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Abstract

We obtain a lower bound for the minimum over positive integers such

that the sum of certain powers of some integers is divisible by a prime

number, but none of these integers is divisible by this prime number.

Keywords: Waring's problem modulo prime number.

Let k > 2 be a positive integer and let p be a prime number. We put (k; p)

for the smallest  such that for any integer x the congruence

x � xk1 + xk2 + : : :+ xk(mod p)

is solvable in integers x1; x2; : : : ; x . The problem of �nding (k; p) is called

Waring's problem modulo p. Let also �(k; p) be the smallest � such that the

congruence

xk1 + xk2 + : : :+ xk� � 0(mod p)

has a nontrivial solution, i. e. not all xj are divisible by p.

Notice �rstly that substituting x = �1 into the �rst congruence we obtain

�(k; p) 6 (k; p) + 1: (1)

Secondly, if d is the greatest common divisor of k and p� 1 then (k; p) = (d; p)

and �(k; p) = �(d; p). Therefore, without loss of generality we can assume that

p � 1(mod k).

In 1927, G.H.Hardy and J.E. Littlewood [8] proved that

(k; p) 6 k: (2)

For p = k + 1 we have (k; p) = k, so that the inequality (2) cannot be improved

in general. However, if p is large compared to k the upper bound (2) can be



strengthened. In 1971, M.M.Dodson [5] showed that (k; p) < c1 log k if p > k2

(here and below c1; c2; ::: are some positive constants). Various improvements of

(2) were also obtained by M.M.Dodson and A. Tiet�av�ainen [6], J. D.Bovey [1],

A.Garsia and J.F.Voloch [7]. By (1) all these results imply that the inequality

�(k; p) 6 k + 1 (3)

can be strengthened for p > k+1. The inequalities better that (3) were obtained by

S.Chowla, H.B.Mann and E.G. Straus [3], I. Chowla [2]. In 1975, A. Tiet�av�ainen

[12] proved that �(k; p) 6 c2(")k
1=2+" for p > k + 1.

Using E.Dobrowolski's work on Lehmer's conjecture [4] S. V.Konyagin [10]

obtained new estimate for Gaussian sums which implies new upper bounds for

(k; p) and �(k; p). In particular, he proved [10, Theorem 3] the inequality

�(k; p) 6 c3(")(log k)
2+"

for p > k + 1 which gives an aÆrmative answer to Heilbronn's question [9].

Moreover, he conjectured that a stronger inequality �(k; p) 6 c4 log k holds and

gave lower bounds on (k; p) [10, Theorem 4] and �(k; p) [10, Theorem 5] for an

in�nite set of values k and p.

Our principal objective in this paper is to illustrate some of the techniques

used in the proof of [10, Theorem 5] and at the same time make a contribution

to the subject by improving slightly the lower bound on �(k; p) and giving more

precise information on primes p for which this lower bound holds.

Suppose f : N ! [1;1) is a nondecreasing function. Let k be a suÆciently

large positive integer. We will consider three cases:

i) f(k) 6 log k=2 log log k,

ii) log k=2 log log k < f(k) < 2 log k,

iii) 2 log k 6 f(k) 6 (log k)A for some A > 1.

Theorem. Let " > 0. There exist in�nitely many positive integers k and primes

p such that p � 1(mod k),

kmax

�
f(k);

log k

2 log log k

�
6 p 6 (1 + ")k max

�
f(k);

log k

2 log log k

�

and

1) �(k; p) > log k=2 log log k in case i),

2) �(k; p) > f(k)=6 in case ii),

3) �(k; p) > log k=5 log
�
f(k)= log k

�
in case iii).
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Remark. Taking, e. g., f(k) = (log k)A with A > 1 (case iii)) we obtain

�(k; p) >
log k

5(A� 1) log log k
;

whereas [10, Theorem 5] gives �(k; p) > (log k)1�".

Note that by (1) the lower bounds for �(k; p) imply the lower bounds for (k; p)

of the same shape.

Proof of the theorem. Let us �x a number % > 1 and let f(x) = f([x]) for

x 2 [1;1). We will show �rst that there exist in�nitely many s 2 N such that

f(%s) < %f(s). This will allow us to replace the function of the form f(k) =

(log k)A used in [10] by an arbitrary nondecreasing function satisfying i), ii) or iii).

Indeed, suppose that f(%s) > %f(s) for all s > s0. Then

1 6 f(s0) 6
1

%
f(%s0) 6 : : : 6

1

%m
f(%ms0) 6

�
log %ms0

�A
%m

<
1

2

for all suÆciently large m, a contradiction.

Let s be one of these. We will show that there is an integer k, s 6 k 6 %s, for

which the statement of the theorem holds. Suppose t is a smallest prime greater

or equal than max
�
%f(%s); % log(%s)=2 log log(%s)

	
.

Now we will estimate the number of primes in the arithmetic progression

A(s; t; %) = fst+ 1; (s+ 1)t+ 1; : : : ; [%s]t+ 1g:

Suppose p = kt+1 is a prime in A(s; t; %) and let � be a primitive root modulo p.

Put � = �k. Clearly, �t � (mod p) and each number xk modulo p is congruent to

one of the numbers 0; 1; �; �2; : : : ; �t�1. If �(k; p) 6 �0, there is a set of nonnegative

integers l0; l1; : : : ; lt�1 such that

0 < l0 + l1 + : : :+ lt�1 6 �0 (4)

and
t�1X
j=0

lj�
j
� 0(mod p): (5)

Let

P (z) =

t�1X
j=0

ljz
j

be a polynomial corresponding to a �xed set l0; l1; : : : ; lt�1. Consider the resultant

of P (z) and Q(z) = 1 + z + : : :+ zt�1. If �0 is equal to the right hand side of 1),
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2) or 3), then �0 < t. Combining this with the fact that Q(z) is irreducible we get

that Res(P;Q) is a nonzero integer. By Hadamard's inequality

jRes(P;Q)j 6 �t0t
t=2 < t3t=2:

On the other hand, let p be a prime in A(s; t; p) for which the inequality opposite

to 1), 2) or 3) holds and let � be a respective power of a primitive root. Then

for at least one of the sets satisfying (4) we have P (�) � 0(mod p) (see (5)) and

Q(�) � 0(mod p). Thus, p divides Res(P;Q) for at least one of the polynomials

P (z). Suppose there are r such distinct primes which divide jRes(P;Q)j. Then

(st+ 1)r < t3t=2;

and

r <
3t log t

2 log s
6

3t log t

2 log(k=%)
: (6)

In case i) we have
% log k

2 log log k
6 t <

%2 log k

2 log log k
;

so that r < 3%3=4 < 1 if % is suÆciently close to 1. This shows that for all primes

in A(s; t; %) the inequality 1) holds. The smallest prime in A(s; t; %) is greater than

st > kt=% > k log k=2 log log k

and smaller than

%2st 6 %2kt < %4k log k=2 log log k:

This completes the proof of 1), since in case i) we have

max

�
f(k);

log k

2 log log k

�
=

log k

2 log log k
:

In cases ii) and iii) the number of sets satisfying (4) is equal to

�0X
j=1

�
j + t� 1

t� 1

�
:

By Stirling's formula, this does not exceed

�0

�
�0 + t

t

�
< c5�0

�
1 +

�0

t

�t�
1 +

t

�0

��0
< c5�0 exp

�
�0 log

�
e(1 + t=�0)

��
:
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Hence, the number of primes in A(s; t; %) for which the inequality opposite to 2)

(or 3)) holds is less than (see (6))

3t log t

2 log(k=%)

�0X
j=1

�
j + t� 1

t� 1

�
< t3 exp

�
�0 log

�
e(1 + t=�0)

��
: (7)

In case 2) �0 = f(k)=6,

t < %2f(%s) < %3f(s) 6 %3f(k) < 2%3 log k;

so that (7) is less than k0:99.

In case 3) �0 = log k=5 log
�
f(k)= log k

�
,

t < %3f(k) < %3(log k)A;

so that (7) is less than

%9(log k)3A exp

�
log k

�
1 + log

�
1 + 5%3

�
f(k)= log k

�
log

�
f(k)= log k

��
5 log

�
f(k)= log k

�
�
:

Since f(k)= log k > 2, this expression is less than k0:9. In both cases 2) and 3) we

see that the number of primes in A(s; t; %) for which the inequality opposite to 2)

(or 3)) holds is less than k0:99.

By the asymptotic distribution law for primes in arithmetic progressions [11,

Theorem 8.3] the set A(s; t; %) contains at least

(1� Æ)
%st

'(t) log(%st)
� (1 + Æ)

st

'(t) log(st)
(8)

primes for a given Æ > 0 and suÆciently large s. Since '(t) = t� 1 and

t < %2f(%s) < (log s)A+1;

(8) is greater than
s

(log s)2
> k0:991:

This proves 2) and 3), since the smallest prime in A(s; t; %) is greater than

st > k(f(%s) > k f(k)

and smaller than

%2st 6 %2kt < %4kf(%s) < %5k f(k):
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Apie Varingo problema� pirminiam moduliui

A.Dubickas

Straipsnyje gautas i�vertis i�s apa�cios p-ad�zioje Varingo problemoje, kai tam tikra

sveiku�ju� skai�ciu� laipsniu� suma dalijasi i�s pirminio skai�ciaus.
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