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Abstract. The article investigates the eigenvalue problem for ordinary one-
dimensional differential operator with nonlocal integralcondition. Such
a problem is met in the literature quite rarely and is considerably less in-
vestigated. Also the conditions for existence of non-positive eigenvalue or
multiple eigenvalues are obtained.
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1 Introduction

During many years, and especially in the last two decades a lot of attention

has been paid to problems of ordinary differential equations with different

types of boundary conditions ([1]–[3], see also bibliography quoted inthese

articles). However the eigenvalue problems for one-dimensional differential

operator with nonlocal condition are met quite rare and is considerably less

investigated. There are only a few articles [4]–[6] devoted to this problem.

This paper is dealing with the eigenvalue problem for one-dimensional ope-

rator with nonlocal integral condition. It is worth-while to note, the solution

technique for eigenvalue problems with nonlocal condition is closely related
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to the methods of solution of non-local boundary value problems (see e.g., [5],

[7]).

The authors of papers [4], [6] investigated the eigenvalue problem with the

nonlocal condition relating to endpoints of the interval. In article [5] the similar

problems are investigated for differential operators with respect to nonlocal

condition of the type of Bitsadze-Samarski.

This paper while dealing with the eigenvalue problem subject to nonlocal

integral condition considers both cases of simple and multiple eigenvalues.

2 The main statement

First of all, we consider the eigenvalue problem for one-dimensional differen-

tial operator with given integral condition

u′′ + λu = 0, (1)

u(0) = 0, (2)

u(1) = a

1
∫

0

u(x)dx. (3)

We find the values ofλ such, that the problem has the solutionu(x) identically

not equal to zero. Therefore we formulate three different cases.

Case 1.λ = 0. In this case, the equation (1) and the boundary condition

(2) impliesu(x) = cx. Putting it into (3), we get

c
(

1 − a

2

)

= 0.

Now we conclude the following. Ifa 6= 2, then forλ = 0 there exists only a

trivial solutionu(x) ≡ 0 of the problem. Ifa = 2 thenλ = 0 is the eigenvalue

of the problem (1)–(3), along with the corresponding eigenfunctionu = cx,

wherec is any number.

Case 2.λ < 0. By equation (1) and condition (2), it follows that

u(x) = c sinhαx; (4)
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whereα =
√
−λ > 0. Putting (4) into condition (3), after simple rearrange-

ment, we obtain

c
(

cosh
α

2
− a

α
sinh

α

2

)

= 0.

Hence, forλ < 0, solution (4) of the problem (1)–(3) exists for the value ofα

being a root of the equation

cosh
α

2
− a

α
sinh

α

2
= 0 (5)

Let us find out the dependency of number of roots of the equation (5) on

the value ofa. Firstly, we put equation (5) into the form

tanh
α

2
=

α

a
. (6)

Taking into account the properties of the functiontanhα/2 we conclude, that

equation (6) has a single rootα = 0 as−∞ < a ≤ 2. Fora > 2 there exist

three roots of the equations (6):α = 0, ᾱ > 0 and−ᾱ < 0. For the rootα = 0

it implies thatλ = 0, while for the roots±ᾱ we haveλ̄ = −(±ᾱ)2 < 0.

Thus, fora > 2, the eigenvaluēλ < 0 of the problem (1)–(3) exists, such that
√

−λ̄ = ᾱ is the only positive root of the equation (6). The corresponding

eigenvector is defined by the formula (4), whereα =
√

−λ̄.

Case 3.λ > 0. In this case equation (1) and condition (2) imply that

u(x) = c sinαx α =
√

λ > 0. (7)

Putting this expresion into nonlocal condition (3), like in Case 2 we obtain:

tan
α

2
=

α

a
. (8)

Hence, for any value ofa there exist infinitely many positive eigenvaluesλk =

α2

k > 0 along with the corresponding eigenvectors of the form (7). The results

of the three cases can be joined into the following statement:

For any value ofa there exist infinitely many positive eigenvaluesλk of

the problem(1)–(3). These eigenvalues are the roots of the equation

tan

√
λ

2
=

√
λ

a
;
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these correspond to eigenfunctions of the form

uk(x) = sin
√

λkx, k = 1, 2, . . . .

Moreover, the following statement is true:

1) if −∞ < a < 2, then there are no other eigenvalues;

2) if a = 2 thenλ0 = 0 is the eigenvalue of the problem(1)–(3) with the

corresponding eigenfunctionu0(x) = x.

3) if 2 < a < ∞, then one more negative eigenvalueλ̄ = −(ᾱ)2 < 0 exists.

It corresponds to the only positive root of equation(6). The corresponding

eigenfunction is

ū(x) = sin ᾱx.

3 Multiple eigenvalues

Instead of condition (3) let us consider now another nonlocal condition

u(1) = a

b1
∫

a1

u(x)dx,

where0 < a1 < b1 < 1. Let us take, in particular,a1 = 1/4, b1 = 3/4. Thus,

we consider the nonlocal condition

u(1) = a

3/4
∫

1/4

u(x)dx. (9)

As before, we will investigate three cases.

Case 1. λ = 0. Puttingu(x) = cx into (9) we obtain

c
(

1 − a

4

)

= 0.

Hence, ifa = 4 thenλ = 0 is the eigenvalue of the problem (1), (2), (9) and

u(x) = x is the corresponding eigenfunction.
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Case 2. λ < 0. Putting (4) into (9) and performing simple rearrangement

we see thatα =
√
−λ > 0 should satisfy the following equation:

cosh
α

2
=

a

α
sinh

α

4
. (10)

Rearranging this equation in the form of

tanh
α

2
=

2α

a
cosh

α

4

we see, that it has a single rootᾱ, which is positive, provideda > 4. Thus,

if a > 4, a single negative eigenvaluēλ = −(ᾱ)2 exists along with the

corresponding eigenfunction

ū(x) = sinh ᾱx.

Case 3. λ > 0. Putting (7) into (9), we obtain the following equation:

cos
α

2
=

a

α
sin

α

4
. (11)

It has infinitely many positive rootsαk.

Hence, as before in the case of nonlocal condition (3), the problem (1),

(2), (9) has infinitely many eigenvaluesλk = α2

k, along with the corresponding

eigenfunctionsuk(x) = sinαkx.

There is an essential difference between the eigenvalue problem (1)–(3)

and analogous problem with nonlocal condition (9). It lies in that all the

eigenvalues of the problem (1)–(3) are different, since equation (8) has no

multiple roots. This situation is typical for such an eigenvalue problems, where

the ordinary differential equation subject to the classical boundary conditions

of either the first, the second or the third type is considered. The situation can

change if we take the nonlocal condition (9) instead of condition (3). In this

case, depending on values ofa, equation (11) may have multiple roots.

To illustrate the situation, let us find the least value ofa for which the

problem (1), (2), (9) has multiple eigenvalue. Solving equation (11), we obtain

that it has four positive different roots over the interval(0, 8π), provided0 <

a < 4; it has three possitive different roots and the rootλ0 = 0, whena = 4;

it has three positive different roots, provided4 < a < a∗, a∗ ≈ 18.99; it has

a single root, provideda∗ < a. Fora = a∗, in the interval(0, 8π) there is one

simple rootα1 ≈ 10.94, and one multiple rootα2 = α3 ≈ 19.13.
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4 More general problem

Let us consider now more general eigenvalue problem:

u′′ + λu = 0, (12)

u(0) = a1

1
∫

0

u(x)dx, (13)

u(1) = a2

1
∫

0

u(x)dx. (14)

The methodology of the solution of the problem let be the same as earlier.

Case 1. λ = 0. Putting the general solution

u(x) = c1 + c2(x) (15)

of equation (12) into expressions (13), (14) and rearranging them weobtain

the following system of equations with respect to unknown constantsc1, c2:






(1 − a1)c1 −
a1

2
c2 = 0,

(1 − a2)c1 +
(

1 − a2

2

)

c2 = 0.

Thus, there exists the solution (15), not identical zero, if

D =

∣

∣

∣

∣

∣

∣

1 − a1 −a1

2

1 − a2 1 − a2

2

∣

∣

∣

∣

∣

∣

= 0.

This implies thata1 + a2 = 2. Hence, ifa1 + a2 6= 0, thenλ = 0 is not

an eigenvalue of the problem, sinceu(x) ≡ 0. If a1 + a2 = 2 thenλ = 0 is an

eigenvalue of the problem along with the corresponding eigenfunction:

u(x) = 1 +
2(1 − a1)

a1

x.

Case 2. λ < 0. In this case the general solution of equation (12) has a

form

u(x) = c1e
αx + c2e

−αx,
√
−λ = α > 0.
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Putting expression foru(x) into both (13) and (14), we get the system of the

equations with respect to unknown constantsc1, c2:






c1

(

1 − a1

α
(eα − 1)

)

+ c2

(

1 +
a1

α
(e−α − 1)

)

= 0,

c1

(

eα − a2

α
(eα − 1)

)

+ c2

(

e−α +
a2

α
(e−α − 1)

)

= 0.

Equating to zero the determinant of this system, we get the following

condition of existence of the negative eigenvalue

tanh
α

2
=

α

a1 + a2

. (16)

Equation (16) has a single positive rootᾱ , provideda1 + a2 > 2. In this case,

problem (12)–(14) has the negative eigenvalueλ̄ = −(ᾱ)2.

Case 3. λ > 0. In this case the general solution of equation (12) is of a

form

u(x) = c1 cos αx + c2 sinαx,
√

λ = α > 0. (17)

Putting this expression into (13) and (14) we obtain the system of the equations

with respect to unknown constantsc1, c2:










(

1 − sinα

α
a1

)

c1 +
a1(cos α − 1)

α
c2 = 0,

(

cos α − sin α

α
a2

)

c1 +
(

sin α +
a2(cos α − 1)

α

)

c2 = 0.

Again, there exists a solution of a form (17), identically not equal to zero,

providedD = 0. Thus, we obtain a condition of existence of the positive

eigenvalue

tan
α

2
=

α

a1 + a2

. (18)

This equation has infinitely many positive rootsαk, andλk = α2

k. The corre-
sponding eigenfunctions are definited by (18).
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