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Abstract: Chaos and bifurcation control is achieved by nonlinear controller 
that is able to mitigate the characteristics of a class of nonlinear systems that 
are experiencing such phenomenon. In this paper, a backstepping nonlinear 
recursive controller is presented. Comparison has been made between it and a 
Pole Placement controller. The study shows the effectiveness of the proposed 
control under various operating conditions.  
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1 Introduction 

Controlling chaos as well as bifurcation has been proposed in the past decade. 
Emphasis has been usually placed on design techniques which result in 
prescribed nonlinear dynamics for classes controlled processes. In some 
applications, chaos can be useful while in others it might be detrimental. For 
example, chaos in power systems [1–7] and in mechanical systems is 
objectionable. On the other hand, chaos is being proposed to be utilized in 
communication systems; in [8] and others investigation the use of chaos in 
synchronization, and information transmission is considered communication 
systems. 

Bifurcation control deals with using a control input to modify the 
characteristics of a parameterized nonlinear system. The control can thus be 
static or dynamic feedback control, or open loop control. The objective can be 
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stabilization and reduction of the amplitude of bifurcation orbital solutions, 
optimization of a performance index near bifurcation, reshaping of the 
bifurcation diagram or a combination of these [2]. The control u(x) lows derived 
and used in [2] e.g. transform an unstable subcritical bifurcation point into a 
stable supercritical one. Several applications of these results have been further 
conducted. Among these are prevention of voltage collapse in electrical power 
system [3], and subsynchronouns resonance in power system [1]. 

Bifurcation control are used in [9], these controllers are designed to control 
the bifurcation route that leads to chaos. Many researchers are proposed other 
methods to control chaos, Ott [10] and Ott et. al. [11]. In Hubler [12], Hubler 
and Luscher [13], and Jackson [14] the methods are based on classical control. 
In this paper, a new recursive backstepping nonlinear controller is proposed. A 
comparison is made between it and the pole placement control design.  

The paper is organized as follows; in section 2, a mathematical nonlinear 
dynamical system and the methodology of design the backstepping nonlinear as 
well as the pole placement controllers are discussed. A numerical simulation is 
placed in section 3. Finally, section 4, concluded the paper.  

2 Mathematical Model and Control Design 

As a simple yet practical nonlinear system example, we have chosen the 
following third order state representation.  

31 xx −=� , (1) 
uxxx +−= 212� , (2) 

23
2

213   1.3 uxFxxx L +++=� , (3) 

where 5.0=LF , is a parameter and 21  and uu are control signals. 

2.1 A recursive backstepping controller. Let 01 =dx , 112 ecx d = , and 

23123 ececx d += , where subscript d refer to desired values. Define the error 
signals as follows: 

dxxe 111 −= , (4) 

dxxe 222 −= , (5) 
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dxxe 333 −= . (6) 

Substituting equations (4)–(6) into equations (1)–(3), one obtain: 

231231 ececee −−−=C , (7) 

1322321
2

222 )1()1( uececcecce ++−++−=C , (8) 

21232123
2

12213 )()()( 1.3 uecececeFeceee L +++++++=C , (9) 

Let: 

2
3

12
1

iiekV ∑= . (10) 

The time derivative for equation (10) is: 

333222111 eekeekeekV CCCC
++= . (11) 

Substituting equations (7)–(9) into equation (11), and choosing the following 
parameters to be: 0  ,1  ,1 321 =−−== cFcc L , yields; 

32241 eceku −−= , (12) 
2

122352 )( eceeku ++−=  (13) 

This control law guarantee the negative definitiveness of V in equation (1) 

2.2 Pole placement controller. Consider the system of equations (1)–(3) as: 

),( LFXFX =
D  (14) 

Let; 
)( **

LFXXX +∆= , (15) 

where X is function of the control parameter LF . 

Substituting equation (15) into equation (14) and using Taylor series 
expansion and linearized the resulting equation around unstable fixed point, 

)( **
LFXX = , and keeping the linear term only. One obtain: 

LFbXAX ∆+∆=∆ D , (16) 

where )( **
LFXXX −=∆ , *

LLL FFF −=∆ , ),( **
LFX

X
FA

∂

∂
= , and 
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),( **
L

L
FX

F
Fb

∂

∂
= . 

Now, let us consider the case of linear state feedback; 

XKF T
L ∆=∆ , (17) 

substituting equation (17) into equation (16), yields; 

XbKAX T
∆+=∆ ][D , (18) 

or, 

XAX C∆=∆ D , (19) 

where T
C bKAA +=  is the closed loop matrix. 

So, the objective is to design a linear feedback controller, such that the 
system is stable. To do that, a closed loop matrix, which has negative 
eigenvalues, is selected. The signal control that to be added to equation (3) is 
given by: 

332211][ xkxkxkXKu T
++== . (20) 

A designed controller is TK 6.5854]-   0976.1   5273.2[=  

3 Numerical Simulations 

For equations (1)–(3), the signals 21  and uu  are both zero, figs. 1(a) and 1(b) 
shows the time history and state-plane, respectively. Figs. 1(a) and 1(b) show 
the chaotic behaviour of the system for the critical parameter 5.0=LF .  In the 
next two subsections, the above mentioned controllers are presented. 

3.1 A recursive backstepping controller. In this case, the signals 21  and uu  
given in equations (11) and (12) are added to equations (2) and (3), respectively. 
Figs. 2(a, b, c, and d) show the time history as well as the state-plane for both, 
system state and control signals 21  and uu . By comparing the simulation results 
of figs. 1(a, b) to that of figs. 2 (a-d) it is clear that the system has recovered 
from its chaotic behaviour and now exhibits a stable performance. This result 
was achieved by designed signals shown effective in controlling the bifurcation 
as well as chaos behaviours. 
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Fig. 1. Time and state trajectory (without control) 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 2. Time and state trajectory (backstepping controller) 

3.2 Pole placement controller. For this case, only a single control signal u is 
designed in section 2.2. This signal u from equation (20) is added to 
equation (3). Figs. 3(a-c) shows the time history and state-plane simulations. A 
comparison between figs. 1(a,b) and figs. 3(a-c) shows that the system has also 
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recovered from its chaotic behaviour. However, this linearized controller is 
effective only about its chosen operation point. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Time and state trajectory (pole placement controller) 

4 Conclusion 

In this paper, we have discussed the application of new nonlinear recursive 
controllers on typical chaotic behaviour. As mentioned, controlling bifurcation 
as well as chaos has been rapidly advancing in the last decade. Thus, emphasis 
has been placed on control design techniques which result in prescribed 
nonlinear performance dynamics for practical controlled processes. This study 
have shown that a nonlinear recursive controller is effective in controlling an 
undesirable chaotic behaviour as well as original bifurcations. 
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