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Abstract

The results obtained in classical 1-D rational approximation
are extended in this paper to rational approximation of M-D
functions. A full analog of classical Montessus de Ballore theo-
rem for the convergence of the rows of Padé’s tables is obtained.
It is shown that the appropriate theorem for uniform conver-
gence in C2 will really take place only in the case of choosing the
necessary determinative (interpolation) sets Ij(n,m), j = 1, 2.
This theorem allows us to handle the problem of deriving the
transfer function of a M-D digital system, that is described
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by its state-space representation1. The results of computer
modelling by using MATLAB software are presented. Both the
convergence theorem and results of modelling show that from
theoretical and practical points of view the proposed approach
is promising.

Keywords: multi-dimensional rational approximants, in-
terpolation set, convergence, meromorphic function, state-space
representation, transfer function

1 Introduction

Recently there is a great deal of interest expressed to the analysis
and synthesis of a broad class of problems in multi-dimensional (M-
D) systems, which may be characterized by rational functions (or
matrices) in several complex variables.

Rational approximation theory has found many interpretations
and different applications in signal processing and systems theory.
They include the design of digital filters from a prescribed impulse
response sequence [1], [2], model reduction of control systems [3],
network synthesis and minimal partial realization problem [4], [2].

During the last decades a group of mathematicians have been re-
searching the problem of approximating M-D functions ([5], [6], [7], [8],
[9]). The method of Padé approximation for single-variable functions
has been extended to the approximation of two (or more) variable
functions. A lot of different applications of rational approximation
and a huge bibliography is mentioned in [10].

In the rational modelling of M-D systems, the system to be mod-
elled may be characterized by:

• state-space description;

• its impulse response;

• its autocorrelation data.

1This work was supported by the grant RFFI (RFBR) 01-01-00738
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The method outlined in this paper is developed for a two-variable
system. The system is described by the state-variable model. The
generalization to multiple dimensions (more than 2) is straightforward.

2 2-D Padé-type approximants in C2

1. Let H(z1, z2)

H(z1, z2) =
∞∑
i=0

∞∑
j=0

hi,jz
i
1z

j
2, (1)

be a holomorphic function near the origin.
For any integer sets n = (n1, n2) and m = (m1,m2), i.e. for any

n,m ∈ Z2, let

R(n,m) =

{
r =

p

q
, p(z1, z2) =

n1∑
i=0

n2∑
j=0

pi,jz
i
1z

j
2,

q(z1, z2) =

m1∑

k=0

m2∑

l=0

qk,lz
k
1z

l
2, q(0, 0) = 1

}
,

be the class of rational functions, i.e. the ratio of 2-D polynomials
whose degrees don’t exceed n = (n1, n2) and m = (m1,m2) corre-
spondingly for each variable. In short it may be written that deg(p) ≤
n, deg(q) ≤ m.

Every rational function r ∈ R(n,m) may be identified with its
power series (1) that converges in some neighborhood of the origin. It

should be mentioned that r =
p

q
∈ R depends on

τn,m = (n1 + 1)(n2 + 1) + (m1 + 1)(m2 + 1)− 1

parameters (the coefficients of p and q).

2. The set of integer points I(n,m) ⊂ Z2
+ for fixed n = (n1, n2) and

m = (m1,m2) is called the determinative (interpolation) set, if
it has the next properties:

107



1. dimI(n,m) = τn,m

2. (n1 + m1, 0), (0, n2 + m2) ∈ I(n,m). This property guarantees
that in the case when z1 = 0 (or z2 = 0) one would have the
classical 1-D rational approximation of Padé type.

3. n = (n1, n2) ∈ I(n,m);

4. if (k1, k2) ∈ I(n,m) then [0,k] ⊂ I(n,m),
where [0,k] =

{
(s1, s2) ∈ Z2

+ : 0 ≤ sj ≤ kj, j = 1, 2
}

- the rect-
angle rule.

5. (n1 + m1,m2) ∈ I1(n,m) and (m1, n2 + m2) ∈ I2(n,m) (see
below).

Two and only two possible variants of these sets satisfying require-
ments are:

1. I1(n,m) = {(i, j) : [0 ≤ i ≤ n1, 0 ≤ j ≤ n2]∪
[n1 + 1 ≤ i ≤ n1 + m1, 0 ≤ j ≤ m2] ∪

[0 = i, n2 + 1 ≤ j ≤ n2 + m2]} , (2)

(see Appendix A).

2. I2(n,m) = {(i, j) : [0 ≤ i ≤ n1, 0 ≤ j ≤ n2]∪
[0 ≤ i ≤ m1, n2 + 1 ≤ j ≤ n2 + m2] ∪

[n1 + 1 ≤ i ≤ n1 + m1, 0 = j]} , (3)

(see Appendix B).

3. The generalized Padé approximant (Chisholm [6], Vavilov [7]) of
H(z1, z2) (see (1)) for given n = (n1, n2) and m = (m1,m2) is defined
as the rational function fn,m ∈ R(n,m) for which

Ti,j(H− fn,m) = 0, for all (i, j) ∈ I(n,m), (4)

where Ti,j(φ) are the Taylor’s coefficients of the power series for the
function φ. The rational function fn,m is called the 2-D Padé-type
approximant of H(z1, z2) (see (1)) which corresponds to the deter-
minative set (i, j) ∈ I(n,m).
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As in the case of 1-D functions, the existence and uniqueness of
Padé-type approximants (in the sense of the given above definition)
for C2 require special type of analysis. It should be mentioned that
Padé-type approximants do not always exist in the sense of the given
definition. If for given n,m, I(n,m) the Padé-type approximant of

H(z1, z2) (see (1)) exists and fn,m =
pn,m

qn,m

, where pn,m,qn,m are

mutually prime and qn,m(0, 0) 6= 0, then from (4) it follows that the
(linear) interpolation relationship is true:

Ti,j(qH− p) = 0, for all (i, j) ∈ I(n,m), (5)

with p = pn,m and q = qn,m. The opposite statement is also true:
if for given n,m, I(n,m) there exist the polynomials p,q that satisfy
(5) and such that

deg p ≤ n, deg q ≤ m,q(0, 0) 6= 0,

then the Padé type approximant of (1) (that corresponds to the given

determinative set I(n,m)) exists and fn,m =
p

q
.

For the power series (1) and for any determinative set I(n,m),n,m ∈
Z2

+ there always exist polynomials p,q satisfying (5) and such that

deg p ≤ n, deg q ≤ m,q(0, 0) 6= 0. (6)

In order to find the coefficients of p and q it is enough to find
firstly the polynomial q whose coefficients satisfy the system of linear
equations

Ti,j(qH) = 0, for all (i, j) ∈ I(n,m) \ [0;n]. (7)

and after that to substitute into

p(z) =

n1∑
i=0

n2∑
j=0

Ti,j(qH)zi
1z

j
2. (8)

The system (7) is a homogeneous system of linear equations for the
unknown coefficients of the polynomial q. The matrix of the system is
determined by the coefficients hi,j of the power series (1). The number
of the unknowns is one plus the number of the equations. That is why
the system (7) has always a nontrivial solution.
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Fact 1 If for the given power series (1) and for given n,m, I(n,m)
any pair of polynomials p,q (satisfying (6, 7, 8)) has the property that
q(0, 0) 6= 0, then there exists the unique Padé type approximant for (1)
for the given determinative set I(n,m).

4. Let m = (m1,m2) ∈ Z2
+ be fixed. Let the class

Mm = Mm(C2) =

{
f : f(z1, z2) =

F(z1, z2)

Qm(z1, z2)

}
(9)

be defined as a class of functions with the properties:

• F(z1, z2) is an entire function;

• deg Qm = m, i.e. deg Qm(z1, 0) = m1, deg Qm(0, z2) = m2;

• Qm(0, 0) = 1;

• The functions F(z1, 0),F(0, z2) and the polynomials Qm(z1, 0),
Qm(0, z2) are not equal to zero simultaneously.

The most important theorem is the next:

Theorem 1 ([7]) Let H(z) ∈ Mm be given by the power series (1),
m = (m1,m2),m ∈ Z2

+ be fixed and n = (n1, n2),n ∈ Z2
+. Then:

1. For all ń = min(n1, n2) that are enough big, there exists unique

Padé type approximant f j
n,m =

pj
n

qj
m

for each of the determinative

sets Ij(n,m), j = 1, 2;

2. The sequence f j
n,m for ń = min(n1, n2) → ∞ converges uni-

formly to the function H(z1, z2) inside the compact subsets of
G = C2\{Qm = 0}. For any compact E ⊂ C2 the following
relationships are true:

lim
n
′→∞

∥∥Qm − qj
n

∥∥1/n
′

E
= 0, (10)

lim
n′→∞

∥∥H− f j
n,m

∥∥1/n
′

E
= 0, (11)

where j = 1, 2 and
‖ ∗ ‖E = sup

z∈E
| ∗ |.
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The choice of the determinative set I(n,m) may be made in dif-
ferent ways. But this theorem may be stated and proved in its full
measure only for two determinative sets - I1(n,m) and I2(n,m).

5. As it was mentioned above, the denominator q(z1, z2) should ”fol-
low” the singularities of the meromorphic function H(z1, z2). Ideally
the highest degree (degrees) of q(z1, z2) is (are) known or may be
estimated. After evaluating m, the degree of the numerator n may
increase in order to approximate H(z1, z2).

If m is unknown then some experimental steps should be performed
in order to choose the necessary degree.

One of the most important problems in M-D rational approxima-
tion is the choice of the determinative (interpolation) set I(n,m). In
different publications the improper choice of this set has given rise
to incorrect conclusions about nonexistence or non-uniqueness of 2-D
Padé approximants [1], [4], [11], [3].

The new results obtained recently by Vavilov [7] allow one to make
the right choice of the set I(n,m), namely I1(n,m) and I2(n,m).

6. One more reason that gave rise to these results was the desire
to obtain some recursive algorithms for finding the M-D Padé type
approximant.

There should be mentioned that the new choice of the determi-
native set given above leads to recursive algorithms for this so-called
Canterbury interpolation (see [7]), which are quite fast and efficient.

But the task under consideration does not really need to handle
very big degrees for both numerator and denominator (no more than
8-10). Unlike the one-dimensional case, the M-D case for recursive
computations requires relatively a large number of computations for
low degrees n,m. That is why the recursive algorithms (developed in
[7]) are not presented here.

On another hand, though the choice of the determinative set given
in [1] gives a recursive algorithm, the approximant itself leads not
only to much worse approximation error (see below) but also does not
provide any type of convergence (see above).
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3 Design of recursive systems

1. System description The N -dimensional discrete system is a
dynamic system described by the equations in N independent variables
for N ≥ 2 ([12]). In the particular case N = 2 one obtains the
generalised 2-D model (G2-DM):

Exi+1,j+1 =

= A0xi,j + A1xi+1,j + A2xi,j+1 + B0ui,j + B1ui+1,j + B2ui,j+1

or the generalised 2-D Roesser model (G2-DRM):

E

[
xh

i+1,j

xv
i,j+1

]
=

[
A11A12

A21A22

] [
xh

i,j

xv
i,j

]
+

[
B10

B20

]
ui,j,

yi,j =
[

C10C20

] [
xh

i,j

xv
i,j

]
+ Dui,j.

where xi,j =

[
xh

i,j

xv
i,j

]
, xi,j ∈ R2 is the local semistate vector at

point (i,j), xh
i,j ∈ R, xv

i,j ∈ R are the horizontal and vertical local
semistate vectors, ui,j ∈ R2 is the input, yi,j ∈ R2 is the output, and
the matrices Al,m,Bl,m,Cl,m,E and D are real matrices of appropriate
dimensions.

If E is nonsingular the model is regular. The system state and
output equations are given by

[
xh

i+1,j

xv
i,j+1

]
= Axi,j + Bui,j,

yi,j = Cxi,j.

In this case the 2-D z-transform may give that the transfer matrix
of the system is
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H(z1, z2) = C(

[
z1 0
0 z2

]
−A)−1B. (12)

The goal is to develop a method for computing H(z1, z2) by using
the 2-D rational approximation.

From (12) it is clear that the meromorphic function H(z1, z2)
will have singularities that should be approximated by a rational
function, whose denominator plays the most important role in this
approximation process.

The approach developed in section [2] may be applied for solving
the problem.

2. Computing the transfer function The transfer function
H(z1, z2) may be expanded into an infinite power series. The entries
of H(z1, z2) are computed from the infinite series using the procedure
of the previous section.

Two cases must be considered.

Case 1 .

The matrix A is invertible.

If the matrix A is invertible then one can use that

(W −A)−1 = −
∞∑
i=0

A−1(WA−1)i (13)

with (WA−1)0 = I. Equations (12) and (13) give a simple method
to calculate the reduced transfer matrix. Each entry hij(z1, z2) is
expanded into a power series in z1 and z2.

Case 2 .

The matrix A is non-invertible.

The matrix (A− ξI) is an invertible matrix for ξ which is not an
eigenvalue of A. The technique just described can be applied with A
replaced by D = A − ξI, or, equivalently, with z1 and z2 replaced in
W by z1 + ξ and z2 + ξ, respectively. The above technique may be
applied and after reversing the change of variables one gets the desired
transfer matrix H(z1, z2).

113



3. Examples. Example 1. Consider the double power series from
[1], which is to be approximated by a rational function in (14) where
the degrees in each variable in the numerator and denominator poly-
nomials are each set to 1:

H(z1, z2) = 1 + z1 + z2 + 2z2
1 + 3z2

2 − z1z2 +

z2
1z2 − z2

1z
2
2 + z1z

3
2 − z3

1z
2
2 + 2z2

1z
3
2 + ...

Ĥ(z1, z2) =
P00 + P10z1 + P01z2 + P11z1z2

1 + Q10z1 + Q01z2 + Q11z1z2

. (14)

An inaccurate choice of the determinative set I(n,m) leads to
the erroneous statement that the Padé approximation is nonunique.
That choice was based on the determinative set I(n,m) = {(0, 0),
(1, 0), (0, 1), (1, 1), (2, 2), (2, 3), (2, 3)}.

As it was mentioned above the correct choice is I1(n,m) or I2(n,m)
in (2) or (3).

If I1(n,m) was chosen as a determinative set (I1(n,m) = {(0, 0),
(1, 0), (0, 1), (1, 1), (2, 0), (2, 1), (0, 3)}) (see Appendix C) then one ob-
tains the next equations for the denominator’s coefficients:

(2, 0) 0 = 2 + Q10

(2, 1) 0 = 1−Q10 + 2Q01 + Q11

(0, 3) 0 = 3 + Q01.

Then the coefficients will be

Q10 = −2

Q01 = −3

Q11 = 3.

The numerator’s coefficients may be found after substituting in
(15) for the rest of the points from the determinative set I1(n,m):
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(0, 0) P00 = 1

(1, 0) P10 = 1 + Q10

(0, 1) P01 = 1 + Q01

(1, 1) P11 = −1 + Q10 + Q01 + Q11. (15)

The final result for the 2-D Padé approximant will be

Ĥ(z1, z2) =
1− z1 − 2z2 − 3z1z2

1− 2z1 − 3z2 + 3z1z2

.

Example 2. The problem under consideration is to find the Padé
type 2-D approximation for the power series H(z1, z2) obtained from
the function

G(z1, z2) =
(1− z1)

4 · (1− z2)
5

(1− 0.5z1 − 0.5z2)
.

There was developed a special tool (by MATLAB) for M-D Padé type
approximation. The results of modelling are presented as the plots
of the error function |H(z1, z2) − Ĥ(z1, z2)|, where (z1, z2) ∈ A, A =
{z1 = ρeiφ1 , z2 = ρeiφ2}, φ1, φ2 = 0, ..., 2π, ρ = 0.99 and in table 1 (the
average approximation accuracy) for the following criteria:

• maximum of the discrepancy

Error1 = max
(z1,z2)∈A

(H(z1, z2)− Ĥ(z1, z2))

• mean square error

Error2 = MSE(H(z1, z2)− Ĥ(z1, z2)).

The determinative set I∗(n,m) was chosen in accordance with the
assumption(s) made in [1] and in other publications mentioned above.

From the results in table 1 it is obvious that:

• for any degrees of the numerator and denominator n and m,

• for any approximation error criteria,

the proposed method of choosing the determinative set I(n,m) always
gives a much better result.

The corresponding plots of approximation error are given below
(figures 1-6).
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Table 1: Modelling results

Degrees Maximum of the discrepancy Mean square error

n m for I1(n,m) for I∗(n,m) for I1(n,m) for I∗(n,m)

5, 5 1, 1 1.0 · 10−4 0.78 3.9 · 10−2 3500

5, 5 5, 5 1.5 · 10−4 1004 0.29 3.2 · 105

10, 10 1, 1 1.5 · 10−4 0.01 0.04 40.7

10, 10 4, 4 1.7 · 10−2 4.1 25 297

4 Summary

A new theorem concerning the extension of the results obtained in
classical 1-D rational approximation for rational approximation of M-
D functions was presented. There was obtained a full analog of the
classical Montessus de Ballore theorem for the convergence of the rows
of Padé’s tables.

A method for computing the transfer function of M-D systems
by their state-space representation was proposed. The algorithm is
conceptually simple and computationally easy. The method gives a
novel approach to identification and approximation of M-D discrete
linear systems.

It was mentioned the possibility to perform recursive computa-
tions. The developed software tool allowed comparison of the approx-
imation error for different choices of the determinative sets. The best
accuracy is achieved for the determinative sets I1,2(n,m), proposed in
this paper, for which the analog of the classical Montessus de Ballore
theorem was proved.
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its applications, volume 1071 of Lecture notes in Mathematics,
Springer-Verlag. Bad Honnef, 1983.

[11] B. Bandyopadhyay, A. Rao, and H. Singh. On Padé
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Appendix A

6

-

Determinative set I1(n,m)

z

*

**

***

n1

n2

n1 + 1 n1 + m1

m2

n2 + 1

n2 + m2

* - m2

** - m1

*** - m1 ·m2

z - (n1 + 1) · (n2 + 1)
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Appendix B

6

-

Determinative set I2(n,m)

z

* ***

**

n1

n2

n1 + 1 n1 + m1m1

n2 + 1

n2 + m2

* - m2

** - m1

*** - m1 ·m2

z - (n1 + 1) · (n2 + 1)
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Appendix C

6

-w w

w w

g

g

g

w{(0, 0), (1, 0), (0, 1), (1, 1)} = [0,n]

g(2, 0), (2, 1), (0, 2) = I(n,m)\ [0,n]
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Figure 1: Approximation error for I1(n,m) and n,m =
((10, 10), (1, 1)).
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Figure 2: Approximation error for I∗(n,m) and n,m =
((10, 10), (1, 1)).
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Figure 3: Approximation error for I1(n,m) and n,m = ((5, 5), (5, 5)).
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Figure 4: Approximation error for I∗(n,m) and n,m = ((5, 5), (5, 5)).
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Figure 5: Approximation error for I1(n,m) and n,m = ((5, 5), (1, 1)).
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Figure 6: Approximation error for I∗(n,m) and n,m = ((5, 5), (1, 1)).
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