arg) =

{

α/
(

1 + exp(−β × arg − γ)
)

− η if arg ≥ ∆∗,

0 otherwise
(1)

where∆∗ ≥ 0 is asensitivity threshold.

Constantsα = 1.333, β = 5, γ = 0.4 andη = −1.333 were selected

specially to have the weightsw varying between0 and1. Then, we have simple

interpretation of the transfer strength,w. This function gives the output signal

almost zero if argument,arg, is small and∆∗ = 0. We have the output signal

close to1, if the weighted sumarg is large (Fig. 1). Following observations from

physics and biology a sensitivity threshold∆∗ is introduced which gives an addi-

tional handle that can help to control the wave propagation process. In excitable

media model, output signal from thes-th element,os = f(args), is multiplied

by weightws and after time moment,ttransf , productsos × ws (s = 1, . . . , p) are

transmitted top neighbors. In new model the signal transmission time depends on

strength of output signal,o. To definettransf , we followed observations of Spach

[36, 37]: “the longer is delay in transfer of the depolarization phase of the action

potential across the gap junction, the greater the cell-to-cell charge transferred

via the gap junction”. Similar observations can be found in chemistry (see e.g.
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Fig. 1. Dependence of output and delay in firing output signalon input, weighted
sumarg.

Chapter 13 written by Bowers and Noyes in [3]). Therefore, in new mediamodel,

we assume that the cell discharges its output signal after certain time period that is

proportional to output signal,f(arg). This particularity indicates that we have a

“negative feed-back”:the larger is excitation signal,arg, the later the cell will fire

out its output signal,o. In cellular automata models, signal transfer time,ttransf ,

is discrete. Therefore, the cell’s output signalo = 1 corresponds to maximal delay

in effective transmission time,m. The output’s signal interval(0, 1) is split intom

equal intervals, corresponding to time moments0, 1, 2, . . . , m−1. Minimal trans-

mission time is equal to1, i.e. the cell does not transmit signal iff(arg) < 1/m.

Minimal transmission time may affected also by∆∗. Discrete time measured

in signal propagation steps andproportionality of the time delay to the strength

of the signalare important elements of the model. The experiments showed

that utilization of other schema (fixed or negative) of the time delay,ttransf , on

output,o, changes the characteristics of the model essentially. Direct dependence,

however, allows obtain many of the wave propagation patterns described inthe

literature. To speed up the calculations maximal interval of variations of cell

inputs (0, p) was split into1000 × p values and a look-up table was used to

find o = f(arg). The look-up table produces one more additional stochastic

component.
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An important parameter traditionally used in all cellular excitable media mo-

dels is the refractory period,trefr, a time when after excitation, the cell in the

node cannot be excited. After the refractory period ends, the node can be excited

again. In order expose all features of the media model with continuous outputs and

varying signal transmission time, we considereda priori fixed absolute refractory

period,trefr, purposefully. In this paper we did not consider presence of relative

refractory period.

Below we enumerate parameters used to determine the model:

• px andpy, dimensions of 2D model,

• p, a number of neighbors, and the grid’s shape,

• w1, w2, . . . , wp, the connection weights,

• concrete parameters of transfer functiono = f(arg),

• ∆∗, sensitivity threshold,

• argstart, starting excitation, and position of starting cell (or cells) in the grid,

• m, maximal delay in effective signal transmission time,

• trefr, refractory period,

• a rule used to determine excitation time,ttransf .

Contrary to a large number of ionic currents, typically utilized in differential

equations based models of biologic tissues, the parameters enumerated above have

clearer interpretation for a layman.

Illustration. In Fig. 2 we depicted first14 steps of wave propagation in a

hexagonal homogeneous media model composed of11 × 7 elements withw =

0.72. A central node,S, on bottom border (marked by “star”) is excited. In this

and other experiments reported in this paper,argstart = 0.744 and excitation

of the starting cell (or cells) is performed only once. After four time moments

(ttransf = 4) the starting cell,S, fires its output signalo = f(0.744) = 0.8279.

This signal is transmitted to four neighbor cells,α, β, γ, η, marked by “points”.

All four cells are exited at the same time moment by signals of the same strength,

o × w = 0.8279 × 0.72 = 0.5961. After next four time steps, cellsα, β, γ, η

fire out their output signalso = f(0.596) = 0.6909. These signals excite

simultaneously seven neighboring nodes marked by “pluses”. Four nodes out

of seven new ones are excited by single neighboring cells. Three cells,A, B and

C, however, are excited by outputs of two adjacent cells (excitation is markedby
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Fig. 2. First14 time steps of signal transmission in hexagonal grid composed of
11 × 7 nodes.

arrows in Fig. 2) and accumulate double starting excitation,arg = 2 × 0.6909 ×

0.72 = 0.9949. Each of remaining four cells are excited by one single cell,

arg = 0.6909 × 0.72 = 0.4974. It means that the three cells (A, B and C)

fire out their excitation after five time moments (ttransf = 5), and remaining four

ones (A,B,C,D) – earlier, after three time moments(ttransf = 3). Thus, the four

nodes mentioned excite ten neighboring cells marked by “circle” simultaneously.

These ten cells fire their outputs simultaneously after next two time moments

and become refractory. Thus, outputs of cellsA, B and C were outflown by

neighboring ones. This time, the outputs of cellsA, B and C did not affect

neighboring cells. The ten next cells (marked by circles) excite 13 following

cells (a, b, . . . , l, p) after two time moments. Four cells,a, e, i andp, are excited

by outputs of the single cells and fire their outputs just after one time moment

(ttransf = 1). Each of remaining nine cells,b, c, d, f, g, h, j, k, and l (marked

by “pluses” and “squares”) get their excitation from two neighboring cells and

produce their outputs later, after four time moments.

This example illustrates that in the simplest hexagonal homogeneous media

model, just at the very start we already can havea vast variety of variantsof the

nodes’ excitation times and the signal strengths. With an increase in radius ofthe

wave, a number of the variants are increasing. Additional stochastic components

are introduced by the inaccuracies caused by the calculations, organizing the
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cycles in computer calculations, utilization of the look-up tables to determine

outputs,o = f(arg), and the cells’ firing out time moments.

3 Signal propagation in homogeneous 2D media

3.1 Irregular propagation speed and the curvature effect

Summation of continuous cells’ outputs, nonlinearity of the transfer function,

o = f(arg), and dependence of firing out time on the cell’s excitation strength

are very important differences of new cellular excitable media model in compari-

son with known ones. Information transmission principle based approach allows

obtain many wave propagation patterns observed in real world experimentsand

simulation studies: single, letter “ω” shaped and multi-armed spirals initiated

by temporary obstacles, non-homogeneities in conduction strengths, refractory

period, wave breakup, e.t.c. Our main concern is elucidation of wave propaga-

tion mechanisms that cause spontaneous birth, development and breakdown of

traveling waves.

The illustration in Fig. 2 shows that in direction of the angles of the hexagonal

fragment of the grid, onlyone celltransmits its excitation further. On a straight

line between the angles of hexagonal figure,two cellsaffect an unexcited cell

ahead of the wave front. Dependence of the excitation time on the strength

of output signal (Fig. 1) causes that signal propagation time along the angle of

hexagonal figure should be higher as on the line connecting two angles. Consider

the model withw = 0.95 andm = 6. Let the cells’ output beo = 0.9. Since

m = 6, it fires its output signal afterttransf = 5 time moments irrespective was

this cell excited by one or by the two cells. Ifw = 0.72, the cell fires its output

after ttransf = 3 time moments if it was excited by one cell. If this cell was

excited by two neighboring cells, then the signal transmission timettransf = 4. In

this way, the differences in the wave propagation speed along diverse directions

cause a curvature effect.

Fig. 3ab demonstratesthe curvature effectin isotropic hexagonal model. Here

a number of cells,S, situated on a straight line, was excited at the start. We see the

wave fronts (just excited cells are marked by bold points) and the tails composed

of refractory cells (marked by small points) after 99 time steps. If connection ties

280



Information Transmission Concept Based Model of Wave Propagation

(the weights) between the cells in the grid are strong (w = 0.95, ∆∗ = 0.6),

excitation propagates uniformly outwards along four directions determined by

geometry of the grid and the excitation lineS (Fig. 3a). Wave propagation speed

in all direction is the same. Strict geometry of the wave is being kept. No curvature

effect is observed. In a mid of the excitation line, we have two planar wavesthat

propagate upwards and downwards. If the connection ties between the cells in
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Fig. 3. Demonstration of curvature effect in isotropic hexagonal grid when a line
of cells (S) was excited: a)w = 0.95, trefr = 54, ∆∗ = 0.6; b) w = 0.72,

trefr = 54, ∆∗ = 0.3 (m = 6).

the grid are weaker (w = 0.72, ∆∗ = 0.3), the differences in excitation time

of the cells appear. Differences in the excitation time shatter strict geometry

of the wave (Fig. 3b). In such circumstances, weak ties between the cells are

“broken”. Variations of wave propagation speed cause small clefts in thewave’s

front. Even in homogeneous and isotropic grid we obtain speedy almostradial

wave propagation. Two planar waves propagate upwards and downwards from
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the mid of the excitation line approximately1.5 times slower and have the same

velocity as in the example 3a withw = 0.95.

3.2 Angular spread of the excitation

More details of radial wave propagation are explained in Fig. 4. In Fig. 4 we see

20 40 60 80 100 120 140
0

20

40

60

80

100

120

S

fast

very slow

slow speed

Fig. 4. Wave aftert = 208 time moments in isotropic hexagonal grid when
central cell (S) was excited (w = 0.9, ∆∗ = 0.6, trefr = 24, m = 6). Wave

propagation speed depends on local configuration of the wave.

a wave aftert = 208 propagation steps in isotropic hexagonal grid with rather

strong weights (connection strengths between the grid’s elements) when central

cell, S, was excited (w = 0.9, ∆∗ = 0.6). Large weights,w, resist the “tension

due differences in wave propagation speed” and are trying to maintain the strict

geometry of the wave. In six angles of the wave caused by hexagonal structure of

the grid, the wave has a tendency to move outwards quicker as in the middle be-

tween two adjacent corners. In an example of Fig. 3a, a little bit stronger weights

(w = 0.95) succeeded to keep the geometry strict. In present example, however,

the weaker weights (w = 0.9) cannot resist the tensions due to the differences in

the wave propagation speed. Continuous character of the cells’ outputs generates

numerous cell excitation patterns that occur in front of the wave. The variations

in cells’ excitation strengths cause different wave propagation speed. The wave

front is breaking from time to time. In Fig. 4 we see multiple breaks. If refractory
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period is small, the break of the front can cause gradually deepening cleft in the

wave. The cleft helps the wave excitation to penetrate backwards, behindthe wave

and trigger daughter wavelets. In such situations, instead of “broken ring-fence of

a castle” shaped wave we obtain beautiful “snowflakes”, “gearwheels”, etc.

3.3 Two mechanisms of “omega” wavelets

In case of small and moderate weights, we have multiple clefts. Therefore, we

obtain almost radial wave propagation outwards of the starting cell. If refractory

period is sufficiently short, we have gradually deepening cleft. Excitation pene-

trates backwards and triggers spontaneous burst of a secondary wave.

Fig. 5abc illustrates three early moments of this phenomenon. ArrowA in

Fig. 5a points to small cleft in the wave’s front. ArrowB points to a single

excited cell inside of the refractory cells behind the front of the wave. Arrow in
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Fig. 5. The wave breakup and daughter wave initiation in isotropic hexagonal
grid with weak connection weights between the cells (w = 0.729, ∆∗ = 0.3,
trefr = 54, m = 6): a) the wave aftert = 312 time steps, b)t = 316; c) t = 343.

Fig. 5b indicates two excited cells that peer behind the refractory cells. Excitation

spreads forwards and to both sides of the excitation stem. New wavelet (Fig. 5c)

is composed of a pair of mirror-image spiral waves and reminds letter “ω” or a

“mushroom of the smoke” one observes after an explosion of a powerful bombe.

Therefore, we will call it“an omega wavelet”. Fig. 5c shows that in the daughter

wave, the cells’ excitations propagate backwards up and down. In one of the

simulation studies, we considered the models where signals of the cells excitation

signals during two time moments were accumulated. In such models, we observed
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more smooth symmetric patterns of the omega wavelets.

In further wave development, both spiral of the letter “ω” shaped wavelet

contact, annihilate each other and instigates another cleft. The new cleft triggers

one more omega wavelt, e.t.c. Simulations show that irrespective to the lengths of

refractory period, this part of excitable media becomes a pacemaker. Thewavelet

generation period mainly is determined by refractory period of the media.

3.4 The wave’s breakup

The information transmission model suggests two cleft birth mechanisms that

cause wave breakup. First of them is based on gradually deepening clefts in

the wave caused by uneven propagation speed of curved and planar segments

of the wave and short refractory period. The second one is based onthe shape

of the omega wavelet composed of two spirals. In both cases, the clefts facilitate

the excitation signal penetrate through layer of refractory cells and initiate the

daughter wavelets.

At boundaries of the grid, the cells are connected to smaller number of adja-

cent ones. Therefore, after colliding with the boundaries the waves vanish. If the

omega wavelet emerges close to the boundary of the grid, the boundary can put

out one part of the spiral. In such case, we obtain one armed spiral. In Fig. 6a we

have spiral wave started by the cleft in original wave in a vicinity of the left bottom

edge of the grid. In figure we see: original wave,O, triggered by excitation of a

single cell close to left bottom corner of the grid, two loops of secondary spiral

wave,A, instigated by the cleft in wave’sO front near the bottom edge of the grid.

In Fig. 6a we see also the third spiral (waveB, three loops in left bottom corner

of the grid). This wave was initiated by the cleft in front of the second loop of

waveA. At the very edge of the left border, we observe a birth of fourth spiral,

C. Later the fronts of the wavelets’ are breaking further producing fragmentation

and complicating the activation pattern. The region of chaotic behavior gradually

extends to the whole medium, leading to complex patterns composed of many

wavelets of various sizes (Fig. 6b). The analysis hints that the wave breakdown

and the daughter wavelet bursting behavior possibly is inherent peculiarity of

excitable media with weak ties between the cells, direct dependence of the signal

transmission time on the cell’s output, the short refractory period and granular
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Fig. 6. a) – a wave aftert = 312 time steps initiated by initial wave breaks close
to the edges of isotropic hexagonal grid; weak connection ties between the cells
(w = 0.6, ∆∗ = 0.1, trefr = 28, m = 6): O – original wave initiated by
excitation of single cell close to left bottom corner of the grid, A – two waves
of secondary spiral that initiated third spiral waveB (three loops in left bottom
corner of the grid);C – birth of fourth spiral on edge of left border of the grid;
b) – development of Fig. 6a – the wave aftert = 3380 time steps: spontaneous
wave initiations at borders and inside the grid, their meandering and break-down.

structure.

4 Discussion

New cellular model of excitable media with continuous outputs and varying cells’

excitation time was proposed. The model suggested gives insights concerning

the spiral wave formation in isotropic homogeneous excitable media. In analysis

of the wave birth, propagation and destruction, we think basically in terms of

information. It is the information that is important, regardless of the manner

in which it is acquired. Therefore, the single layer perceptrons were utilized

to simulate information transmission from of one element of the grid to other

ones. Contrary to known cellular automaton models of excitable media with

discrete outputs of the cells, in the new model we have continuous outputs. This

factor produces countless number of local excitation patterns in front ofthe wave.

Infinitesimal calculation inaccuracies initiate minute differences and can trigger
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spiral waves and produce chaotic wave propagation in the media. Our research

allows guess that bursting behavior caused by minuscule inaccuracies and local

differences in wave propagation speed is inherent peculiarity of excitable media

with weak ties between the cells, short refractory period and cellular structure.

In our research we performed hundreds of wave propagation studieswith 1D,

2D and 3D hexagonal or rectangular grids, randomized them by adding random

shifts, size of the grid, considered various shapes of obstacles, constant and vari-

able refractory periods, different characters of activation function, f(arg), sets

of parametersw1, w2, . . . , wp, ∆
∗, m, p, argstart, e.t.c. We found that larger size

of the grid creates more variants and higher probability that occasional clefts in

the wave front will permit the excitation signal to penetrate behind the refractory

cells.

Whenw is large andm is small, our model degenerates to simple CA model

with discrete valued outputs where only one cell is sufficient to excite another

neighboring cell. We see that like in artificial neural network analysis of pat-

tern recognition and prediction algorithms, investigation of aging phenomena in

chaotically changing environments [31]–[35], in the excitable media research, the

magnitudes of the weights are of primary importance.Strong ties between the

elements of the grid make the waves propagation patterns as a subtle crystal.

Possibly, new model could be useful in crystallography. Diminution of weights

causes occasional clefts if front of the wave and makes the wave patternradial.

If refractory period is small, spontaneous wave birth can be observed.Such

situations are more characteristic to plasma physics, biology, meteorology, etc.

Usually an increase in connection weights,w, requires simultaneous increase in

∆∗. Particular character of the waves is determined by combination of parameters

w1, w2, . . . , wp, ∆
∗, m, trefr, p, argstart. Above arguments advocate thatcontinu-

ous outputs of the cells in the model and varying cells’ excitation time introduce

a new quality.

The contribution of the new information transmission concept based model is

two-fold. First, it gives a new tool to model excitable media behavior in applied

disciplines such as physics, biology and social sciences. Second, it is anew line of

attack aimed to understand wave bursting, propagation and annihilation processes.

Together with differential equations based and CA approaches it can reveal new,
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so far unidentified peculiarities of the excitable media.

The new model is located between cellular automaton with discrete outputs

and differential equation based models. The differential equation basedmodels

possibly are too “precise” and do not reflect cellular structure of the abundance

of real excitable medias. The CA based models work in discrete cells’ outputs

space and also do not point to birth of the clefts in front of the propagatingwave

[2, 37]. The model with continuous outputs succeeds to come across the clefts

problem and explain radial character of the wave propagation in strictly hexagonal

grid, spontaneous birth of daughter wavelets, e.t.c. From the point of viewof

calculation speed, the new model stands between cellular automaton based onthe

set of rules that determine future states of the cells in the grid and the CA models

based on coupled differential or difference equations used to simulate thebehavior

of the single cell.
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