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Abstract. In this article the minimization of the learning content in the total processing time is
studied. Research is based on manual automotive wiring harness assembly, with unstable demand,
fluctuating order quantities and enormous product variety. Such instability in manual production
environment results that assembly is always at the start-up or learning phase, thus, operational
times are greater than standard and operational efficiency is significantly reduced. Since a lot of
research is done on learning time calculation, there is still lacking studies that address learning
time reduction in such production situation. The methodology proposed in this article addresses
reduction of learning time by splitting and simplifying complex assemblies of automotive wiring
harnesses. Experimental results from the company indicate that this approach enables to optimize
learning time and increase operational efficiency.

Keywords: manual assembly, manufacturing optimization, operating time, wiring harness, learning
curve.

1 Introduction

Last decades in automotive and other industries show decreasing production order quan-
tities and increasing product variety [21, 35] and this appears to be a significant trend
[41]. This extremely affects companies in the supply chain of automotive manufacturer.
Therefore, companies providing parts for the automobiles encounter variety of production
problems and need extreme flexibility. As a result, supplier companies produce enormous
variety of different products and the customer demand is fluctuating and changing rapidly
for each product. What is more, product life cycle became very short and products con-
stantly are changing, i.e., new different products can be introduced to the production, thus
replacing or supplementing current production set. Fluctuations increase setup time in the
automated assembly, but in the manual assembly fluctuations not only increase setup time,
but also increase the learning time for the operators to learn the manual task or operation.
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Even the manual assembly is being widely replaced by robotic and automated equip-
ment; manufacturing fields with manual assembly still exist. Such a manufacturing field
is the automotive wiring harness industry [42]. Wiring harness manufacturers producing
a big variety of more complex products with lower production volumes naturally perform
manual assembly. Even in the demand-based manufacturing systems, where order quanti-
ties are stable and large [13] the learning phase is soon completed and have little impact on
the production performance. However, when the order quantities are small, intermittent, it
is not possible to complete the learning, so the production is always at the start-up phase,
even if the manufacturing is regular. Therefore, the manual assembly time is not stable,
changes and is much higher than the expected steady-state operating time. And still, the
supplier must be flexible and efficient to fulfill the customer orders with precise delivery,
perfect quality and low product cost. By default, the way to achieve this is to keep extra
personnel, additional manufacturing area and extra equipment and work overtime [17]
just to cover ramp-ups and demand fluctuations. It is already reported, that learning time
is being increased unnecessarily in this way [24].

Learning effect is known for decades [43, 44] and initially was dedicated for produc-
tion improvement prediction [7], but current trends in manufacturing leads to application
of learning curves (LC) for operation time prediction at the beginning of the production
cycle [4]. Many authors report benefit of LC application. Learning curve application
based on limited production data was used for better allocation of labor resources [39].
Gabel and Riedmiller [14] reported the LC application to be an effective tool for the
production planning and scheduling of work assignments. Rigorous research of the shoe
manufacturing company [2, 3] gave results that learning curve application leads to im-
proved production schedules.

Some other authors [12, 33] addressed the production optimization by using learning
models and made some comparisons. Reported results proved that impact of the learning
effects increases as the order quantity decreases and number of operations increases.
Also, comparisons with the traditional line balancing showed, that LC based planning
methods are realistic and provide more accurate results. Some recent researches apply
LC for worker reliability modelling [15], process time estimation for wiring harness
assembly [25, 27], uncertainties in scheduling [29], allocation of training hours [30].

Effects of the learning on the assembly line balancing are also addressed especially in
mixed model assembly lines. Authors Chakravarty and Shtub proposed [8] methodology
to determine number of work stations required, task and cycle time assignments for
assembly cost minimization. Model was further improved by considering stochastic or
deterministic task time variability [9]. Such an optimization approach was finalized into
mixed-model assembly line model with learning effect [11] which enabled to minimize
the cost of the line start-up by selecting appropriate number of work cells task assignments
etc.

Regarding the single model assembly line, the methodology to evaluate learning effect
was also proposed [10]. This work addressed the design of an assembly line with long
cycle time, few products and learning effect and proposed iterative approach to minimize
total assembly costs.
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From this point of view, there are two major gaps in literature regarding learning curve
application is assembly. First, many authors report benefit of the LC application, however
the most of them consider learning time as the natural part of overall operating time just
to be calculated, planned and balanced rather than the time that needs to be eliminated or
reduced. The solution of splitting and simplifying the assembly by organizing parallel or
line assembly is based on production volume only [1] and even if learning is considered
[10, 11], this learning is still being perceived as factor to be planned and balanced rather
than to be eliminated. Therefore, currently existing methods for unique manufacturing
situations such as bowl phenomenon, short-cycle production etc. might be not suitable
for overall assembly time reduction and process improvement, since they do not address
complexity elimination and learning time reduction. Systematic literature review of LC
application [16] also emphasized the need for LC research on industry-specific learning.

As it is stated in the beginning, specific manufacturing situations with extreme flexibil-
ity, short production cycles, relatively low production volumes and high product variety
still demand for cost reduction, however common measures such robotic assembly or
mixed model assembly lines cannot be employed due to high production complexity
(i.e., wiring harness assembly) and small order quantities (order quantities are too small
to cover investment costs). Such production provides only limited production data for
the modelling and this data will be still insufficient to conduct full statistical analysis.
However, LC can be applied even on such data with acceptable results [28]. Therefore,
there is an obvious need for a marginal method to address these issues and to propose
quite cheap methodology to reduce total assembly time and costs. In this regard, the
goal of this research is to create the learning time reduction methodology and show that
manual assembly efficiency can be improved by splitting complex manual assembly of
the automotive wiring harness even for relatively small production orders, i.e., organizing
short-cycle production line instead of job-shop production. Article is organized in the
following order: the mathematically proved LC application methodology is presented
with applied splitting effect; then calculations and experimental data from the wiring
harness manufacturer are presented and discussed.

2 Research methodology

2.1 Notations

n production volume
p number of process division
P maximum number of process divisions
x number of assembled unit
y(x) learning curve with breaking point
β assembly time of the first unit
α the slope coefficient
Tict steady-state assembly time
xc cycle number where steady-state assembly time is reached
cα a learning slope of the undivided product
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cT a steady-state assembly time of the undivided product
cxc a cycle number where steady-state assembly time is reached for the undivided

product
cTe an additional time to aggregate two separate parts
T (r) objective function of general optimization problem
r vector of decision variables
G fully connected feasible domain for variables p and n
T (p, n) total time needed to produce n products when process is divided into p parts

(objective function for two-dimensional optimization problem)
pmin(n) minimum function depending on production volume n
T (n)(p, n) average time needed to produce n products when process is divided into

p parts (objective function for the second two-dimensional optimization
problem, normed time function)

2.2 Process splitting

Let n is the number of fully completed products and p = 1, 2, . . . , P is the number of
process divisions. The complex process splitting is depicted in Fig. 1.

If the process is not divided, all assembly operations are being performed in one
working station. If the process is divided into several work stations (i.e., assembly line,
see Fig. 1), instead of one complex assembly, several simpler processes comes out. The
simplicity of each process affects total assembly time regarding the number of parts p and
total production quantity n. In the following subsection these effects are presented.

Figure 1. Complex process splitting.
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2.3 Learning curve and parameters

The performance of manual skills is improving over time. This improvement is defined by
the learning curve, which shows relationship between performance time and number of
trials. Wright’s LC is the recommended model for a basic and simple learning modelling
[18]. However, since Wright’s LC is unbounded,Plateau learning curve with break [25]
as the basic model for the LC application in this research will be applied:

y(x) =

{
βx−α, x 6 xc,

Tict, x > xc,

where x is number of assembled unit, y is assembly time of x’th unit, β is assembly time
of the first unit, α is the slope coefficient, Tict is steady-state assembly time, xc is cycle
number where steady-state assembly time is reached. These parameters fully define the
learning curve. In general case, when product assembly is performed at only one separate
work center LC parameters are constant.

2.4 Slope coefficient

There are many reports claiming that assemblies with less different operations results
le lower complexity. The experimental data from works [37, 38] showed that increasing
number of different components resulted slower operator thinking and decision-making
time. Component grouping [31] also reduced learning time of the assembly process.
The assembled product structure also has big impact on assembly performance [36].
Other researches [22, 34] also claim that complexity of the task affects performance and
efficiency of the process. Monfared and Jenab [32] presented expression to calculate task
complexity of operation and as a result suggested the LC model which encompasses
complexity aspects. To sum up, more operations require more thinking, more learning
and vice versa, less operations, less thinking and learning. Therefore, it is obviously that
splitting of the complex wiring harness assembly would result lover slope coefficient value
for each divided work center. In this research expression to define the slope coefficient as
a function of number of divisions p proposed:

α(p) =
cα
p
, 0 < cα < 1, (1)

where cα is a learning slope of the undivided product.

2.5 Steady-state assembly time and stabilization cycle number

Some researchers [5, 25, 40] noticed and proved that after certain number of repetitive
cycles xc, steady-state assembly time is reached. It means that after this number assembly
improves no more. Obviously, if one splits the assembly process, it also splits the steady-
state operating time. As reported by research [23] it is possible to divide the steady-state
assembly time equally for the wiring harness. What is more, steady-state assembly time
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can be calculated prior to assembly by summing time norms of certain operations [26].
Thus, steady state assembly time is expressed as follows:

Tict(p) =
cT
p
, cT > 0, (2)

where cT is a steady-state assembly time of the undivided product.
It is assumed in this research that stabilization number remains the same in spite of

divisions:
xc(p) = cxc > 0, (3)

where cxc is a cycle number where steady-state assembly time is reached for the undivided
product.

This assumption is based on the idea that main factor reduced by simplification is
slope of the learning curve α, since simplification reduces time needed to improve knowl-
edge-based skills of the operator. Another group of improvements are directly related
to motor skills which improve in a very slight amount after each repetitive cycle. This
improvement will not or will be only very slight affected by labor division.

2.6 Assembly time of the first unit

Stabilization cycle number, slope coefficient (which is already known) and steady state
assembly time (which is calculated) enable to calculate assembly of the first unit prior to
start of assembly:

β(p) = Tict(p)xc(p)
α(p).

2.7 Aggregation time

Since the process is divided, additional time to aggregate separate parts of assembly is
needed i.e., the more divisions, the more aggregation time is needed and thus it is also
a function based on number of divisions:

Te(p) = cTe(p− 1), cTe > 0, (4)

where cTe is an additional time to aggregate two separate parts.

3 Total assembly time optimization

The time needed to produce n products when process is divided into p parts

T (p, n) = p

n∫
0

y(x, p) dx+ Te(p)p,

where

y(x, p) =

{
β(p)x−α(p), x 6 xc(p),

Tict(p), x > xc(p),
(5)

Nonlinear Anal. Model. Control, 25(1):144–161

https://doi.org/10.15388/namc.2020.25.15738


150 V. Kleiza, J. Tilindis

by integrating total time is:

T (p, n) = T1(p, n) + T2(p), (6)

where

T1(p, n) = cT
pnt(p, n)

p− cα
, T2(p) = cTep(p− 1),

t(p, n) =

(
cxc
n

)cα/p
.

When x 6 xc(p) (see Section 2.5) moreover T1(p, n) > 0 and T2(p, n) > 0, hence
T (p, n) > 0, when

(p, n) ∈ D = {p > 1, n > 1}

and 0 < cα < 1, cTe, cT , cxc > 0.
Now we are about to state the assembly time optimization problem of several vari-

ables. This optimization problem can be posed as constrained optimization problem in
the same form as a huge number of common design problems in engineering:

minimize T (r) (7)
subject to

(p, n) ∈ G ∩
{
p < f(n)

}
, (8)

cα ∈ (0, 1), (9)

cxc, cTe, cT ∈ R1
+, (10)

where T (r) is objective function, r = (p, n, cα, cTe, cxc, cT ) is a vector of decision
variables, and (8), (9), (10) are the constraints which define the convex and fully connected
feasible domain G ⊂ R6

+, i.e., we have to find the number Tmin and vector r0 that

Tmin = min
r∈G

T (r) r0 = argmin
r∈G

T (r).

State of art of global optimization employs variety of deterministic and stochastic
methods. In cases of global optimization problem incorporating probabilistic (stochas-
tic) elements or objective function is given as a “black box” computer code, stochastic
approaches can often deal with problems better than the deterministic algorithms [45].
As we do not have probabilistic variables and objective function has clear analytical
expression, deterministic optimization methods will be used for this problem. However,
this problem can be still very hard to solve, as the number of decision variables is large.
There are several reasons [19] for this difficulty:

• the problem “terrain” may be riddled with local optima;
• it might be very hard to find a feasible point (i.e., r0 which satisfy all equalities

and inequalities (8), (9), (10)), in fact, the feasible set which needn’t even be fully
connected, could be empty;
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• stopping criteria used in general optimization algorithms are often arbitrary;
• optimization algorithms might have very poor convergence rates;
• numerical problems could cause the minimization algorithm to stop all together or

wander.

It has been known for a long time [6, 20], that if the T (r) is convex, then the first
three problems disappear: any local optimum is, in fact, a global optimum; feasibility
of convex optimization problems can be determined unambiguously, at least in principle;
and very precise stopping criteria are available using duality. However, convergence rate
and numerical sensitivity issues remain a potential problem.

Due to reasons stated before we will analyze problems (7)–(10) analytically when
parameters cα, cTe, cxc, cT are received from process monitoring i.e., they are constants
and satisfy constrains (9) and (10).

Let us consider the one-dimensional optimization problem:

min
p
T (p, n), (p, n) ∈ G ⊆ D, (11)

i.e., we will find Tmin(n) = minp T (p, n) and pmin(n) = argminp T (p, n), pmin(n) ∈
R1

+.
If cα < 1, cxc > n, cTe > 0 are constant, then for every n and for the sufficiently

large P there exits unique minimum of the function T (p, n) by p, i.e.,

pmin(n) = argmin
16p6P

T (p, n) (12)

and
min

16p6P
T (p, n) = T

(
pmin(n), n

)
.

From equation (6):

∂T

∂p
=
∂T1

∂p
+
∂T2

∂p
,

where

∂T1

∂p
= −cT

nt(p, n)

(p− cα)

[
ln
(
t(p, n)

)
+

cα
(p− cα)

]
,

∂T2

∂p
= cTe(2p− 1).

For (11) we conclude that ∂T1/∂p|p=1 < 0 and function ∂T1/∂p < 0 is strictly
monotonously increasing for every n by p. In addition, ∂T1/∂p have zero horizontal
asymptote, because

lim
p→∞

∂T1

∂p
= 0.

For (12) we conclude that T ′2(1, n) > 0 and T ′2(p, n) > 0 is strictly monotonously in-
creasing for every n by p, therefore the solution of optimization problem (11) is simplified
to solution of equation

−∂T1

∂p
=
∂T2

∂p
,
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which has a unique solution pmin(n) if P is sufficiently large and then the minimal time
is:

Tmin(n) = T
(
pmin(n), n

)
. (13)

Note that T (p, n) is strictly monotone increasing by n because

∂T

∂n
= cT t(p, n) > 0. (14)

Hence function (13) is strictly monotone increasing too.
Let us consider two-dimensional optimization problem:

min
p,n

T (p, n), (p, n) ∈ G ⊆ D, (15)

i.e., we will find Tmin = minp,n T (p, n) and r1 = argminp,n T (p, n), r1 = (p1, n1) ∈
R2

+. From (14) we have

| gradT | =

√(
∂T

∂p

)2

+

(
∂T

∂n

)2

> 0 ∀(p, n) ∈ G (16)

because ∂T/∂n 6= 0. Detailed calculation shown that ∂2T/∂p2 and Hessian (determinant
of Hesse matrix) of function T (p, n) have different signs

∂2T

∂p2
> 0, H[T ] =

∣∣∣∣∣
(

∂2T
∂p2

∂2T
∂p∂n

∂2T
∂p∂n

∂2T
∂n2

)∣∣∣∣∣ < 0 ∀(p, n) ∈ G.

Hence function T (p, n) is concave and have no global minima at interior of convex
domain G. From the concavity of function T (p, n) and (16) follows that point at which
T (p, n) reached minimal value Tmin = infḠ T = T (pg, ng) is located at contour ∂G of
domain G ((pg, ng) ∈ ∂G) [20], i.e., r1 = (pg, ng). This situation is demonstrated in
Fig. 2.

The time considered in previous equations encompasses total assembly time, but
the average time for each assembled part remains unknown and cannot be compared.
Therefore, let us consider the normed time function which addresses the average time
required for each assembled unit with different p and n:

T (n)(p, n) =
T (p, n)

n
= cT

pt(p, n)

p− cα
+ cTe

p(p− 1)

n
, (17)

then

∂T (n)

∂p
=

1

n

∂T

∂p
, (18)

∂T (n)

∂n
= −cT cα

[
cTep(p− 1)

n2cT cα
+

t(p, n)

n(p− cα)

]
< 0. (19)
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Figure 2. Trajectory plot of the functions T (p, n), Tmin(n) = T (pmin(n), n) and p = pmin(n), when
cα = 0.3, cTe = 0.3, cxc = 80, cT = 2.

It can be proved (proof is analogical) that the function (17) has a unique minimum for
every n

T
(n)
min(n) = min

16p6P
T (n)(p, n) = T (n)

(
p

(n)
min(n), n

)
,

p
(n)
min(n) = argmin

16p6P
T (n)(p, n), (20)

and from (18) follows that p(n)
min(n) ≡ pmin(n). Function T (n)(p, n) (for every p) is

strictly monotone decreasing (19), but then function (20) is strictly monotone decreasing
too.

Let as state and analyze the second two-dimensional optimization problem:

min
p,n

T (n)(p, n), (p, n) ∈ G ⊆ D, (21)

i.e., we will find T
(n)
min = minp,n T

(n)(p, n) and r2 = argminp,n T
(n)(p, n), r2 =

(p2, n2) ∈ R2
+. From (19) we have∣∣gradT (n)

∣∣ > 0 ∀(p, n) ∈ G (22)

because ∂T (n)/∂n 6= 0. Detailed calculation shown that

∂T (n)2

∂p2
> 0 ∀(p, n) ∈ G

and that Hessian of function T (n)(p, n) is positive

H
[
T (n)

]
> 0 ∀(p, n) ∈ G,
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Figure 3. Trajectory plot of the functions T (n)(p, n), T (n)
min(n) = T (n)(p

(n)
min(n), n) and p = p

(n)
min(n), when

cα = 0.3, cTe = 0.3, cxc = 80, cT = 2.

hence function T (n)(p, n) is convex and have no global minima at interior of convex
domainG. From the convexity of function T (n)(p, n) and (22) follows that point at which
T (n)(p, n) reached minimal value T (n)

min = infḠ T
(n) = T (n)(pg, ng) is located at contour

∂G of domain G ((pg, ng) ∈ ∂G) [20], i.e., r2 = (pg, ng). This situation is demonstrated
in Fig. 3.

4 Application in manufacturing

Proposed model was applied at the certain wiring harness manufacturer. This Scandi-
navian company has production facilities in the Central Europe, North America and
Eastern Asia, working approximately 2000 employees. Study was performed in com-
pany’s facility in Lithuania. This factory produces enormous variety of different harness
(more than four thousand) for auto industry and the customer demand is fluctuating
and changing rapidly for each product. Demand of the wiring harnesses sharply differs
from each other: from one piece per year, to several hundred per month. Final assembly
operation times (OT) differ from 1 minute to 200 hours and depend on size of the wiring
harness. What is more, these wiring harness constantly changing. Each month from two,
to three hundred new wiring harnesses are being introduced to production, thus replacing
or supplementing current products. Also, the manufacturing is demand-based, i.e., no
possibilities to produce to stock and to synchronize production in that way.

Due to high complexity of products, variety and instability common process improve-
ment approaches mixed-model assembly lines etc. can be hardly applied. As a result,
several types of manufacturing layouts are employed, from assembly line to singular
prototype production. The whole manufacturing system is mostly based on the short-cycle
production. After project is done, the assembly tooling is dismantled and scraped.

In order to conduct experiment and to test the proposed model, first, parameter values
were estimated. Parameter values of cT and cTe were determined according to standard
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Table 1. Common operations in the wiring harness assembly
(electrical centers).

Operation Standard time, min
Placing of braches/wires 0.06
Number of hoses to be pulled 0.1
Assembling of label 0.12
Plugging terminal into housing 0.04
Assembling of shrink sleeve 0.2
Assembling of cable ties 0.06
Pick-place of component 0.04
Assembling of connector for electrical test 0.1
Number of packing’s 1.05

time of the operations (which represent time values excluding learning time). Typical
operations used in wiring harness assembly presented in Table 1.

Therefore, each wiring harness is continuously divisible, i.e., if in a full wiring harness
there are 800 terminals to be plugged into housing, this number can be easily distributed
into two, three or more working stations.

For the experiment a certain complex wiring harness product (electrical center) was
selected consisting of 570 circuits and 83 connectors (housings). Steady state assembly
time cT = 2 h and aggregation timecTe = 0.3 h

Much more complicated issue was to estimate parameters cα and cxc. As it is stated
in the beginning, the company is producing more than 4000 different wiring harness
products in its manufacturing system. There are several families of different wiring har-
nesses: 1) power cable systems; 2) common wiring harnesses; 3) engine bay harnesses;
4) electrical centers. For this experiment, electrical center wiring harnesses are selected.
Another important remark regarding wiring harness is that two different wiring harness
from the same family might show the same (or similar) quantities of operations and
steady-state assembly time, but regarding the assembly operator would have to learn them
as totally different components (due to different electrical layout). However, the slope
coefficient of these two products would be the same, since this is the same product family,
same operations and the same-steady state assembly time. This is very important point,
since it enables to measure one product and apply estimated parameters to another. As the
major function of wiring harness is electrical (even the assembly is mechanical process),
each product must pass electrical test. The company is using electrical test system which
is connected into a computer network and each completed and tested product is stored
as a separate record in the main database. This enables to use large historical production
data for process parameter estimation. In addition to this, many direct production data
measurements were performed during experiment as well. The main objective of produc-
tion data monitoring was to collect enough production data for learning curve fitting and
parameter estimation and empirically test functions (1), (3) and (5).

Function (5) with measured production data is presented in Fig. 4. These experiments
confirm functions (5) consistency with the raw assembly data (couple examples are pre-
sented in Fig. 4 to illustrate this). Also, production data monitoring confirms the existence
of stabilization point. Another finding confirms the assumption made in (3). Even for
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Figure 4. Dependences y(x, p) on unit number x and monitored production data, cα = 0.32, cT = 2,
cxc = 1000. 1 – y(x, 1), 2 – Tict(1), 3 – y(x, 2), 4 – Tict(2), 5 – monitored production data.

Figure 5. 1 – linear α dependency on stabilization time cT , 2 – estimated values from production monitoring.

a very simple task assembly time slightly improves in the same way as for complex task
i.e., until the same stabilization point. This means that for this manufacturing experiment
any artifacts of the model should be avoided.

The next issue was to test assumption made in equation (1), i.e., that slope coefficient
is linearly dependant on steady-state assembly time. In order to do this, several slope
coefficients were estimated for different steady-state assembly times cT , but for the same
product family. The results are presented in Fig. 5. Measured results confirm linear re-
lationship between steady-state assembly time and slope coefficient for electrical center
wiring harness family.

After the values of the parameters are estimated and calculated, several assembly
experiments performed to obtain total production times, with the different number of
divisions. There were five production runs performed to complete 50 pieces of wiring
harnesses. What is more, for this certain product, the presented production time one-
dimension minimization procedure (11) was performed and optimal division number
calculated for selected batch size of n = 50. Calculation results and monitored production
data is depicted in Fig. 6.

Also, measured production runs were used to track additional predictions of the model
for different batch sizes. With the other production volumes, the results are the same,
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Figure 6. Calculated total assembly time and production data. 1 – production data, 2 – T (p, 50); 3 – T (p, 30);
4 – T (p, 15); 5 – T (p, 5); 6 – calculated minimum points. Parameters: cα = 0.32, cT = 2, cxc = 1000,
cTe = 0.3, P = 20.

therefore, several values of n (5, 15 and 30) were selected for graphical representation.
Production data and calculated minimums are presented in Fig. 6.

For this particular product the optimal division number exists for any different n,
however only one of experiments (n = 15) hit the minimum point. Even some of the
data points lies on the model lines, in general, proposed model is only roughly consistent
with the measured production data. This complicates the main conclusion that monitored
production data empirically validates the proposed model. Therefore, additional insights
are needed to justify these discrepancies. While studying results from the Fig. 6, higher
values of p and n are resulting worse actual data sets. Also, while studying separate parts
of process division (recall Figs. 4 and 5) results showed good consistency between real
world data and model assumptions. This proposes an explanation that with higher labor
divisions and production quantity the impact of random error increases. With higher
labor divisions causes some discrepancies between work stations – more divisions, more
possibilities for variable cTe to vary. Also, higher production volumes n result less learn-
ing time, therefore any abnormal operations (dropped housing during assembly, jammed
terminal, tangled wires and etc.) are visible. Also, in a real setting assumptions (1)–(3) and
(4) might vary across individual divisions, some operators learn faster than others, some
operations might be more complicated than another even they are continuously divided.
The outcome of these factors is learning slope discrepancies. Therefore, all these reasons
lead to result that in general proposed model is only roughly consistent with the real-world
production data. On the other hand, with the all simplifications and assumptions made,
huge amount of manual work and random errors, the model provided fairly good results.

Nevertheless, it is obvious that assembly of the complex products at the single working
station is inefficient due to large learning time and even splitting into two parts reduce total
production time significantly, however too much work stations ends up with increased
total production time what, finally, proves the existence of optimum.

Nonlinear Anal. Model. Control, 25(1):144–161
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5 Discussion

In this section detailed discussion regarding model applicability in general is presented.
The main optimization problem (generalized) is presented in (7) with constrains (8), (9)
and (10). However, this problem is quite difficult to solve and its application in manufac-
turing might be even more complicated. What is more, in real setting variables cα, cTe, cxc
and cT appear to be estimated (or calculated) from production process monitoring rather
than optimized by solving optimization problem. Therefore, optimization problem (7) can
be simplified into three different problems at least:

• one-dimension optimization (to find optimal number of process divisions p);
• two-dimensional optimization problem (to find optimal number of process divi-

sions p and optimal production volume n);
• two-dimensional optimization problem with normed function (to find p and n).

The simplest problem regarding its solution and applicability is the one-dimensional
optimization to find optimal number of divisions p. Since assumptions (1)–(3) and (4) are
made, the results might be artifactual in some extent. The one of the potential sources of
artifact is the simplification made in (3). However, only if xc is largely affected (hardly
realistic, marginal situation) by labor division, such artifact would exist. Otherwise, slight
variations of xc will not significantly affect results.

This optimization problem was tested in real manufacturing situation. While ultimate
results proposed only rough consistency with real data sets, on the other hand, it can
be concluded that with such a simple model provided fairly good results. It is very im-
portant result while considering short cycle production lines in unstable manufacturing
environment when there is simply to less time for complex calculations and difficult
combinatorial problems.

Two-dimensional optimization problem is the extension of one-dimensional optimiza-
tion. As it can be seen in Fig. 2, the time function is monotone and no minimum regarding
production size n exist. In other words, minimum point exists only for certain production
quantity n.

The second two-dimensional optimization problem (with normed time) shows op-
timization possibility if the certain set of feasible combination of p and n exists (see
Fig. 3). There is no global minimum, however the lowest value of the function T (n)

min =
infḠ T

(n) = T (n)(pg, ng). The existence of the feasible subset G is also very important
result of this research, since it enables to combine proposed methodology with other
models and methods, i.e., with mixed-model line balancing and etc. In other words, the
feasible set G can be estimated by other methods and then additionally evaluated with the
proposed model regarding complexity aspects.

6 Conclusions

In this research the optimization of the total production time by minimization learning
time by splitting complex processes presented. The main optimization problem stated
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also several additional optimization problems solved to validate proposed method. Ex-
perimental data from wiring harness manufacturing company confirm the splitting to be
an effective measure for the total production time reduction and process improvement
even with splitting into two parts. Additional analysis shows the possibility to combine
proposed methodology with other line balancing methods by evaluating complexity as-
pects and reducing total assembly time in such way. This should be investigated in the
future research.
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