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Abstract

The need for a definition of discrete convergence in matching problems, which
are essential in computer vision, is described and the fundamental properties
of Scott lattice theory are outlined. Three data types: relational graphs, graph
match_table and constraints, are considered and partial orderings are exhibited
for them. A matching iteration consistent with the theory is sketched.

INTRODUCTION

The task of the matching activity in computer vision is to label fragments of the

image data by associating them with a reference. The matching of features such as

relational graphs is a discrete process that builds lists of acceptable labelings, [1]. The

matching will generally be an NP problem and will not be tractable without a control

strategy that exploits constraints and problem partitions, [2].

This paper proposes that matching can be viewed as a converging discrete iteration

which terminates at (or near) a fixed point. A clear concept of convergence must first be

established and it should then be possible to monitor progress as one aspect of a

control strategy that essentially allocates computing resources.

The general expectation in executing a computer program is that, as computing effort

is expended, there should be visible progress towards a result. This view is most familiar

in considering numerical algorithms where progress to convergence can be studied

analytically. It could be said that numerical algorithms are only 'respectable' if

convergence can be proven.

Non-numerical algorithms also expend computing effort and should deliver a result in

a non-numeric data type. Issues such as the quality of the final result and the improving

quality of intermediate results are much less discussed than for numerical algorithms.

The question of convergence for non-numerical algorithms is very general. This author

conjectures that the reason the topic is neither better developed, nor applied in practice,

is that each application brings with it a large consideration of fine detail of the problem

domain. The present paper seeks to investigate graph matching from this point of view.

Lattice theory is put forward as the theoretical base. This was originally developed



by Scott and others for denotational semantics, see for example [3]. The relevant parts of

the theory are introduced in the next section.

1. INTRODUCTION TO SCOTT LATTICE THEORY

The theory requires that computable functions and the data types that they involve

have two key features:

1. that it must be possible to define a partial ordering for the data types in use, and,

2. that each computable function must be order preserving, that is a higher input point

from the lattice that is its domain cannot lead to a lower output point in the lattice

that is its range.

Formally, given f: D →→ D' and x1 , x2 ∈∈ D, then x1 D⊆  x2 implies f(x1) D⊆ ’ f(x2)
where D⊆  and D⊆ ’ are the partial ordering relations in D and D'.

A desirable property is that the function should gain; that is, given f: D →→ D and x1,
x2, … xp ∈∈ D, and with x2 = f(x1); x3 = f(x2); x4 = f(x3) ..., the x values are ordered: x1 D⊆
x2 D⊆  x3 D⊆  ...

With care, order preservation and gaining can be defined for functions of more than

one argument.

The overall top point is denoted by T and the overall lowest point is denoted by ⊥,

[3]. The highest x value below T in the lattice is the most precise result, [3]. The position

of a working point in the lattice shows how good an approximation that point is to the

most precise result. As the iteration runs, order preservation implies that the working

point cannot fall. 'Convergence' has occurred if the iteration stabilises at a 'high enough'

working point.

A least upper bound operation, LUB, will exist. The LUB is essentially a structural

merging of the information contained in the points it is applied to. The result is an

improved point that combines the information in the input points.

Properties of the LUB include:

with x1, x2, x3 ∈∈ D,

1. if x3 = LUB (x1, x2) then x1 D⊆  x3 and x2 D⊆  x3;

2. if x1 D⊆  x2 then x2 = LUB (x1, x2);

3. the LUB operation returns T if the two lists were not compatible, [3].

2. THE DATA TYPES FOR A MATCHING ITERATION

AND THE 'MATCH' MAPPING

Three data types are needed for the matching operation: graph, match_table and



constraint. They have the uses:

• graph: domain of graphs to be matched;

• match_table: domain of tables indicating (sub)graph associations;

• constraint: domain of constraints that define partitions of the problem.

The first step in applying the theory is to examine the domain and range of the match

activity. It is responsible for forming an association between two graphs, gx and gy,

under the partitioning defined by the constraint, c. The match will typically minimise the

cost of association, [7]. It is also assumed that the matching is incremental: the results of

previous iterations are contained in the initial match_table, m1, so that the solution can

be built up in steps, [5]. The result is an improved match_table, m2, this is represented

by: m2 = match ( m1, gx, gy, c), and match is the mapping:

match_table×graph×graph×constraint → match_table.

The match activity is a partial function and cannot be applied to arbitrary

combinations of arguments. Its partialness is protected by applying it in the correct

sequence with other activities. The iteration creates a trajectory in the space:

match_table × graph × constraint.

The operations discussed below are only valid for points on possible trajectories.

Partial orderings will now be established for the data types by defining a comparison

between two elements of each type and then showing that the relation is reflexive,

transitive and anti-symmetric. A lemma, useful for showing the partial orderings, will first

be proved.

Lemma 1: Given that ia ∈∈ Di is a set partially ordered by D⊆ i then another set, D,
containing DI elements, x, that are n-tuples of elements from the Di, is partially ordered

by D⊆  , with x1 = <1a1, 2a1, … ia1,…k1a1> and x2 = <1a2, 2a2, … ia2, … k2 a2>
then x1 D⊆  x2  iff  k1 ≤≤ k2 and for all i,  1≤≤i≤≤k1, ia1 D⊆ ia2

Proof: Transivity, reflexivity and anti-symmetry will be established for D⊆ .
Transitivity: if x1 D⊆  x2 then k1 ≤≤ k2 and for all i, 1≤≤i≤≤k1, ia1 D⊆  ia2 ; if x2 D⊆  x3 then

k2 ≤≤ k3 and for all i, 1≤≤i≤≤k2, ia2 D⊆  ia3.  It follows immediately that k1 ≤≤ k3 and for all i,

1≤≤i≤≤k1, ia1 D⊆  ia2 D⊆  ia3 so x1 D⊆  x3 establishing transitivity of D⊆  .

Reflexivity: Consider x1 D⊆  x2 so that k1 ≤≤ k2 and for all i, 1≤≤i≤≤k1, ia1 D⊆  ia2 and the

case k1 = k2 and ia1 = ia2 for all i, 1≤≤i≤≤k1, it follows that x1 = x2 so that D⊆  is reflexive.

Anti-symmetry: If x1 D⊆  x2 then k1 ≤≤ k2, for all i, 1≤≤i≤≤k1, ia1 D⊆  ia2. If x2 D⊆  x1 then

k2 ≤≤ k1 and for all i, 1≤≤i≤≤k2, ia2 D⊆  ia1. It follows that k1 = k2 and for all i, 1≤≤i≤≤k1, ia1 =

ia2 from the reflexivity of D⊆ . Thus x1 = x2 establishing anti-symmetry of D⊆  . Since

D⊆   is transitive, reflexive and anti-symmetric it is a partial ordering relation. q.e.d.

Corollary: If y = < ... ix ... > and ix = < ... i(ja) ... > then the existence of partial



orderings for each of the i(ja) implies the partial ordering of the y values.

The result is obtained by repeatedly applying the lemma to n-tuple components at

successively deeper levels.

2.1. THE GRAPH TYPE AND ITS PARTIAL ORDERING

Graphs will be introduced first. A graph is defined as a collection of nodes, N, and a

set of arcs, A. A graph, g, is g = < N, A >. Graphs are frequently augmented by attaching

attributes to the nodes and arcs to increase their descriptive power for patterns. The

attributes can be thought of as footnotes that give additional information about the

interpretation of the node or arc in the pattern.

The node attributes can be paired with the node name to completely describe each

node in N. Thus an individual node, n, n ∈∈ N, is n = <n_name, attribute_of_n_name>.

and N is a set of pairs: N = { ..., <n_name, attribute_of_n_name>, ....}. The

attribute_of_n_name is a list of attribute-value pairs, [4], as will be illustrated below.

Arcs join a pair of nodes so that the pair, <n1,n2> ∈∈ N ×× N, is a natural part of the arc

description. Attribute strings can also be attached to the arcs. A single arc can be
expressed as: a = < <n1, n2>, attribute_of_arc_n1_n2 >. The set of arcs is then A= { ..<

<n1, n2>, attribute_of_arc_n1_n2> ... }. The attribute_of_arc_n1_n2 is also a list of

attribute-value pairs.

It is convenient to define selectors, First, Second, … , Nth , which, applied to an n-

tuple, return the appropriate element. It is also helpful to adopt the convention that

selectors return a single element when applied to a single n-tuple, but when applied to a

set of n-tuples, return a set of elements. This is a slight abuse of notation but does not

lead to any serious errors. For example, First(<a,b,c>) = a, and First({ … <a,b,c>... }) = {

... a, … }.

A first step in defining a partial ordering for graphs is given in [6]. In outline, a

grammar is defined that represents the graph by deriving all possible walks over it. The

partial ordering is established for the grammars and thereby for the graphs. However, the

graphs discussed in [6] are without attributes. The definition of the partial ordering can

be extended to include the attributes. It is assumed that the partial ordering, ⊆ Ug from

[6], exists for non-attributed relational graphs. The first step in the extension is to define

a comparison ⊆ At for attribute strings. Both node and arc attributes can be considered

at the same time: they are lists of propositions with parameters. The attribute string can

be expressed in the form:

attribute_string =  { … < proposition, <p1, <p2,...>>> … }

Consider the relation between two strings, s1 and s2, that pass both the following



tests:

1. s2 contains all the propositions that s1 contains,

2. for each proposition that s1 contains with a parameter, the corresponding parameter

for s2 is compatible and at least as high in the partial ordering, which is assumed to

exist, for that parameter type.

Lemma 1 can be applied immediately and the comparison defines a partial ordering. A
(machine readable) example of node attributes from [2] for contours of simple shapes is: 

A[@id=ref;ext:sqr:cg(64,86)].
The attribute string shows the graph identity is ref, the contour is external, is judged

to be a square, and has a centroid at (64,86). The terms ext, sqr and cg(64,86) are

propositions; the last one having the parameters 64, 86.

The partial ordering of parameters will be exploited in future work where the attribute

strings will include the concept of a confidence. For example the centre of gravity

attribute, currently cg(64,86), could be extended to include an estimated position and a

confidence. A term such as cg(64±5, 86±7) would be judged to be compatible with, but

less precise than  cg(65±1, 87±1).
Attributed relational graphs can be decomposed into unattributed graphs and

attribute strings. Lemma 1 establishes that attributed graphs can be partially ordered by

the following: two attributed graphs g1=<N1,A1> and g2=<N2,A2> are partially ordered

with g1 ⊆ Dg g2 iff

1. the construction of two unattributed graphs, ug1 and ug2, where: ug1 = < First(N1),

First(A1) > and ug2 = < First(N2), First(A2) >  has ug1 ⊆ Ug ug2. and

2. the attribute strings of corresponding nodes and arcs identified in 1. above are

similarly ordered.

Thus if n1 and n2 are corresponding nodes from g1 and g2 then

Second(n1) ⊆ At Second(n2), and if a1 and a2 are corresponding arcs from g1 and g2 then

Second(a1) ⊆ At Second(a2). Lemma 1 was not directly applied to N1,  N2 and A1,  A2

because it would restrict the freedom allowed in [6] to compose fragments of g2 as part of

the comparison with g1. This accommodates missing detail.

2.2. THE MATCH_TABLE TYPE AND ITS PARTIAL ORDERING

The match_table data type contains elements that define an association between two

graphs. By comparing two elements of the match_table type a comparison is being made

between the strengths of the matches between the two graphs. Each element of

match_table has two components: pn, a list of nodepairs, and pa, a list of arc pairs. Thus

if m belongs to the match_table data type, and represents an association between



graphs gx and gy, we have m = < pn, pa > where pn = < … , <(nx)i, (ny)j>, … > with (nx)i

and (ny)j being the ith node from gx and the jth node from gy respectively, and pa = < … ,

<(ax)i, (ay)j>, … > with (ax)i and (ay)j being the ith arc from gx and the jth arc from gy

respectively.

The definitions below are made more clear if the following convention is used for

representing nodes. A node written as pngL is a node involved in the pth. match table,

belonging to graph g, and is the leading (first) node in the representation of an arc as a

<node,node> sequence.
The node represented as pngT is the trailing (second) node of the the two elements,

m1 and m2, that represent different matchings of graphs gx and gy, are expressed as:  m1 =

< pn1, pa1 > and  m2 = < pn2, pa2 >. Using Lemma 1, a partial ordering for elements of

match_table will exist such that: m1 ⊆ Dm m2 iff pn1 ⊆ Dm pn2 and pa1 ⊆ Dm pa2.

The ⊆  between the pn's and pa's would be the subset relation if it were not for the

attributes. In order to define the comparison it must be recalled that the pn's are sets of

node pairs and that each node is itself a pair <n_name, attribute_of_n_name>.

Using the selectors we can define pn1 ⊆ Dpn pn2 iff

• First(First(pn1)) ⊆ First(First(pn2)) and for each n_name ∈ First(First(pn1)) there is

qn1 = <n_name, attribute1_of_n_name> ∈ First(pn1) and qn2 = <n_name,

attribute2_of_n_name> ∈ First(pn2) with attribute1_of_n_name ⊆ At

attribute2_of_n_name and

• First(Second(pn1)) ⊆ First(Second(pn2)) and for each n_name ∈ First(Second(pn1))

there is qn1 = <n_name, attribute1_of_n_name> ∈ Second(pn1) and qn2 = <n_name,

attribute2_of_n_name> ∈ Second(pn2) with attribute1_of_n_name ⊆ At

attribute2_of_n_name

and pa1 ⊆ Dpa pa2 iff pn1 ⊆ Dpn _ pn2 and defining

• pa1={...<<<1nxL,1nxT>,att_1nxL_1nxT>, <<1nyL,1nyT>,att_1nyL_1nyT>>>...} and

• pa2={...<<<2nxL,2nxT>,att_2nxL_2nxT>, <<2nyL,2nyT>,att_2nyL_2nyT>>>...} then

• if <1nxL,1nyL>, <1nxT,1nyT> ∈∈ pn1  and <2nxL,2nyL>, <2nxT,2nyT> ∈∈ pn2  with <1nxL,1nyL>
⊆ Dpn <2nxL,2nyL> and <1nxT,1nyT> ⊆ Dpn <2nxT,2nyT> and att_1nxL_1nxT ⊆ At

att_2nxL_2nxT and att_1nyL_1nyT ⊆ At att_2nyL_2nyT

The relation defined by the comparison is a partial ordering because of the reflexivity,

transitivity and anti-symmetry of subset and the ⊆  between attribute strings. This

complicated definition essentially dismantles the node pairs and arc pairs and considers

the parts separately. Lemma 1 was not directly applicable because ⊆ Dpn and ⊆ Dpa had

not been previously defined.



2.3. THE CONSTRAINT TYPE AND ITS ORDERING

Constraints are conditions that must be satisfied before a problem can be solved.

These can guide the solution by only considering associations that agree with the

constraints, [1]. It is also possible to define cost functions that have have an acceptable

value only when the constraint is satisfied, [4]. Using the lattice theory, constraints seem

to be well expressed as classes of relations that partition the problem into sub-problems,

[2]. In this case constraints have a role in scheduling the matching activities. The classes

of constraints reflect physical properties of a given problem, but the method of defining

the partial ordering is problem independent.

The partial ordering of the constraints is defined in terms of the sets of propositions

contained in the constraints. The first step is to note that a constraint is in fact an

attribute string: constraint = { … < proposition, <p1, <p2,...>>> …}

The individual <proposition,<..parameters..>> can be extracted using the selectors,

First, Second, … Nth , etc. At present, only the proposition part of the constraint is

considered. This is obtained by using the First selector.

Let the set of all possible propositions that can be found in a problem be U. Let C1

and C2 be sets C1 = First( c1 ) and C2 = First( c2 ).The partial ordering for constraints is

defined: with c1, c2 ∈∈ CONSTRAINT, c1 ⊆ Dc c2 iff (U - C1) ⊆⊆ (U - C2). It immediately

follows that ⊆ Dc is a partial ordering because ⊆ is a partial ordering.

The three data types, graphs, match_table and constraints have had partial orderings

defined for them. The next step is to consider a matching iteration.

3. AN EXAMPLE OF A MATCHING ITERATION

The matching of two graphs is a search to find a consistent association between

them at an acceptable cost, [1]. In this section the control strategy is of particular

interest.

The iteration attempts matching in partitions of the problem at successively higher

levels in the domain of constraints, [2]. The solution of each partition is sub-optimal
because it does not have access to the entire context of the match. The input graphs are

gx and gy; c is the constraint currently being considered.

Some service procedures must first be defined. Part(gx,c) extracts the subgraph of gx

that contains arcs not superior to c in the partial ordering of constraints. Nextinferior(c)

is a procedure that returns a list of constraints that are immediately inferior to the given

constraint, c. Terminate(m) returns TRUE if the iteration has reached a sufficient level to

terminate. This procedure needs to share memory with a supervising process so that



movements of the working point can be monitored and a (near) fixed point can be

identified.

Graph_isomorphism attempts to match the selected subgraphs of gx and gy, using

any effective method having the properties defined in section 1. When

Graph_isomorphism succeeds, the increment to the match_table is LUB'd with the initial

version of the match_table. The result is returned as the improved state of the match. As

with LUB, Graph_isomorphism returns T if an inconsistency is detected.

The detection of an inconsistency implies that an inappropriate association was

made earlier in the matching. The system's response is to selectively delete existing

matches until a consistent state is again obtained, and then to proceed with the iteration.

The deletions are information destroying, are not computable in the Scott sense, and are

not part of the convergence: they effectively implement backtracking.

The progress to convergence can be understood by imagining an ensemble of

matching attempts. Those that happen to trigger deletions will have their working points

fall in the partial orderings. Those that do not trigger deletions will tend to rise in the

partial ordering. If there is, in fact, only a limited number of match processors, then

resources are switched to give attention to the most promising attempts, [5]. These

actions are included under 'reschedule' in the procedure below:

match(m,gx,gy,c):match_table

Begin

Var m1: match_table; nonconsist : boolean;

m1:=m;

IF NOT Terminate(m) Then

Begin

For each element, cx, in Nextinferior(c) Do

Begin

m1: = LUB(m1,match(m1,gx,gy,cx));

nonconsist := (m1 = T);

IF nonconsist THEN reschedule;

End;

m1: = graph_isomorphism(m1, Part(gx,c),Part(gy,c));

nonconsist := (m1 = T);

IF nonconsist THEN reschedule;

End;

return(m1);

End;

The match procedure would be invoked by result: = match(Empty_match_table,

g_reference,g_unknown,T). The input graphs, g_reference and g_unknown, are,



respectively a prediction from a model of what is expected and a representation obtained

from an input image. The recursive calls within match search the constraint space. The

first constraints used in matching attempts are those that are most restrictive.

4. THE CONTEXT OF THE MATCHING ITERATION

WITHIN THE CONTROL STRATEGY

Even given the partitioning of the problem by constraints, the matching can still be

caught in the 'NP' trap. In this case the result of expending effort in 'match' and

'graph_isomorphism' is a fruitless setting and clearing of trial associations of graph

fragments. In terms of the theory, the efforts produce no strengthening of the working

point in the lattice.

One benefit of the partial ordering is that the control strategy can observe the

movement of the working point in the lattice and make scheduling decisions based upon

what it observes. This implies that multiple processes will be used in implementing a

practical system, [5]. Cost information is also important in allocating resources The

iteration of section 3 does not explicitly pass costs upwards from the

graph_isomorphism activity to the original call. A pilot system using exactly this

strategy, [8], writes the cost of each fragmentary association into the match_table

elements. Preliminary experimental results, [5], [8], suggest that allocation of resources is

particularly important when more than one reference class is being considered.

5. CONCLUDING REMARKS

The monitoring of the convergence of a discrete iteration as part of its control

strategy should be helpful in a large class of algorithms that are NP. Graph matching is

one example. Without scheduling resources in response to performance the prospects

for tractable solutions to NP problems seem limited.

The requirements of defining a partial ordering and of showing that the functions are

order preserving gives strong guidance to the software engineering of a system. For

computer vision, the approach supports a formal treatment of combining items of

evidence and the use of constraints to partition a problem, [2].
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