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Abstract. The Bertalanffy-Richards growth model is employed more than
any other models for forest growth and yield modelling. However, its fea-
tures have not completely been recognised. As a result, misunderstanding of
the model still appears in some papers published in forest journals. A study
by [1] is cited here as an evidence of the misunderstanding. This paper tries
to explain different features of the Bertalanffy-Richardsgrowth model based
on the different conditions of the allometric parameter andintroduces an
assessment software to easily get the partial derivatives with respect to each
parameter when more complex techniques (e.g., the Marquardt method)
are employed to estimate parameters of any nonlinear models. This paper
indicates that [1] study appears some unreasonable evidences of nonlinear
growth models from a forestry perspective.

Keywords: feature, Bertalanffy-Richards, nonlinear analysis, growth model,
forestry.

1 Introduction

Many nonlinear theoretical models (e.g., the logistic, the Gompertz, the Ber-

talanffy-Richards and the Schnute models) rather than empirical models (e.g.,

∗We would like to thank the Project-sponsored by SRF for ROCS, SEM of China.
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polynomial model) have been used to model forest growth and yield and tree

height-diameter relationships (e.g. [2]–[6]) because theoretical models have an

underlying hypothesis associated with cause or function of the phenomenon

described by the response variable [7]. However, empirical models such as

polynomial equations were not considered as modeling nonlinear growth and

yield in forestry because they are devoid of any biological interpretation and

do not have meaningful parameters from a forestry perspective. In theoretical

models, the Bertalanffy-Richards (or Chapman-Richards) growth modelhas

been commonly used historically for modeling forest growth and yield. This

model, valued for its accuracy, has been employed more than any other func-

tions in studies of tree and stand growth [5]. So far, about 90% of the literature

consulted has utilized this model in forest growth and yield [8]. However, the

mathematical features and the growth performance of the Bertalanffy-Richards

growth function have been not fully understood and there have still existed

some unclear conceptions for the growth function. For instance, whetherthe

Bertalanffy-Richards function has a point of inflection or not and appears

sigmoid or concave curve shape. The study by [1] is a useful contribution to

nonlinear growth models. Their study was based on deriving the partial deriva-

tives of the nine well-known nonlinear growth models because the Marquardt

iterative method [9] was employed to fit the parameters of the growth mo-

dels, and gave the method of parameter estimation using experimental height

growth data and the features of the nonlinear models. However, we believe

that there are some limitations that need to be discussed, in particular, the

features of the Bertalanffy-Richards growth model and the partial derivative

of nonlinear growth models. In this paper, we discuss the features of the

Bertalanffy-Richards growth model and examine the evidences and arguments

of the Bertalannffy-Richards growth model presented by [1].

2 Features of Bertalanffy-Richards growth model

From a forestry perspective, [1] indicated that the negative exponential, mono-

locular and the Mithcherlich growth models have no points of inflection and

are not sigmoid shape, while the Gompertz, logistic, Chapman-Richards (or

Bertalanffy-Richards), Richard’s and the von Bertalanffy growth models have
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points of inflection and are sigmoid. This is a misunderstanding of the Chap-

man-Richards growth model because whether the growth model possesses a

point of inflection or not mainly depends on the allometric parameterm. In

other word, whether the growth model demonstrates an sigmoid or concave

curve shape is based on the different conditions of the allometric parameter

m. Some features of the Bertalanffy-Richards growth model will be discussed

on the basis of the conditions of allometric parameterm in order to clarify

whether the growth model possesses a point of inflection or not (i.g., sigmoid

or concave curve).

According to [10] and [11], the simplest assumption leading to limited

growth is that the growth rate is proportional to the current size (y), that is:

dy

dt
= k(α − y) (1)

wherey is any variable,t is time,k andα are constants.

Much greater flexibility is obtained by substituting a power transformation,

yv, for y:

dyv

dt
= k(αv − yv). (2)

If the derivative on the left-hand side (LHS) of equation (2) is calculated,

equation (2) can be rewritten as follows:

vyv−1 dy

dt
= k(αv − yv),

dy

dt
=

k

v
y
[(α

y

)v
− 1

]

or

dy

dt
= ηym − ry (3)

whereη =
kαv

v
, m = 1 − v, r = k/v.

Equation (3) is the Bertalanffy-Richards growth rate (differential) equa-

tion. The integral forms of equation (3) describe the size as an explicit func-

tion of age and can provide additional information about growth patterns.

Moreover, we found that there are many different solutions and features from
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equation (3), which depend on the parametersm, η andr. Under the initial

condition y = y0 at t = 0 in equation (3), the solutions and features are

respectively.

For m > 1, η andr < 0; 0 < m < 1, η andr > 0 andm < 0, η and

r > 0, the integral form of equation (3) is:

y = A
[

1 − B exp(−kt)
](1/(1−m))

(4)

whereA is an asymptote value of the responsey, B is a biological constant,

k is related to proportional ofy andm is a shape parameter of the growth

curve (or an allometric constant), respectively. The relations between them are

A = (η/r)

(

1/(1−m)
)

, B = (η/r − y1−m
0 )/(η/r) andk = (1 − m)r.

For m < 0, η > 0 andr < 0, and makingr′ = −r, the integral form of

equation (3) is:

y = A′(B′ek′t − 1)(1/(1−m)) (5)

whereA′ = (η/r′)(1/(1−m)), B′ = 1 +
( y0

A′

)(1−m)
, k′ = r′(1 − m).

Whenm < 1, η andr > 0, the integral equation (4) possesses a sigmoid

curve with an upper asymptoteA (or y∞) and an inflection point(tδ, yδ) which

is obtained byd2y/dt2 = 0, and intersect the time axis at aget0. This curve

represents the classical growth situation which is widespread in biology and

forest growth modelling (e.g. [2], p. 6–8).

Whenm > 1, η andr < 0, equation (4) has an S-shaped curve again.

Unlike the above growth situation, however, the curve has a lower asymptote

(y0) ast → 0 besides having an upper asymptoteA (or y∞) and an inflection

point (tδ, yδ). This curve is often seen in forest growth modelling. The above

two types of curves start at a fixed point ((t0, 0) or (0, y0)) and increase their

instantaneous growth rates monotonically until an inflection point is reached;

after this the growth rates decrease to approach asymptotically some final value

as determined by the genetic nature of the living organism and the carrying

capacity of the environment.

Whenm < 0, η andr > 0, equation (4) possesses an upper asymptoteA

(or y∞) and cross the time axis, but it has no inflection point(tδ, yδ). The case

of m < 0 contradicts earlier papers (e.g. [12], p. 1989), which concluded that
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m > 0 in equation (4) defines a subset of realistic solutions satisfying basic

requirements for growth curves. Actually, a curve for the case m<0 can be used

to simulate growth for fast-growing trees. This curve form has been widely

used to fit fast-growing young eucalypt trees in forest growth (e.g. [13], p. 44)

and to describe the law of diminishing returns in agriculture and economics

[5]. The curve is rapid at an initial period and the instantaneous growth rate is

monotonically decreasing to approach asymptotically some final value.

When m < 0, η > 0 and r < 0, equation (5) does not possess an

asymptote, but an inflection point(tδ, yδ) is present and the curve does in-

tersect thet-axis. In this case, an initial period of decelerated growth starts

at t0 and then continues later with an indefinite period of accelerated growth.

Such a curve may be uncommon in forest growth modelling, but may be seen

when competition inducing mortality occurs to the extent that dbh growth

for residual trees accelerates (e.g. [14], p. 792–793). This case describes

unlimited growth as age increases. Generally speaking, it contradicts tree or

stand growth, which tends to a certain finite value as age increases. However,

there also is strong evidence that growth volume per hectare in even-aged

stands is not asymptotic [15].

It can be seen from the above analysis that the parameterm should be

greater than zero when modelling forest growth. It is possible to model forest

growth using the Beterlanffy-Richards function withm < 0, but in this caser

should be greater than zero.

To derive special cases of the Bertalanffy-Richards growth model, equation

(2) can also be expressed as follows:

dw

dt
= −kw (6)

where the power transformation is used:

w =

{

(yv − αv)/v for v 6= 0,

ln(y/α) for v = 0.
(7)

This continuous family depends on a single parameterv (or m). Whenv = 0

(or m = 1), the Gompertz model can be obtained from equation (7):

y = α exp
[

− C exp(−kt)
]

(8)
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whereC is constant of integration or biological constant,α is the value of the

asymptote andk is a growth rate related parameter.

Whenv = −1 (m = 2) andv = 1 (m = 0), the logistic model and the

monomolecular model can also be obtained from equation (7). They are as

follows, respectively:

y = α/
[

1 + C exp(−kt)
]

, (9)

y = α + C exp(−kt) (10)

whereC, α andk are as previously defined. The Gompertz and the logistic

models have an asymptote, intersecty axis, and their inflection points areα/e

andα/2, respectively. The monomolecular model possesses only an asymptote

and intersects the time axis. The Bertalanffy-Richards growth model has the

features of flexibility and versatility based on different allometric parameterm.

Thus, it can demonstrate different curves and the special cases some growth

models can not demonstrate.

However, [1] concluded that “the Gompertz, logistic, Chapman-Richards,

Richard’s, and the von Bertalanffy growth models have points of inflection

and are sigmoid. These models are suitable for quantifying a growth phe-

nomenon that exhibits a sigmoid pattern over time”. As analysed above, that

the Bertalanffy-Richards function possesses the sigmoid or concave shape cur-

ve depends on the allometric parameterm, and therefore the function may

demonstrate the sigmoid with inflection point or the concave curve shape. In

fact, from many publications the Bertalanffy-Richards model is suitable not

only for quantifying a growth phenomenon that exhibits a sigmoid pattern over

time, but also for quantifying a growth phenomenon that exhibit a concave

pattern over time.

3 Partial derivatives of nonlinear growth models

Estimates of nonlinear models are more difficult than that of linear models

and the solutions are determined iteratively. [16] and [17] gave the detailed

discussion of nonlinear growth models. The simple method of iterative estima-

tion, the Gauss-Newton method, can be employed and the resulting parameter

estimates are unbiased, normally distributed, minimum variance estimators. If
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the model does not behave in a near to linear fashion, the parameter estimates

will not have these desirable properties and more complex estimation tech-

niques such as Marquardt method may be necessary [7, 16]. The Marquardt

iterative method requires specification of the names and starting values of

the parameters to be estimated, expressions for the model, and the partial

derivatives of the model with respect to each parameter [18]. The method

is a compromised approach between the linearization (e.g., Gauss-Newton)

method and the steepest decent method and appears to combine the best fea-

tures of both while avoiding their most serious limitations [19]. In such cases,

the use of partial derivative rather than computational approximations usually

results in more efficient and more precise parameter estimation. Therefore,

[1] derived and provided the partial derivative of the nine nonlinear growth

models for estimating the parameters of these models using SAS program

from a forestry perspective. As [5] mentioned, there are many equations that

can describe plant growth. Therefore, many partial derivatives with respect

to parameters of different models should be required to estimate nonlinear

models in forestry science. Apparently, the study of [1] has not met this

demand of a large of models where one needs comparing and selecting the

best one to be used in forest growth and yield modelling. In fact, however,

JMP statistic software [20] can provide parameter partial derivatives ofany

nonlinear models with precise and convenient for foresters. The software

easily accesses partial derivative formulas of each parameter and cansatisfy the

requirement of partial derivatives with respect to each parameter whenfitting

nonlinear growth models using SAS syntax. Please refer to the Nonlinear Fit

of [20] concerning the software application. That means, it is not necessary to

develop the parameter partial derivatives for estimating nonlinear models.

4 Conclusions

The Bertalanffy-Richards growth model has been widely employed in forest

growth and yield modelling for long time. However, some foresters have not

completely recognised the features of the model from a theoretical point of

view so that the model would be considered to demonstrate only S-curve shape

with an inflection point. We have shown that the Bertalanffy-Richards growth
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model possesses not only the S-curve but also the concave curve in which de-

pends on the allometric parameterm. Better understanding of the Bertalanffy-

Richards growth model features is very important for modelling forest growth

and yield and thus foresters can use the model correctly and effectivelyto fit S-

curve with an inflection point or concave curve. We have also indicated that the

partial derivatives with respect to each parameter should be used to estimate

parameters of nonlinear models when more complex techniques are employed

in which the techniques can deliver more efficient and more precise parameter

estimation. The parameter partial derivatives of different nonlinear models can

be obtained in JMP software to fit any nonlinear growth models. Thus, it seems

to be not necessary to develop partial derivatives of any nonlinear growth

models for estimating parameters of the models when using more complicated

methods such as the Marquardt.
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