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Abstract

The purpose of this paper is to investigate the possibility of ap-

plication of the genetic algorithm to quantum control of electronic

transitions between energy bands in solids. In particular, the hole

transitions between valence bands induced by ultrashort (femtosec-

ond duration) electric �eld pulse will be considered. Examples are

presented to illustrate the eÆciency of the algorithm in this case.
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1 Introduction

The problems of controlling various physical processes often are treated

within a framework of traditional optimization theories. However their

scope is limited, if control problems are complex or cannot be formulated

in classical mechanics terms. One of relatively new statistical algorithms in

practical optimization is the genetic algorithm (GA), which has originated

from the studies of cellular automata conducted by J. Holland [1] and

developed later by E. Goldberg [2]. More recent bibliography on GA can

be found in books [3, 4] or on the server site [5].

If the response surface of the system is fairly simple, as mentioned,

conventional nonlinear optimization and control theory techniques are ac-

ceptable. However, for many practical problems the response surface is

diÆcult to search, for example, due to high-dimensionality, discontinuities,
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noisy input functions, quantum mechanical nature of the problem. In this

case metaheuristic methods such as simulated annealing, GA, or messy GA

algorithms are more suitable [3, 4].

In the last decade the GA was applied to rather diverse optimization

problems such as laser control of chemical reactions [6, 7, 8], design of mul-

tilayered absorbing coatings for military planes that are invisible to radars

[9], simulation of electron transport in semiconductors at high electric �elds

[10], retrieval of optical parameters in optical measurements [11], cutting

stock problems, where minimization of scrap in cutting various widths of

paper from large rolls is desirable [12].

Recently it was demonstrated that with the help of GA one can optimize

shape of an ultrashort light pulse propagating in a single-mode optical �ber

so that dispersion is not detrimental for such optical pulse propagation. GA

generated optical pulses have rather complicated shape but they could be

transmitted over much larger distances without loss of intensity and pulse

width as compared to conventional optical pulses [13].

Here we are interested in application of the GA in obtaining femtosecond

pulses that optimally control the electronic quantum transitions between

energy bands in semiconductors. The target of the GA algorithm is to �nd

such a shape of ultrashort radiation pulse which transfers the quantum par-

ticle from lower to upper energy band with as large as possible probability

and at the same time the pulse energy remains as small as possible. In Sec.

2 the problem is formulated in terms of genetic algorithm and in Sec. 3

some representative simulation examples, where the algorithm is used to

optimize the parameters of the electric �eld pulse, are presented.

2 Formulation

The following time-dependent Schr�odinger equation written in atomic units

was solved

i
@j i
@t

= (H0+
F(t)

i

@

@k
)j i; (1)

where i =
p�1. The equation (1) describes evolution of three-component

vector j i in the Hilbert space under control of arbitrary time-dependent

electric �eld F(t) in three dimensional vector space. In (1), H0 is the valence

band Hamiltonian which in zero spin-orbit interaction limit is [14].
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where ki is the projection of the hole wave vector k on the Cartesian axes,

i = x; y; z, and N;M are the valence band parameters. The values M=12

and N=2 were used in the present simulation. Although the Schr�odinger

equation is linear with respect to wave function, it is nonlinear with respect

to pertubation term, i.e., time-dependent electric �eld. The Hamiltonian

(1) yields the following nondegenerate light (l) and doubly degenerate heavy

(h) mass eigenenergies (dispersion laws)

"l = (M +N)k2; (3)

"h =Mk2: (4)

The considered Hamiltonian has spherical symmetry, therefore, for sim-

plicity the electric �eld was assumed to have only x component. Then, only

kx component will change with time and will obey the equation

dkx=dt = Fx(t); (5)

which in fact is one of the characteristic equations of (1). Using the

characteristic equations the partial derivatives in (1) can be transformed

to total derivative. As a result, the equation (1) may be reduced to

i
dj i
dt

= H0(k)j i; (6)

where time-dependence of k is described by (5). The components ky and

kz do not vary with time in our case. The probabilities to detect the

hole in light pl(t) and heavy ph (t) mass bands at the moment t can be

calculated from the state vector j (t)i using appropriate time-dependent

unitary transformation matrix T (t)

jf(t)i = T (t)j (t)i; hf(t)jf(t)i � jf(t)j2 =
X

j=l;h1;h2

jfj(t)j2 = 1: (7)
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The last equality in (7) expresses the normalization condition of the

state vector in the Hilbert space. Then the probabilities (or respective

band populations) can be calculated from

pl = jflj2; ph = jfh1j2+ jfh2j2: (8)

The singular-value decomposition matrix which diagonalizes the Hamil-

tonian (2) was used to �nd unitary matrix T (t) at equally spaced moments

as described in [15].

Fig. 1. Time dependence of the probability pl to �nd the hole in l- band under Gaussian

pulse excitation, equation (9), at various amplitudes: Fx1=0.5�10�5, 0.65�10�5 ,

1�10�5. The other parameters are tp =3000, td=10 000, !=0.00135, �=0, '=0.

Fig. 1 shows typical numerical solutions of the Schr�odinger equation

(1), when harmonically varying electric �eld pulse modulated by Gaussian

envelope serves as a perturbation:

Fx(t) = Fx1 exp[� log 2(
t� td

tp
)2] sin[!t+�(t�td)2+']: (9)

Here, Fx1 is the amplitude, tp is the halfwidth of the pulse, td is the

delay, ! is the cyclic frequency, and ' is the phase. The coeÆcient �
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takes into account chirping of the frequency. The Schr�odinger equation

was solved as an initial value problem, assuming at the moment t = 0 that

the hole was in heavy hole mass band ( ph = 1, pl = 0) and possessed the

wave vector k0=(kx0; ky0; kz0)=0.015(
p
0:01,

p
0:495,

p
0:495). To enhance

the transition probability the frequency ! was equated to transition energy

at wave vector k0: ! = "l(k0)� "h(k0)=0.00135. In the Fig. 1 one can see

that there is an optimum electric �eld amplitude for the probability pl(tf )

at the �nal moment tf=20 000 to reach the maximum value.

It should be noted that in general case the probability pl(tf ) depends

on the overall shape of the electric �eld and can have many minima and

maxima on the response surface. A related problem of �nding an optimal

shape of the electric �eld was recently solved using the direct optimization

method of nonlinear programming [16].

In general, the problem of quantum control may be multivalued, since

according to considerations of [17] there may be \denumerably in�nite num-

ber of solutions to well-posed quantum-mechanical optimal-control prob-

lems". In the present work we have solved a simpler control problem, in

which the form of the electric �eld is assumed beforehand and only a �nite

number of parameters is varied to achieve the best cost function, or �tness

in terms of genetic algorithm de�ned as

� = max[jfl(tf )j2�a
Z

tf

0

F 2(t)dt] (10)

in the present work. The second, integral term in (10) is the penalty

function. The coeÆcient a is an arbitrary constant, that limits the total

energy of the radiation �eld. Thus, to satisfy the condition (10) one must

�nd such a form of the electric �eld pulse which simultaneously satis�es

two conicting requirements: the energy of the pulse should be minimal

but the transition probability at the end of the pulse should be maximal.

Fig. 2 illustrates schematically the GA algorithm for �nding the best

set of parameters in (9) that maximize the �tness function (10). In genetic

algorithm one considers a population of possible solutions that consists of

chromosomes or individuals (various sets of parameters Fx1; tp; !; �; ', in

our case).

The best set is found by selection, crossover and mutation operators

applied to successive generations of the population. The chromosomes

within a single population are encoded as strings of bits called genes. In

our case a single string consists of 15np bits, where np is the total number

of varied parameters. The number 15 means that in the present problem
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every parameter can assume 215 di�erent values. In our algorithm the gene

is allowed to assume either 0 or 1 value. The latters are called alleles.

Fig. 2. Schematic of production of a new generation in the present genetic algorithm.

On the right-hand side the selection, crossover and mutation operators over two

chromosomes (individuals) of the population are shown as 0 and 1 bits.

In the �rst generation the genes were �lled with random zeros and ones

and later were changed during implementation of the GA. In the simulation

we have used �ve individuals in population. Every new generation was

renovated after operations shown schematically in Fig. 2 were performed

over entire population. The selection operator sorts the population in

order of �tness de�ned by (10). After evaluation of the �tness of each

chromosome, a new population (o�spring) is formed from the old one via

the following two-step process.
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In the crossover the �ttest individuals interchange their genes according

to the genetic material of the parents. Uniform crossover with the crossover

probability equal 0.5 was used in the present algorithm. This means that

two chromosomes are cut into two parts with the probability 0.5 at random

position of the chromosomes, and then the partners exchange their sections

as shown schematically on the right-hand side of Fig. 2.

The other important GA operator is mutation, during which the value

of a bit at a randomly chosen position of the string is changed from 0 to 1

or from 1 to 0. A jump mutation was used with the mutation probability

0.02. The mutation operation, speaking popularly, brings fresh blood in

the subsequent generations, or in mathematical terms the mutation does

not allow the solution to be trapped in a local extremum. Elitism was

incorporated in the present GA, so that the best individuals were not lost

and replicated into the next generation. Now that we have described the

GA, in the next section the eÆciency of the algorithm will be illustrated in

the interband-transition quantum-control problem.

Fig. 3. Optimal electric �eld and the probability to �nd the hole in the light mass band

as a function of time at two pulse halfwidths, tp=2000 and 4500. Only Fx1 was varied

in the genetic algorithm in this case.
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3 Examples

The Fortran program that was used to solve the above discussed problem

consisted of two parts, of GA solver and of Schr�odinger equation solver.

The solvers were called one after another. The loop was terminated af-

ter a prescribed number of iterations has been performed. First, simple

case where optimal solution depends on a single parameter only will be

considered.

Fig. 3 shows the optimized shape of electric �eld and time-dependence

of the probability pl = jfl(t)j2 for a hole to be in the light mass band at two
pulse halfwidths, tp=2000 and 4500. Only Fx1 was optimized to satisfy the

condition for the best �tness. The other parameter values were constant as

in Fig.1. From Fig. 3 it is seen that a wider pulse having smaller amplitude

gives larger �nal probability pl(tf ).

Fig. 4. The best �tness �, probability at �nal time pl(tf ) and electric �eld amplitude

Fx1 versus pulse halfwidth. Only Fx1 was varied in the genetic algorithm in this case.

a=0.2�107.

Fig. 4 shows the dependence of pl(tf ), best �tness � and amplitude Fx1

on the pulse halfwidth. Wider electric pulses, in accordance with general
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considerations, require smaller Fx1 values to transfer the hole to light mass

band.

However, in case of extremely short pulses when tp � 2000 (=48 fs)

the �nal probability and the �tness decrease drastically as the pulse with is

shortened. Such behavior indicates that the shape of the controlling electric

�eld is far from optimal.

Fig. 5. The shape of the optimal electric �eld and the probability pl versus time when

four parameters Fx1, tp, �, and ' are varied.

Fig. 5 shows the pulse shape and the probability when four parame-

ters were allowed to be varied in GA in the range: Fx1=(1.2-3.6)�10�5 ,
tp=(1-2)�103, '=(0-�) and �=(0.05-0.3)�10�8 . The central frequency

remained �xed to resonance value, !=1.35�10�3. The genetic algorithm

yielded the following optimal values: Fx1=2.6�10�5, tp=1625, '=2.16 and
�=0.187�10�8. After 80 generations the �nal probability was pl(tf )=0.978
and the best �tness was �=0.819 at a=0.2�106. Fig. 6 shows the depen-

dence of the best �tness � and averaged over single population �tness �av

as a function of generation number.
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Fig. 6. The best and average �tness as a function of generation number.

The best �tness rises steeply with the generation number and then

slowly saturates as the global maximum is approached. This is a normal

behaviour found in most genetic algorithms [3]. However, the average �av

has a chaotic character. This is due to mutation operator. The mutation

probes various regions, which sometimes may be at large distances from

the global maximum, in the four-dimensional parameter space.

The mutation operation is required by the algorithm, in order for it

to know whether the maximum is indeed global and that the subsequent

probing points have not stuck in one of local extrema. The considered GA,

in addition to electric pulse optimization in the Schr�odinger equation, also

allows to search for optimal coeÆcients in the �tness function (10). For

example, in the considered case one can try to include the coeÆcient a in

the bits of the chromosome, and thus rather easily transform the program

to the dynamical optimization program, where optimization conditions are

controlled during implementation of the genetic algorithm. Of course, in

the considered example this has no sense, since the genetic algorithm with

respect to a is not stable: the program tries to eliminate the second term
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in (10) by pushing a value to zero.

In summary, it was shown that genetic algorithm can be used in �nding

optimal ultrashort pulses which induce coherent transitions between energy

bands in semiconductors. A satisfactory solution can be reached after

probing 20-40 points in the multiparameter space and after integration of

the Schr�odinger equation at these points. This negligible number of points

is to be compared to the total possible number of solutions, which is equal

(215)4 �1.15�1018 in the considered four-parameter space. The genetic

algorithm was found to be very robust and relatively fast for not too large

number of the probing points. In [16] the same quantum problem was

solved in a di�erent way, using the constrained minimization algorithm.

The latter algorithm relies on analytical methods (rather than on sta-

tistical methods as GA does) to �nd the global maximum. Due to re-

stricted class of the functions generated in the present GA, it was impos-

sible to compare directly the present results with those obtained earlier

using the constrained minimization algorithm, where much wider class of

control functions was generated. The considered genetic algorithm should

be generalized in this case to include larger class of possible functions. In

conclusion, the present work shows that the genetic algorithm can be used

to generate the shapes of electric �elds which induce ultrafast intervalence

charge carrier transitions.
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