ON WARING'S PROBLEM FOR A PRIME MODULUS

A. Dubickas
Department of Mathematics and Informatics, Vilnius University, Naugarduko 24,
LT-2006 Vilnius, Lithuania
e-mail: arturas.dubickas@maf.vu.lt

Abstract
We obtain a lower bound for the minimum over positive integers such that the sum of certain powers of some integers is divisible by a prime number, but none of these integers is divisible by this prime number.
Keywords: Waring's problem modulo prime number.

Let $k \geqslant 2$ be a positive integer and let p be a prime number. We put $\gamma(k, p)$ for the smallest γ such that for any integer x the congruence

$$
x \equiv x_{1}^{k}+x_{2}^{k}+\ldots+x_{\gamma}^{k}(\bmod p)
$$

is solvable in integers $x_{1}, x_{2}, \ldots, x_{\gamma}$. The problem of finding $\gamma(k, p)$ is called Waring's problem modulo p. Let also $\theta(k, p)$ be the smallest θ such that the congruence

$$
x_{1}^{k}+x_{2}^{k}+\ldots+x_{\theta}^{k} \equiv 0(\bmod p)
$$

has a nontrivial solution, i.e. not all x_{j} are divisible by p.
Notice firstly that substituting $x=-1$ into the first congruence we obtain

$$
\begin{equation*}
\theta(k, p) \leqslant \gamma(k, p)+1 \tag{1}
\end{equation*}
$$

Secondly, if d is the greatest common divisor of k and $p-1$ then $\gamma(k, p)=\gamma(d, p)$ and $\theta(k, p)=\theta(d, p)$. Therefore, without loss of generality we can assume that $p \equiv 1(\bmod k)$.

In 1927, G. H. Hardy and J. E. Littlewood [8] proved that

$$
\begin{equation*}
\gamma(k, p) \leqslant k \tag{2}
\end{equation*}
$$

For $p=k+1$ we have $\gamma(k, p)=k$, so that the inequality (2) cannot be improved in general. However, if p is large compared to k the upper bound (2) can be
strengthened. In 1971, M. M. Dodson [5] showed that $\gamma(k, p)<c_{1} \log k$ if $p>k^{2}$ (here and below c_{1}, c_{2}, \ldots are some positive constants). Various improvements of (2) were also obtained by M. M. Dodson and A. Tietäväinen [6], J. D. Bovey [1], A. Garsia and J.F. Voloch [7]. By (1) all these results imply that the inequality

$$
\begin{equation*}
\theta(k, p) \leqslant k+1 \tag{3}
\end{equation*}
$$

can be strengthened for $p>k+1$. The inequalities better that (3) were obtained by S. Chowla, H. B. Mann and E. G. Straus [3], I. Chowla [2]. In 1975, A. Tietäväinen [12] proved that $\theta(k, p) \leqslant c_{2}(\varepsilon) k^{1 / 2+\varepsilon}$ for $p>k+1$.

Using E. Dobrowolski's work on Lehmer's conjecture [4] S. V.Konyagin [10] obtained new estimate for Gaussian sums which implies new upper bounds for $\gamma(k, p)$ and $\theta(k, p)$. In particular, he proved [10, Theorem 3] the inequality

$$
\theta(k, p) \leqslant c_{3}(\varepsilon)(\log k)^{2+\varepsilon}
$$

for $p>k+1$ which gives an affirmative answer to Heilbronn's question [9]. Moreover, he conjectured that a stronger inequality $\theta(k, p) \leqslant c_{4} \log k$ holds and gave lower bounds on $\gamma(k, p)$ [10, Theorem 4] and $\theta(k, p)$ [10, Theorem 5] for an infinite set of values k and p.

Our principal objective in this paper is to illustrate some of the techniques used in the proof of [10, Theorem 5] and at the same time make a contribution to the subject by improving slightly the lower bound on $\theta(k, p)$ and giving more precise information on primes p for which this lower bound holds.

Suppose $f: \mathbb{N} \rightarrow[1 ; \infty)$ is a nondecreasing function. Let k be a sufficiently large positive integer. We will consider three cases:
i) $f(k) \leqslant \log k / 2 \log \log k$,
ii) $\log k / 2 \log \log k<f(k)<2 \log k$,
iii) $2 \log k \leqslant f(k) \leqslant(\log k)^{A}$ for some $A>1$.

Theorem. Let $\varepsilon>0$. There exist infinitely many positive integers k and primes p such that $p \equiv 1(\bmod k)$,

$$
k \max \left\{f(k) ; \frac{\log k}{2 \log \log k}\right\} \leqslant p \leqslant(1+\varepsilon) k \max \left\{f(k) ; \frac{\log k}{2 \log \log k}\right\}
$$

and

1) $\theta(k, p)>\log k / 2 \log \log k$ in case i),
2) $\theta(k, p)>f(k) / 6$ in case ii),
3) $\theta(k, p)>\log k / 5 \log (f(k) / \log k)$ in case iii).

Remark. Taking, e.g., $f(k)=(\log k)^{A}$ with $A>1$ (case iii)) we obtain

$$
\theta(k, p)>\frac{\log k}{5(A-1) \log \log k}
$$

whereas [10, Theorem 5] gives $\theta(k, p)>(\log k)^{1-\varepsilon}$.
Note that by (1) the lower bounds for $\theta(k, p)$ imply the lower bounds for $\gamma(k, p)$ of the same shape.
Proof of the theorem. Let us fix a number $\varrho>1$ and let $f(x)=f([x])$ for $x \in[1 ; \infty)$. We will show first that there exist infinitely many $s \in \mathbb{N}$ such that $f(\varrho s)<\varrho f(s)$. This will allow us to replace the function of the form $f(k)=$ $(\log k)^{A}$ used in [10] by an arbitrary nondecreasing function satisfying i), ii) or iii). Indeed, suppose that $f(\varrho s) \geqslant \varrho f(s)$ for all $s \geqslant s_{0}$. Then

$$
1 \leqslant f\left(s_{0}\right) \leqslant \frac{1}{\varrho} f\left(\varrho s_{0}\right) \leqslant \ldots \leqslant \frac{1}{\varrho^{m}} f\left(\varrho^{m} s_{0}\right) \leqslant \frac{\left(\log \varrho^{m} s_{0}\right)^{A}}{\varrho^{m}}<\frac{1}{2}
$$

for all sufficiently large m, a contradiction.
Let s be one of these. We will show that there is an integer $k, s \leqslant k \leqslant \varrho s$, for which the statement of the theorem holds. Suppose t is a smallest prime greater or equal than $\max \{\varrho f(\varrho s) ; \varrho \log (\varrho s) / 2 \log \log (\varrho s)\}$.

Now we will estimate the number of primes in the arithmetic progression

$$
A(s, t, \varrho)=\{s t+1,(s+1) t+1, \ldots,[\varrho s] t+1\} .
$$

Suppose $p=k t+1$ is a prime in $A(s, t, \varrho)$ and let α be a primitive root modulo p. Put $\beta=\alpha^{k}$. Clearly, $\beta^{t} \equiv(\bmod p)$ and each number x^{k} modulo p is congruent to one of the numbers $0,1, \beta, \beta^{2}, \ldots, \beta^{t-1}$. If $\theta(k, p) \leqslant \theta_{0}$, there is a set of nonnegative integers $l_{0}, l_{1}, \ldots, l_{t-1}$ such that

$$
\begin{equation*}
0<l_{0}+l_{1}+\ldots+l_{t-1} \leqslant \theta_{0} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{t-1} l_{j} \beta^{j} \equiv 0(\bmod p) \tag{5}
\end{equation*}
$$

Let

$$
P(z)=\sum_{j=0}^{t-1} l_{j} z^{j}
$$

be a polynomial corresponding to a fixed set $l_{0}, l_{1}, \ldots, l_{t-1}$. Consider the resultant of $P(z)$ and $Q(z)=1+z+\ldots+z^{t-1}$. If θ_{0} is equal to the right hand side of 1),
2) or 3), then $\theta_{0}<t$. Combining this with the fact that $Q(z)$ is irreducible we get that $\operatorname{Res}(P, Q)$ is a nonzero integer. By Hadamard's inequality

$$
|\operatorname{Res}(P, Q)| \leqslant \theta_{0}^{t} t^{t / 2}<t^{3 t / 2}
$$

On the other hand, let p be a prime in $A(s, t, p)$ for which the inequality opposite to 1), 2) or 3) holds and let β be a respective power of a primitive root. Then for at least one of the sets satisfying (4) we have $P(\beta) \equiv 0(\bmod p)$ (see (5)) and $Q(\beta) \equiv 0(\bmod p)$. Thus, p divides $\operatorname{Res}(P, Q)$ for at least one of the polynomials $P(z)$. Suppose there are r such distinct primes which divide $|\operatorname{Res}(P, Q)|$. Then

$$
(s t+1)^{r}<t^{3 t / 2}
$$

and

$$
\begin{equation*}
r<\frac{3 t \log t}{2 \log s} \leqslant \frac{3 t \log t}{2 \log (k / \varrho)} \tag{6}
\end{equation*}
$$

In case i) we have

$$
\frac{\varrho \log k}{2 \log \log k} \leqslant t<\frac{\varrho^{2} \log k}{2 \log \log k}
$$

so that $r<3 \varrho^{3} / 4<1$ if ϱ is sufficiently close to 1 . This shows that for all primes in $A(s, t, \varrho)$ the inequality 1$)$ holds. The smallest prime in $A(s, t, \varrho)$ is greater than

$$
s t \geqslant k t / \varrho \geqslant k \log k / 2 \log \log k
$$

and smaller than

$$
\varrho^{2} s t \leqslant \varrho^{2} k t<\varrho^{4} k \log k / 2 \log \log k .
$$

This completes the proof of 1), since in case i) we have

$$
\max \left\{f(k) ; \frac{\log k}{2 \log \log k}\right\}=\frac{\log k}{2 \log \log k}
$$

In cases ii) and iii) the number of sets satisfying (4) is equal to

$$
\sum_{j=1}^{\theta_{0}}\binom{j+t-1}{t-1}
$$

By Stirling's formula, this does not exceed

$$
\theta_{0}\binom{\theta_{0}+t}{t}<c_{5} \theta_{0}\left(1+\frac{\theta_{0}}{t}\right)^{t}\left(1+\frac{t}{\theta_{0}}\right)^{\theta_{0}}<c_{5} \theta_{0} \exp \left(\theta_{0} \log \left(e\left(1+t / \theta_{0}\right)\right)\right)
$$

Hence, the number of primes in $A(s, t, \varrho)$ for which the inequality opposite to 2) (or 3)) holds is less than (see (6))

$$
\begin{equation*}
\frac{3 t \log t}{2 \log (k / \varrho)} \sum_{j=1}^{\theta_{0}}\binom{j+t-1}{t-1}<t^{3} \exp \left(\theta_{0} \log \left(e\left(1+t / \theta_{0}\right)\right)\right) \tag{7}
\end{equation*}
$$

In case 2) $\theta_{0}=f(k) / 6$,

$$
t<\varrho^{2} f(\varrho s)<\varrho^{3} f(s) \leqslant \varrho^{3} f(k)<2 \varrho^{3} \log k
$$

so that (7) is less than $k^{0.99}$.
In case 3) $\theta_{0}=\log k / 5 \log (f(k) / \log k)$,

$$
t<\varrho^{3} f(k)<\varrho^{3}(\log k)^{A}
$$

so that (7) is less than

$$
\varrho^{9}(\log k)^{3 A} \exp \left(\frac{\log k\left(1+\log \left(1+5 \varrho^{3}(f(k) / \log k) \log (f(k) / \log k)\right)\right.}{5 \log (f(k) / \log k)}\right)
$$

Since $f(k) / \log k \geqslant 2$, this expression is less than $k^{0.9}$. In both cases 2) and 3) we see that the number of primes in $A(s, t, \varrho)$ for which the inequality opposite to 2) (or 3)) holds is less than $k^{0.99}$.

By the asymptotic distribution law for primes in arithmetic progressions [11, Theorem 8.3] the set $A(s, t, \varrho)$ contains at least

$$
\begin{equation*}
(1-\delta) \frac{\varrho s t}{\varphi(t) \log (\varrho s t)}-(1+\delta) \frac{s t}{\varphi(t) \log (s t)} \tag{8}
\end{equation*}
$$

primes for a given $\delta>0$ and sufficiently large s. Since $\varphi(t)=t-1$ and

$$
t<\varrho^{2} f(\varrho s)<(\log s)^{A+1}
$$

(8) is greater than

$$
\frac{s}{(\log s)^{2}}>k^{0.991}
$$

This proves 2) and 3), since the smallest prime in $A(s, t, \varrho)$ is greater than

$$
s t \geqslant k(f(\varrho s) \geqslant k f(k)
$$

and smaller than

$$
\varrho^{2} s t \leqslant \varrho^{2} k t<\varrho^{4} k f(\varrho s)<\varrho^{5} k f(k)
$$

ACKNOWLEDGEMENTS

This work was partially supported by Lithuanian State Studies and Science Foundation.

REFERENCES

1. J. D. Bovey, A new upper bound for Waring's problem (mod $p)$, Acta Arith. 32 (1977), pp. 157-162.
2. I. Chowla, On Waring's problem $(\bmod p)$, Proc. Ind. Nat. Acad. Sci. India Sect. A 13 (1943), pp. 195-200.
3. S. Chowla, H.B.Mann and E. G.Straus, Some applications of the CauchyDavenport theorem, Norske Vid. Selsk. Forh. Trondheim 32 (1959), pp. 7480.
4. E. Dobrowolski, On a question of Lehmer and the number of irreducible factors of a polynomial, Acta Arith. 34 (1979), pp. 391-401.
5. M. M. Dodson, On Waring's problem in GF[p], Acta Arith., 19 (1971), pp.147173.
6. M. M. Dodson and A. Tietäväinen, A note on Waring's problem in $G F[p]$, Acta Arith., 30 (1976), pp. 159-167.
7. A. Garsia and J.F. Voloch, Fermat curves over finite fields, J. Number Theory 30 (1988), pp. 345-356.
8. G.H.Hardy and J.E.Littlewood, Some problems of "Partitio Numerorum". VIII: The number $\Gamma(k)$ in Waring's problem, Proc. London Math. Soc. 28(2) (1927), pp. 518-542.
9. H. Heilbronn, Lecture notes on additive number theory $\bmod p$, Calif. Inst. Technology, Pasadena, CA, 1964.
10. S. V.Konyagin, On estimates of Gaussian sums and Waring's problem for a prime modulus, Proc. Steklov Inst. of Math. Issue 1, 1994, pp. 105-117.
11. K. Prachar, Primzahlverteilung, Springer-Verlag, Berlin, 1971.
12. A. Tietäväinen, Proof of a conjecture of S. Chowla, J. Number Theory 7 (1975), pp. 353-356.

Apie Varingo problema̧ pirminiam moduliui

A. Dubickas

Straipsnyje gautas ijvertis iš apačios p-adžioje Varingo problemoje, kai tam tikra sveikưju̧ skaičiu̧ laipsniu̧ suma dalijasi iš pirminio skaičiaus.

Received: September 30, 1999
Accepted: October 27, 1999

