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Abstract

Some general properties of the relativistic p-dimensional surface imbed-

ded into D-dimensional space-time and its reduction to the simplest

case of the quadratic Lagrangian are considered. The solutions of the

equations of motion of such model for the p-brane with arbitrary topology

and massless eigenstates, as well as with critical dimension after quan-

tization are presented. Some generalizations for the supermembrane are

discussed.

PACS Nos.: 03.70, 11.17.

INTRODUCTION

Nowadays not only one-dimensional relativistic objects { strings, but also

the objects of higher dimension { p-dimensional (super)p-branes are suggested

as substantial physical and mathematical objects. As for their properties, much

less about those of p-branes is known this far [1{7].

The necessity to consider multidimensional objects with more than one space

dimensions arises in various parts of the �eld theory. In particular, we may try to

consider the (super)p-brane theory as fundamental, like the (super)string theory

(p = 1) [8], as well as an e�ective model of supergravity, as shown in [9]. A

possible correlation between ordinary and rigid (super)p-branes and, in particular,

the correlation between the rigid string and the ordinary membrane at p=2 has

been considered in [10, 11]. The calculation of the static potential for the p-brane

compacti�ed on the space-times of the various forms has been considered in [12, 13].



For the supermembrane (p = 2), action is a direct multidimensional general-

ization of the string action [8]:
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where T is the parameter of tension with the dimension [M ]
(p+1)

or [L]
�(p+1)

,

�
i (i = 0; 1; :::; p) are the world-volume coordinates, hij is the metric of the

world-volume, h=�det(hij), �ab is the Minkowski space-time metric, and �A
i =

@iZ
M
E
A
M ; A = a; �; M = �; _�. Here, ZM are the coordinates of the D-

dimensional curved superspace, and E
A
M is the supervielbein. The 3-form B =

1
6
E
A
E
B
E
C
BCBA; E

A = dZ
M
E
A
M is the potential for the closed 4-form H = dB.

(See Appendix for details of the conventions).

The action (1) is invariant respecting the global D-dimensional Poincar�e trans-

formations, as well as it is invariant respecting local parametrizations of the world-

volume with the parameters �i(�):
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with an anticommuting space-time spinor k�(�), and the matrix � de�ned by

� =
1
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h
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ijk�a
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c
k�abc : (6)

Unlike the two-dimensional string action, the action (1) at p 6= 1 is not invariant

respecting local conformal transformations with the parameter �(�):

ÆZ
M = 0; (7)

Æh
�� = �(�)h�� : (8)

Varying the initial action leads to essentially non-linear �eld equations
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where 
A
B is the 1-form connection in the D-dimensional curved superspace, and

to the "embedding" equation

hij = �a
i�

b
j�ab ; (11)

which remains non-linear at any gauge. Their solution is known for certain simplest

cases [1].

For open membranes, or for the existing open dimensions, at �i = �
a
i ; �i = �

b
i

the border condition is observed on the coordinates ZM (�):

Z
d
3
�@i(ÆZ

a
p
hh

ij�ja + 3"ijkÆZA�B
j �

C
k BCBA) = 0; (12)

where hij is given by equation (11).

Any new solution of the equations of motion (9) and (10) describing the motion

of a multidimensional relativistic object, on one hand, is of interest in itself, and

on the other hand, it serves as a starting point for semiclassical quantization, when

the minor variations respecting the known classical solution are investigated.

We have considered a mathematically simpler case at p=2. M.Du� in [3]

presents a p-dimensional generalization of the supermembrane action, which has

similar properties.

In the general case motion of the (super)p-brane is complicate. There are no

gauge condition when equation of motion become linear. This is in a contrary to

(super)-string model when conformal or orthogonal gauge conditions turn equa-

tions of motion to linear ones. In the general case, when non-linear dynamic

system is too complicated, it seems reasonable to start from the some simpi�er

model. This work aims to investigate a special type of action corresponding to the

quadratic Lagrangian model of the relativistic (super)p-brane. Such approach is

possible in all cases when the (super)p-brane model appears.

THE MODEL OF THE BOSONIC p-BRANE NEAR STATIONARY POINT

OF ACTION

Let us consider as a less complicated the case of the bosonic relativistic p-brane.

This means that we are considering the action

S = �T
Z
d
p+1

�jdet(@�X�
@�X

�
g��)j

1
2 ; (13)

where � = (�; �1; : : : ; �p), �� 2 [�a�; �
b
�], �

a
�; �

b
� are the initial (a) and �nal (b)

meanings of the parameter ��, X
� = X

�(�; �1; : : : ; �p); � = 0; : : : ; D�1, where
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D is the dimension of the Minkowski space-time with the metric g�� ; � = 0; : : : ; p,

where p is the space dimension of p-brane.

The equation of motion

@�(
p
hh

��
@�X

�) = 0; (14)

resulting from (13), in the case the border conditions are taken into account, may

be obtained from the classically equivalent action

S = �
T

2

Z
d
p+1

�

p
h[h��@�X

�
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�
g�� � (p� 1)] ; (15)

where an auxiliary metric h�� on the world-volume of the membrane is intro-

duced. The actions (13) and (15) to be equivalent, the metric h�� must obeys the

imbedding condition:

h�� = @�X
�
@�X

�
��� ; (16)

like the embedding condition (11) in the supersymmetric case.

Besides, we must check if the constraint conditions p+ 1 are observed:

P
�
� X�;i = 0; P

2 + T
2
dethij = 0; (17)

where P�
� = ÆL=Æ _X�

; 1 � i; j � p.

There are at least two ways: to investigate small variations respecting the

classical solutions and to introduce the quadratic action as a new independent

action of the linearized version of the p-brane. Let us consider both of these

possibilities.

We cannot quantize action (15) at p > 1, but we can introduce a certain

simpli�cation. Let Y � be a variation respecting the classical solution X
�
0 :

X
� = X

�
0 + "Y

�
: (18)

Then the equation of motion (14) turns into

@�P
�� = @�P

��
0 + "@�C

�� + o(") = 0 : (19)

The requirement of the X�-solution of the equation of motion being the �rst

order in " leads to the equation @�C
�� = 0:

@�
@A

@X�;�

+
3

2h0

pX
�=0

@�(A
@h

0

@ _X0�

) = 0; (20)
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where A =
Pp

i;j=0 @iX
�
0 @jY�

�h0ij ; h
0
ij = @iX

�
0 @jX0�; h

0 = deth
0
ij .

The exact expression for the equation of motion (20) depends on the solution

X
�
0 (�). For instance we may consider special type of the solution with one or few

compacti�ed dimensions. The solution for the toroidal membrane on the space-

time with the topology RD�2 � S
1 � S

1 is

X
1 = l1R1�; X

2 = l2R2�; X
I = 0; I = 3; :::; D; (21)

where 0 � � � 2�; 0 � � � 2�; R1 and R2 are the radii of the two circles, and

l1 and l2 are the integers characterizing the winding numbers of the membrane

around the two circles.

In the light cone gauge, X+ = p
+
� . The world-volume metric on this back-

ground is at,

gij = diag(�(l1l2R1R2)
2
; (l1R1)

2
; (l2R2)

2); (22)

and X� is

X
� =

1

2p+
(l1l2R1R2)

2
� : (23)

If we consider the uctuations Z� of the transverse coordinate around this

classical solution

X
1 = � + Z

1
; X

2 = �+ Z
2
; X

I = Z
I
; I = 3; :::; D; (24)

then, keeping only the terms of the linear order in Z, we �nd

�Z1 = @�@�Z
1 + @�@�Z

2
; �Z2 = @�@�Z

2 + @�@�Z
1
; �ZI = @�@�Z

I + @�@�Z
I
; (25)

We may �x the remaining gauge invariance. The gauge choice g0� = 0 can be

solved for @aX
�. Upon linearization on our background, this constraint gives

@�
_Z1 = @�

_Z2
; (26)

from which follows the possibility

@�Z
1 = @�Z

2
: (27)

This allows us to rewrite (24) in the form of the standard wave equations:

�Z1 = @�@�Z
1 + @�@�Z

1
; �Z2 = @�@�Z

2 + @�@�Z
2
; (28)

�ZI = @�@�Z
I + @�@�Z

I
: (29)
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Equations of motion (28) and (29) are a special case of the equations (20).

But here it should be noted that, as follows from (22) and (26), there is a special

gauge condition, in which the general equation (20) turns into the ordinary wave

equation.

The way described above is the investigation of small variations considering

the classical solution. We may as well try to investigate the original action (13).

Let us introduce new variables �X�:

@
� �X� =

p
jhjh��@�X�

: (30)

This means that

�h = det(@� �X�
@�

�X�) = sign(h)jhj(p+1)2+1
: (31)

With these variables, the equation of motion (14) turns into the wave equation

@�@
� �X� = 0 ; (32)

and the conditions of the constrains (17) turn into

�P 2 + T
2j�hj�

p
2

(p+1)2+1 det(@i �X
�
@j

�X�) = 0; (33)

where �P� � _�X� and i; j = 1; : : : ; p are space indexes of the membrane.

For a p-brane homeomorphous to the direct product Dp0 � T
p1 � S

p2(p =

p0 + p1 + p2), the coordinates �i parametrizing the disk Dp0 are �i 2 [0;�], for

which

X
�(�; : : : ; �i = 0; : : :) 6= X

�(�; : : : ; �i = �; : : :) ; (34)

unlike for the coordinates �i parametrizing the torus T p1 or sphere Sp2 , where the

condition of the periodicity is observed:

X
�(�; : : : ; �i; : : :) = X

�(�; : : : ; �i + �; : : :) (35)

or

X
�(�; : : : ; �i; : : :) = X

�(�; : : : ; �i + 2�; : : :) : (36)

The values of parameters �i for the sake of convenience belong to areas [0;�] or

[0; 2�] to get direct correspondence to the string (p = 1), where we have � 2 [0;�]

for open string and � 2 [0; 2�] for closed one.

The border conditions for the p-brane in bar variables �X� are the same like

ordinary variables X�. At the same time, equations of motion in the X� variables
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is much more complicated then in �X� variables. If we can express the motion of

the p-brane in �X� variables with the equation of motion (32) or in the case when

X
� variables obeys the same equation of motion, then the solution of this equation

may be written.

Thus, for the p-brane homeomorphous Dp0 � T
p1 � S

p2 (p = p0 + p1 + p2) the

solution of the equation of motion may be as follows:

X
�(�) = X

� +
1

�pT
p
�
� +

+i

r
2p0�1

�p0T

X
n

n
�1(��

n
e
�in� � �

��
n
e
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p0Y
i=1

cosni�i +

+i

r
2p1�1

�p1T

X
m

m
�1
�
(��
m
e
�2im� � �
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m
e
2im� )e�2i �m��+ (37)

+(��
m
e
�2im� � �

��
m
e
2im� )e2i �m��

�
+

+i

r
2p2�1

�p2T

X
k

k
�1
h
(�

�
k
e
�ik� � �

��
k
e
ik�
e
�i�k��+

+(�
�
k
e
�ik� � �

��
k
e
ik� )ei

�k��
i
;

where X� are the initial coordinates of the mass centrum and p� is the impulse of

the mass centrum of the membrane at

n 2 �Np0n0; n =
q
n21 + :::+ n2p0

;

m 2 �Np1n0; m =
q
m2

1 + :::+m2
p1

;

k 2 �Np1n0; k =
q
k21 + :::+ k2p2 ; (38)

�m�� � mp0+1�p0+1 + :::+mp0+p1�p0+p1 ;

�k�� � kp0+p1+1�p0+p1+1 + :::+ kp�p :

where �Nmn0 meansm-dimensional grade of natural numbers �N = 0; 1; : : :, without

zero.

QUANTIZATION OF THE MODEL

To investigate the quantum properties of the p-brane we would like to have

at our disposal the appropriate classical properties of the original p-brane. The

motion of the p-brane in the �X� variables is the same as described by the original

action (13), where all diÆculties are hidden in the constraint conditions (33).

Finding the solution of the wave equation obeying these constraint conditions is

7



an intricate task in itself, and its solution is yet unknown. As a �rst step, let us

consider the quadratic action under X� variables, which may be interpreted as an

action in the original variables X�:

S = �
T

2

Z
d
p+1

�h
��
@�X

�
@�X

�
g�� ; (39)

where h�� = �
��
; �; � = 0; :::; p; g�� = ��� ; �; � = 0; :::; D � 1.

The action (39) is invariant respecting the global D-dimensional Poincar�e

transformations, but not invariant under local conformal and reparametrization

transformations.

The absence of reparametrizations means the absence of the constraints. This

allows an easy quantization of the quadratic action.

Consider X�(�) for Dp
p-brane. Then the solution of the equation of motion

(32) is like that of (37), and the density of the energy-momentum tensor

P
�
� = �

@L
@ _X�

=

= �i

r
2p�1T

�p

X
n

(��
n
e
�in� � �

��
n
e
in� )

pY
i=1

cosni�i; (40)

�
�
0 =

1
p
2p+1�pT

p
�
; n 2 �Np

:

In the light-cone coordinates with assumption that tangent components ��
n

are physical meaningless, like in the string case, we have from the commutation

relations

[X�(�; �); P �
� (�; �

0)] = i�
��
Æ(� � �

0) (41)

on the quantum level

[�i
m
; �

+j
n
] = n�

ij
Æm;n ; (42)

where ���
n
! �

+�
n

:

The quantum Hamiltonian H =
R �
0
d
p
�(P�

�
_X� �L) is

H =
T

2

Z �

0

( _X2 +X
2
1 + :::+X

2
p )d

p
� =

= �
2
0 +

X
n

�
+
n
�n +

D � p� 1

2

X
n

n; n 2 �Npn0: (43)

As could be expected, the excitations of the model with the quadratic La-

grangian are an ordinary sum of the in�nite number of harmonic oscillations

described by creating and annihilating operators.

8



The zero-point energy of the in�nite number oscillators (the Casimir energy)

diverges, and for correct de�nition it must be regularized by using at least one of

the existing methods. In string theory, various methods of regularization, including

Riemann zeta-function regularization, lead to the same physical results. In advance

it is not obvious that results of application of these methods to the p-brane are

equivalent, but for quantization we must use at least one of them.

Let consider the regularization by the contracted Riemann zeta-function:

�
0

p(s) =
X
n

(n21 + n
2
2 + :::+ n

2
p)
�s
; ni 2 �Npn0; (44)

for which the following properties are known :

�
0

p(s) =
�
p

�(s)

Z
1

0

dtt
s�1

X
n

exp[��(n21 + n
2
2 + :::+ n

2
p)t] (45)

and

�
0

p(s) = �
2s�p=2�(�s+ p=2)

�(s)
�

0

p(�s+ p=2) : (46)

In our case s = � 1
2
. According to the de�nition and the above-mentioned proper-

ties, we can �nd the �rst meanings of the �
0

p(�
1
2
):

p 2 3 4 5 6 7 8

�
0

p(�
1
2
) 0:026 0:053 0:048 0:036 0:025 0:017 0:011

�Dcr 73:923 33:736 36:667 49:556 73:000 109:647 172:818

Table 1. The contracted Riemann zeta-function �
0

p(�
1

2
) and the values of the

critical dimensions Dcr for p-brane homeomorphous to Dp for p from 2 to 8.

Then, substituting the quantities �
0

p(�
1
2
) in (43), we obtain the undiverging

meanings of the Casimir energy and, correspondingly, good properties of the

Hamiltonian H .

We remember that in the quantum case we have no constraints for this model.

But we may impose "by hand" an additional condition H j�i = 0. In this case, we

obtain that for the existence of a massless vector, the coeÆcients at the second term

in (43) must equal to minus one. This condition gives D = Dcr = 1+p�2�
0

p(�
1
2
).

Hence, the ground state of this model is a tachyon.

Now, let us considerX�(�) coordinates of T p-type p-brane, for which space-like

parameters �i 2 [0; 2�]. Then, the solution of the equations of motion is like that
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of (37), and the density of the energy-momentum tensor

P
�
� = �

@L
@ _X�

=

= �i

r
2p�1T

�p

X
k

[(�
�
k
e
�ik� � �

��
k
e
ik� )e�i

�k�� + (47)

+(�
�
k
e
�ik� � �

��
k
e
ik� )ei

�k�� ];

�
�
0 = �

�
0

1

2
p
2p+1�pT

p
�
; k 2 �Np

:

The left-right symmetry condition gives us the correlation between the coeÆcients

�
�
k
and ��

k

�
�
k
= �

�
�k

: (48)

In this case, from the commutation relations (41) it follows that

[��
m
; �

+�
n

] = n�
��
Æm;n ; [��

m
; �

+�
n

] = n�
��
Æm;n ; (49)

[��
m
; �

+�
n

] = [��
m
; �

+�
n

] = 0 : (50)

The quantum Hamiltonian

H =
T

2

Z 2�

0

( _X2 +X
2
1 + :::+X

2
p )d

p
� =

�
2
0 + �

2
0 +

1

2

X
k

f�+
k
; �kg+

1

2

X
k

f�+
k
; �kg = HL +HR ; (51)

where HL(HR) depends only on �
�
k
(�

�
k
) variables and k 2 �Npn0.

In the case of the T p-type p-brane, we have two di�erent possibilities: (a) to

impose a more detailed condition HLj'i = HRj'i = 0 or an equivalent H j'i =
HLj'i = 0 (H j'i = HRj'i = 0); (b) using the discrete symmetry condition

X
�(�; �) = X

�(��; �) and, consequently, the correlation between �
�
k
and �

�
k

operators, we may impose only one condition H j'i = 0.

In the �rst case, we have the same properties for the T p-type of p-brane as for

D
n-type one:

HL = �
2
0 +

X
k

�
+
k
�k +

D � p� 1

2

X
k

k ;

HL = �
2
0 +

X
k

�
+
k
�k +

D � p� 1

2

X
k

k (52)

where k 2 �Npn0 and, according to the conditions (a), we obtain a tachyon in

a ground state and the Dcr corresponding to that in the table for the Dm-type

p-brane.

10



In the second case we may express H only in the terms of the right (left)

operators �
�
k
(�

�
k
); where k 2 Zpn0:

HL = �
2
0 +

X
k6=0

�
+
k
�k +

D � p� 1

2

X
k6=0

k ; (53)

and k =
q
k21 + :::+ k2p.

Using the de�nition of the ordinary Riemann zeta-function [14], where we are

summing over all possible integer as well as all positive and negative values of ki

contrary to the contracted Riemann zeta-function (44)

�p(s) =
X
k 6=0

(k21 + k
2
2 + :::+ k

2
p)
�s
; k 2 Zpn0; (54)

with the same properties (45),(46), we may �nd the �rst meanings of �p(� 1
2
):

p 2 3 4 5 6 7 8

��p(� 1
2
) 0:229 0:267 0:297 0:325 0:373 0:407 0:462

Dcr 11:734 11:491 11:734 12:154 13:362 12:914 13:329

Table 2. The Riemann zeta-function �p(�
1

2
) and the values of the critical

dimensions Dcr for p-brane homeomorphous to T p for p from 2 to 8.

Then, substituting the quantities �p(� 1
2
) in (53 ), we �nd no divergencies of

the Hamiltonian H . In this case, the ground state of the T p-type p-brane is also

a tachyon, and the critical dimension Dcr = 1 + p� 2(
P

k 6=0 k)
�1.

DISCUSSION

In this article we have considered the simplest case of the bosonic and fermionic

membranes, when they contain only linear terms in their equations of motion. The

general situation is much more complicated.

An essential point of our consideration is imposing additional conditions like

H = 0. But in the case of the model with the quadratic Lagrangian we can

consider these conditions as a certain remnant constraint condition like Ln = 0.

One would remark that Dcr in the bosonic case is not an integer and, conse-

quently, has no physical meaning. Indeed, in all considered cases Dcr 6= N. But

even in the case when Dcr 2 N, Dcr has no physical meaning. The point is that we

cannot pick out physical states among all possible states in the Hilbert space, as
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we have not enough constraints or the conditions like those and can not obtain the

physical sector. On the other hand, the discrete values of the space-time dimension

Dcr imply the existence of the fractal properties of the extended objects. Some of

the aspects of these properties are considered in [15].

In the supersymmetric case we have additional possibilities to impose condi-

tion, at which the supercurrent J� = K
�

�
 
�
@�X� vanishes. In this case the

condition J
� = 0 is equivalent to six conditions @�X

�
 
i
� = 0 or their Fourier

transformation F�i
n

=
R �
��

d
2
�e

i~n~�
@�X

�
 
i
�. The supersymmetric action contains

the constraints F�i
n

= 0. We may also express this quantity in the �n; d
(i)
n variables

and consider the quantum case, but this will be also not enough to distinguish the

physical sector. Nevertheless, due to the quadratic action we can analytically

calculate the partition function and transition amplitude for this model.

The model with the quadratic Lagrangian allows us to separate linear and

nonlinear e�ects in the general (super)p-brane. For instance, in [16], due to

the restriction of the constraint condition for the bosonic p-brane, Dcr has been

obtained, whereas the purely the model with the quadratic Lagrangian has no

critical dimensions. This means that in [16] a nontrivial conformity between the

model with the quadratic Lagrangian and the imposed constraint condition was

obtained.

We may try to impose suÆcient constraint conditions as an additional condi-

tion, but in this case a very important question arises: how to conform the solution

of the equation of motion with the constraint conditions? We can make it sure

that in the bosonic sector the simplest quadratic constraints _X2+X2
;1+ :::+X

2
;p =

0; _X�
X;i� = 0, which are a natural generalization of the string constraints, cannot

coexist with the solutions of the linear wave equation of motion for the bosonic

p-brane. Thus, the conformity between the solution of the equation of motion in

the model with the quadratic Lagrangian and the additional constraint conditions

is nontrivial and of interest in itself.

On the other hand, we may not only use global supersymmetry and vanishing

of the supercurrent J�; but also the condition of local supersymmetry may be

imposed. Indeed, we may use the model with the quadratic Lagrangian of the

(super)p-brane with local supersymmetry and try to �nd the conformity between

the solutions and constraints. However, (1) it is not clear how to do it even in a

less complicated case without supersymmetry, and (2) this will be not enough to

distinguish the physical sector, either.

Thus, we may consider the model with the quadratic Lagrangian an auxil-

12



iary model of the (super)p-brane. An important aspect of this consideration is

the possibility to separate the physical properties belonging to the model with

the quadratic Lagrangian from other properties characteristic of the essentially

nonlinear behavior of the relativistic (super)p-brane.

APPENDIX: NOTATION AND CONVENTIONS

(i) General conventions

sign hij = (�;+;+); h = �dethij .
sign �ab = (�;+;+;+;+;+;+;+;+;+).
1=
p
h"

ijk
; and

p
h"ijk are tensors, where "012 = �"012 = 1:

The Cli�ord algebra of �a obeys to condition f�a;�bg = 2�ab ,

�ab = 1=2(�a�b � �b�a); (�a)�� ; (�
ab)�� are symmetric,

�abc = 1=3! �[a�b� c]; �[a1:::an] = 1=n! �[a1 �a2 : : :�an],

(x1x2 : : : xn) means symmetric and [x1 x2 : : : xn] antisymmetric permutation of

indexes xi; (����)�� is antisymmetric.

We use representation when �ay = �0�a�0

and charge conjugation matrix Cab = �Cba, C
ab
Cbc = Æ

a
c .

Majorana spinors obey to conditions �� = C
��
�� ; �� = �

�
C��;

�� = �
y�0 ,

(����1:::�n�)y = �(����1:::�n�) for anticommuting � ; � ;

��� = ���
�
; ����� = ��(��)

�
��

� , etc.

(ii) Superspace conventions

Superspace coordinates are ZM = (Xm
; �

_�),

supervielbein is EA
M (A = a; �).

E
A
ME

N
A = Æ

N
M ; E

M
A E

B
M = Æ

B
A .

V
A = V

M
E
A
M ; VA = E

M
A VM .

V
M = V

A
E
M
A ; VM = E

A
MVA .

E
A = dZ

M
E
A
M (Ea

E
b = �Eb

E
a butE�

E
� = E

�
E
�).

F = (1=p!)EA1 : : : E
ApFAp:::A1

= (1=p!)dZM1 : : : dZ
M
p FMp:::M1

.

d(FG) = FdG+ (�1)qdFG for p-form F and q-form G

H = dB; HMNPQ = @MBNPQ+ 3 more terms.

(iii) Light cone conventions

V
� = (1=

p
2)(�V 0 + V

10).

V
�
W� = V

I
W

I + V
+
W

�
V
�
W

+
; I = 1; : : : ; 9.
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"
0ab = �"ab ; "

ab
"
cd = h(hachbd � h

bc
h
ad); a = 1; 2.

�� = (�I ;�+
;��); with�I = 

I 

�

1 0

0 �1

�
;

�+ = 1=
p
2(�0 + �10) = I16 


�
0 0p
2i 0

�
,

�� = 1=
p
2(��0 + �10) = I16 


�
0

p
2i

0 0

�
,

fI ; Jg = 2ÆIJ ; f�+
;��g = 2; (�+)2 = (��)2 = 0.

� = (i�1; �2); �� = (�i��2;���1).

��1�1 = ���1�1;
��1

I
�1 = ���1

I
�1;

��1�
IJ
�1 = +��1

IJ
�1; etc.
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Kai kurios p-branos modelio su kvadratiniu lagran�zianu savyb_es

P.Mi�skinis

Tiriamos kai kurios bendros reliativistiniu� p-ma�ciu� pavir�siu�, panardintu� i D-mati�

erdv_elaiki� savyb_es ir atliktas ju�nagrin_ejimas papras�ciausio kvadratinio lagran�ziano

atveju. Pateikti tokio modelio jud_ejimo lyg�ciu� sprendiniai, atitinkantys bet kokios

topologijos p-brana�, bemas_es pagrindin_es b�usenos bei kritiniai erdv_elaikio i�smata-

vimai. Aptariami apibendrinimai supermembranos atveju.
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