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Abstract. In this paper, we are concerned with global asymptotic synchronization of Duffing-type
oscillator system. Without using matrix measure theory, graph theory and LMI method, which
are recently widely applied to investigating global exponential/asymptotic synchronization for
dynamical systems and complex networks, four novel sufficient conditions on global asymptotic
synchronization for above system are acquired on the basis of constant variation method, integral
factor method and integral inequality skills.
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1 Introduction

The synchronization problem is an important issue of the complex networks. The complex
networks exist everywhere in the real world, such as Internet, World Wide Web, electrical
power grids, social community networks, global economic markets and ecosystems. The
synchronization of complex networks has been widely investigated in the past few years,
for example, see [4, 10, 11] and references therein.

Generally speaking, networks are formed by a large number of linked nodes coupled
by edges. In practice, some coupled “nodes” will be more effective than a single “node”.
In a word, collective behaviors in networks or systems have attracted much attention. It
is worth mentioning that synchronization in coupled oscillators or system has become
an important research topic and can be an explanation of many natural phenomena and
mechanical system [1,8,9]. In [9], the authors studied synchronization of coupled second-
order linear harmonic oscillators with local interaction. By using graph theory and matrix
theory, the synchronization conditions were obtained under mild network connectivity
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conditions. Duffing oscillator is an example of a periodically forced oscillator with a non-
linear elasticity, which is described by

x′′ + cx′ + g
(
x(t)

)
= p(t),

where c > 0 is the damping constant, g(x) is smooth function. In physical sense, the
Duffing oscillator can be interpreted as a forced oscillator with a spring whose restoring
force is g(x(t)), p(t) is a continuous function. Dynamical behaviors of Duffing oscillator
have been widely investigated. For example, in [7,14], the authors discussed the existence
and stability of the periodic solutions of two kinds of Duffing-type equations. In addition,
in [6], the authors established the synchronization conditions for a periodically forced
Duffing oscillator with a chaotic pendulum. In [16], the synchronization chaos in two
coupled Van der Pol–Duffing systems was investigated. In [3], the synchronization by the
Ge–Yao–Chen partial region stability theory of chaotic Mathieu–Van der Pol and chaotic
Duffing–Van der Pol system with fractional-order derivative was discussed.

In [15], by using Gegenbauer polynomial approximation, the authors addressed the
chaos synchronization of two identical stochastic Duffing oscillators with bounded ran-
dom parameters subject to harmonic excitations described by the following differential
equations:

x′′(t) + ax′(t) + b
[
x(t) + x3(t)

]
= p(t), a > 0.

In [12], the authors discussed the synchronization problem of the following Duffing
oscillator network:

x′′i + cx′i + g
(
xi(t)

)
= p(t), i = 1, 2, . . . , N, (1)

which was formed by N coupled Duffing oscillators by local interaction. By using Lya-
punov function method and graph theory method, which are different from those used
in [9] and [6], the sufficient conditions on global asymptotic synchronization and global
exponential synchronization for system (1) were obtained in [12].

In [13], the authors considered the more general Duffing oscillator dynamical net-
works without coupled delay

x′′i (t) + cix
′
i(t) + gi

(
t, xi(t)

)
= pi(t). (2)

By transforming the problem of synchronization of nonidentical Duffing oscillators to
the stability of the error systems, some sufficient criteria for impulsive global asymptotic
synchronization of nonidentical networks both with and without coupling delays (2) were
presented in [13] by using Lyapunov function method and inequality skills.

So far, the results on global exponential synchronization and global asymptotic syn-
chronization for Duffing oscillator system have been acquired mainly by using Lyapunov
functional method [13], graph theory method [9, 12] and matrix measure method [9, 12],
numerical and experimental investigations [2] and chaos analysis [15, 16]. On the other
hand, the restoring force of a spring of Duffing-type oscillator system in [12] was assumed
to be increasing monotonously (see Remark 4).
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On the other hand, in [12,13], the linear controller was designed to achieve the global
asymptotic synchronization and global exponential synchronization for the drive system
and the response system discussed. The results of a control system with a plain linear
control are well known and predictable, hence, the designs of some efficient nonlinear
controllers are very necessary for Duffing oscillator system.

This motivates us to discuss global asymptotic synchronization of Duffing oscillator
system by using some new study methods, getting rid of using graph theory, matrix
measure theory, chaos analysis, numerical and experimental investigations, by setting
new conditions on the restoring force of a spring instead of increasing restrict conditions
on the restoring force of a spring in [12] and designing some nonlinear controllers instead
of the linear controller designed in [12] and impulsive controllers.

In this paper, by setting Lipschitz conditions on the restoring force of a spring, we
will establish concise and easily verified new sufficient conditions on global asymp-
totic synchronization for system (2) and its response system by using constant variation
method, integral factor method and integrating inequality skills, which are different from
those obtained in [2, 9, 12, 13, 15–18] and designing some nonlinear controllers, which
are linear increasing in variable x since our synchronization results will be derived from
linear integrating inequalities. Thus, the contribution of the paper includes two aspects:
(i) Four new study methods of global asymptotic synchronization: constant variation
method, integral factor method and integral inequality skills are introduced in our papers;
(ii) By using above study methods, four new sufficient conditions on global asymptotic
synchronization for Duffing-type oscillator dynamical networks are established by setting
Lipschitz conditions, which are less conservative than those obtained in the existing
papers on the restoring force of a spring and designing more efficient nonlinear controllers
with linear growth in variable x than that designed in the existing papers for system (2)
and its response system.

2 Preliminaries

We consider (2) as the drive system, and the response system is expressed by the following
Duffing-type oscillator system:

y′′i + ciy
′
i + gi

(
t, yi(t)

)
= pi(t) + qi(t), i = 1, 2, . . . , N, (3)

where ci > 0, N is a positive integer, qi(t) is the controller to be designed.
Throughout this paper, for systems (2) and (3), we always assume that:

(H1) There exists a positive constant ki such that |gi(t, xi)− gi(t, yi)| 6 ki|xi − yi|
for all xi, yi ∈ R, i = 1, 2, . . . , N , |·| is the norm of the Euclidean space R.

(H2) There exists a constant η with η > ci > 0 such that∣∣ei(t0)∣∣AiGi
η

− η + p

2η2
∣∣ei(t0)∣∣Ai − ∣∣ei(t0)∣∣AiCi

η + ci
+
AiDiGi
ci

e−cit0

− η + p

η(η + ci)
AiDie

−cit0 − AiDiCi
2ci

e−cit0 < 0;
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(H3) c2i < 4a, 2(ki −m+ p)/l < ci/2, a > 0;
(H4) b+ α < 0, b+ α+ c < d1 + α < c+ k/(c+ b− d1);
(H5) b + α < 0, d1 + α 6 min{c, b + c + α}, where k = max16i6N{ki},

l =
√
4a− c2i /2, ci > 0, c = min16i6N{ci}, Ai = exp{[ki/(ci(η − ci)) +

(η + p)η][eηt0 − 1]}, Bi = η + p + ki/(η − ci), Ci = ki/(ci(η − ci)),
Di = (p|ei(t0)|+ |e′i(t0)|ecit0)/(η− ci), Gi = (η+ p)/η+Bi+Ci, ei(t0) =
yi(t0) − xi(t0), e′i(t0) = y′i(t0) − x′i(t0), t0 > 0 is initial time, a is defined in
controller (5), α, b, d1 are defined in controllers (37).

We cite the following notations:

Fi = ei(t0)e
ct0/2 sin lt0 +

1

l
ect0/2 cos lt0

[
e′i(t0) +

cei(t0)

2

]
− sin 2lt0

l

(
g
(
y(t0)

)
− g
(
x(t0)

)
− a
[
H
(
ei(t0)

)
− ei(t0)

])
,

L1 = V1(t0) +
V2(t0)

b+ c− d1
, L2 =

V2(t0)

d1 − b− c
,

Mi =
ei(t0)e

ct0/2 − bi(t0) sin lt0
cos lt0

, Ui = Vi + b+ c− d1, Vi =
ki

c+ b− d1
.

Definition 1. Drive system (2) and response system (3) are said to be globally asymp-
totically synchronized if for arbitrary solutions of systems (2) and (3) denoted by [x1(t),
x2(t), . . . , xN (t)]T and [y1(t), y2(t), . . . , yN (t)]T, we have

lim
t→∞

∣∣yi(t)− xi(t)∣∣ = 0, i = 1, 2, . . . , N.

Lemma 1. (See [5].) Assume that u(t), b(t) are continuous in (α, β), a(t), q(t)∈L[α, β],
b(t), q(t) are nonnegative functions. If u(t) 6 a(t) + q(t)

∫ t
t0
b(s)u(s) ds, t ∈ (α, β),

then

u(t) 6 a(t) + q(t)

t∫
t0

a(s)b(s) exp

{ t∫
s

q(r)b(r)

}
ds, t ∈ (α, β).

Lemma 2. (See [5].) If u(t) 6 a(t) +
∫ t
t0
K(t, s)u(s) ds, then

u(t) 6 a(t) +

∫ t
t0
v(s)a(s)b(s) ds

1− t0 + v(t)
,

where

v(t) = exp

{
−

t∫
t0

K(t, s) ds

}
, b(t) = K(t, t)+

t∫
t0

K(t, s) ds, 0 6 t0 6 s 6 t 6 b.
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3 Global asymptotic synchronization by constant variation method
and integrating factor method

In this section, we drive two sufficient conditions on global asymptotic synchronization
for systems (2) and (3) by using constant variation method and integral factor method.
Letting ei(t) = yi(t) − xi(t), i = 1, 2, . . . , N , the error system can be expressed as
follows:

e′′i (t) + cie
′
i(t) +

[
gi
(
t, yi(t)

)
− gi

(
t, xi(t)

)]
= qi(t), i = 1, 2, . . . , N, (4)

where ci > 0, the controllers are designed as

qi(t) = −e−citH ′
(
ei(t)

)
e′i(t) (5)

and
qi(t) = −aei(t)−m

∣∣ei(t)∣∣−H(ei(t)), (6)

H(x) is a continuous nonlinear function satisfying |H(x)| 6 p|x|, p > 0 is a positive
constant, a, m are two constants.

Hence, in order to prove that the drive system (2) and the response system (3) are
globally asymptotically synchronized, we only need to prove that limt→∞ |ei(t)| = 0.

Theorem 1. Assume that (H1) and (H2) hold, then the drive system (2) and the response
system (3) can acquire global asymptotical synchronization under controller (5).

Proof. On the basis of systems (4) and (5), one has

e′′i (t) + cie
′
i(t) + gi

(
t, yi(t)

)
− gi

(
t, xi(t)

)
+ e−citH ′

(
ei(t)

)
e′i(t) = 0. (7)

Multiplying (7) by ecit gives

d[e′i(t)e
cit]

dt
+ ecit

{
e−citH ′

(
ei(t)

)
e′i(t) + gi

(
t, yi(t)

)
− gi

(
t, xi(t)

)}
= 0. (8)

Integrating (8) over [t0, t] gives

e′i(t)e
cit − e′i(t0)ecit0

+

t∫
t0

ecis
{
e−cisH ′

(
ei(s)

)
e′i(s) + gi

(
t, yi(s)

)
− gi

(
t, xi(s)

)}
ds = 0,

from which one has

e′i(t)− e′i(t0)eci(t0−t) + e−cit
[
H
(
ei(t)

)
−H

(
ei(t0)

)]
+ e−cit

t∫
t0

ecis
[
gi
(
t, yi(s)

)
− gi

(
t, xi(s)

)]
ds = 0. (9)
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By (9) we have

e′i(t) + ηei(t)− e′i(t0)eci(t0−t) + e−cit
[
H
(
ei(t)

)
−H

(
ei(t0)

)]
+ e−cit

t∫
t0

ecis
[
gi
(
s, yi(s)

)
− gi

(
s, xi(s)

)]
ds = ηei(t). (10)

Multiplying (10) with eηt gives

d[ei(t)e
ηt]

dt
= eηt

{
e′i(t0)e

ci(t0−t) − e−cit
[
H
(
ei(t)

)
−H

(
ei(t0)

)]
− e−cit

t∫
t0

ecis
[
gi
(
s, yi(s)

)
− gi

(
s, xi(s)

)]
ds+ ηei(t)

}
. (11)

Integrating (11) over [t0, t] gives

ei(t)e
ηt − ei(t0)eηt0 = e′i(t0)e

cit0

t∫
t0

e(η−ci)s ds+ η

t∫
t0

eηsei(s) ds

−
t∫

t0

e(η−ci)s ds

s∫
t0

ecir
[
gi
(
r, yi(r)

)
− gi

(
r, xi(r)

)]
dr

+

t∫
t0

e(η−c)s
[
H
(
ei(s)

)
−H

(
ei(t0)

)]
ds

=
e′i(t0)e

cit0

η − ci
[
e(η−ci)t − e(η−ci)t0

]
+ η

t∫
t0

eηsei(s) ds

−
t∫

t0

e(η−ci)s ds

s∫
t0

ecir
[
g
(
r, yi(r)

)
− g
(
r, xi(r)

)]
dr

+

t∫
t0

e(η−ci)s
[
H
(
ei(s)

)
−H

(
ei(t0)

)]
ds,

from which it follows that∣∣ei(t)∣∣eηt 6 ∣∣ei(t0)∣∣eηt0 + ∣∣∣∣e′i(t0)ecit0η − ci

∣∣∣∣∣∣e(η−ci)t − e(η−ci)t0
∣∣+ η

t∫
t0

eηs
∣∣ei(s)∣∣ds

+

t∫
t0

e(η−ci)s ds

s∫
t0

ecir
∣∣gi(r, yi(r))− gi(r, xi(r))∣∣dr
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+

t∫
t0

e(η−ci)sp
[∣∣ei(s)∣∣+ ∣∣ei(t0)∣∣] ds

6
∣∣ei(t0)∣∣eηt0 + p|ei(t0)|+ |e′i(t0)ecit0 |

|η − ci|
∣∣e(η−ci)t − e(η−ci)t0

∣∣+ η

t∫
t0

eηs
∣∣ei(s)∣∣ds

+ ki

t∫
t0

e(η−ci)s ds

s∫
t0

ecir
∣∣ei(r)∣∣dr + p

t∫
t0

e(η−ci)s
∣∣ei(s)∣∣ds. (12)

By changing the order of two time integrals, one has

ki

t∫
t0

e(η−ci)s ds

s∫
t0

ecir
∣∣ei(r)∣∣dr = ki

t∫
t0

ecir
∣∣ei(r)∣∣dr t∫

r

e(η−ci)s ds

=

t∫
t0

ki
η − ci

ecir
[
e(η−ci)t− e(η−ci)r

]∣∣ei(r)∣∣ dr. (13)

Substituting (13) into (12) gives∣∣ei(t)∣∣eηt 6 ∣∣ei(t0)∣∣eηt0 + p|ei(t0)|+ |e′i(t0)|ecit0
|η − ci|

∣∣e(η−ci)t − e(η−ci)t0
∣∣

+ η

t∫
t0

eηs
∣∣ei(s)∣∣ds+ t∫

t0

ki
η − ci

[
e(η−ci)t+cir − eηr

]∣∣ei(r)∣∣dr
+ p

t∫
t0

e(η−ci)s
∣∣ei(s)∣∣ds. (14)

On the basis of (14), one has since η > ci,∣∣ei(t)∣∣ 6 ∣∣ei(t0)∣∣eη(t0−t) + p|ei(t0)|+ |e′i(t0)|ecit0
η − ci

e−cit

+

t∫
t0

[
(η + p)eη(s−t) +

ki
η − ci

eci(s−t)
]∣∣ei(s)∣∣ds,

from which, by using Lemma 2, it follows that∣∣ei(t)∣∣ 6 ∣∣ei(t0)∣∣eη(t0−t) + p|ei(t0)|+ |e′i(t0)|ecit0
η − ci

e−cit +

∫ t
t0
v(s)a(s)b(s) ds

1− t0 + v(t)
, (15)

where

v(t) = exp

{
−

t∫
t0

K(t, s) ds

}
, b(t) = K(t, t) +

t∫
t0

K(t, s) ds,
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a(t) =
∣∣ei(t0)∣∣eη(t0−t) + p|ei(t0)|+ |e′i(t0)|ecit0

η − ci
e−cit > 0,

K(t, s) = (η + p)eη(s−t) +
ki

η − ci
eci(s−t).

Consequently,

v(t) = exp

{
−

t∫
t0

[
(η + p)eη(s−t) +

ki
η − ci

eci(s−t)
]
ds

}

= exp

{
η + p

η

[
eη(t0−t) − 1

]
+

ki
ci(η − ci)

[
eci(t0−t) − 1

]}
6 exp

{[
ki

ci(η − ci)
+
η + p

η

][
eηt0 − 1

]}
= Ai,

b(t) = η + p+
ki

η − ci
+
η + p

η

[
1− eη(t0−t)

]
+

ki
ci(η − ci)

[
1− eci(t0−t)

]
= Bi +

η + p

η

[
1− eη(t0−t)

]
+ Ci

[
1− eci(t0−t)

]
> 0.

As a result

0 6

t∫
t0

v(s)a(s)b(s) ds

6 Ai

t∫
t0

[
Bi +

η + p

η

[
1− eη(t0−s)

]
+ Ci

[
1− eci(t0−s)

]]
×
(∣∣ei(t0)∣∣eη(t0−s) +Die

−cis
)
ds

= Ai

t∫
t0

[
Gi −

η + p

η
eη(t0−s) − Cieci(t0−s)

](∣∣ei(t0)∣∣eη(t0−s) +Die
−cis

)
ds

= Ai

[
−|ei(t0)|Gi

η
eη(t0−t) +

|ei(t0)|Gi
η

+
η + p

2η2
∣∣ei(t0)∣∣e2η(t0−t)

− η + p

2η2
∣∣ei(t0)∣∣+ |ei(t0)|Ci

η + ci
e(η+ci)(t0−t) − |ei(t0)|Ci

η + ci

− DiGi
ci

e−cit +
DiGi
ci

e−cit0 +
η + p

η(η + ci)
Die

−(η+ci)t+ηt0

− η + p

η(η + ci)
Die

−cit0 +
DiCi
2ci

e−2cit+cit0 − DiCi
2ci

e−cit0
]
,

Nonlinear Anal. Model. Control, 25(3):378–399

https://doi.org/10.15388/namc.2020.25.16656


386 X. Yi et al.

from which, together with (H2), it follows that

0 6

t∫
t0

v(s)a(s)b(s) ds

6 −|ei(t0)|AiGi
η

eη(t0−t) +
η + p

2η2
∣∣ei(t0)∣∣Aie2η(t0−t) + |ei(t0)|AiCi

η + ci
e(η+ci)(t0−t)

− AiDiGi
ci

e−cit +
η + p

η(η + ci)
AiDie

−(η+ci)t+ηt0 +
AiDiCi

2ci
e−2cit+cit0 . (16)

Since η > 0, ci > 0, by (16) and (H2), one has

lim
t→∞

t∫
t0

a(s)b(s)v(s) ds = 0. (17)

It is clear that

lim
t→∞

v(t) = exp

{
−η + p

η
+

ki
ci(ci − η)

}
. (18)

Substituting (17) and (18) into (15) gives limt→∞ |ei(t)| = 0. The proof of Theorem 1 is
accomplished.

Theorem 2. Assume that (H1) and (H3) hold, then the drive system (2) and the response
system (3) can acquire global asymptotical synchronization under controller (6).

Proof. Based on systems (4) and (6), one has

e′′i (t) + cie
′
i(t) + gi

(
t, yi(t)

)
− gi

(
t, xi(t)

)
+ aei(t) +m

∣∣ei(t)∣∣
+H

(
ei(t)

)
= 0. (19)

Letting r1 = −ci/2− (
√

4a− c2i /2)i, r2 = −ci/2 + (
√

4a− c2i /2)i, by using constant
variation formula, from (19) it follows

ei(t) = ai(t)e
−cit/2 cos

√
4a− c2i
2

t+ bi(t)e
−cit/2 sin

√
4a− c2i
2

t, (20)

where ai(t) and bi(t) satisfy the following differential equations:

a′i(t)e
−cit/2 cos

√
4a− c2i
2

t+ b′i(t)e
−cit/2 sin

√
4a− c2i
2

t = 0 (21)

and

− a′i(t)e−cit/2
[
ci
2
cos

√
4a− c2i
2

t+

√
4a− c2i
2

sin

√
4a− c2i
2

t

]
+ b′i(t)e

−cit/2
[
−ci

2
sin

√
4a− c2i
2

t+

√
4a− c2i
2

cos

√
4a− c2i
2

t

]
= g
(
t, xi(t)

)
− g
(
t, yi(t)

)
−m

∣∣ei(t)∣∣−H(ei(t)). (22)
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Denoting l =
√
4a− c2i /2, by (21) and (22), it follows that

a′i(t) =
ecit/2

l

(
g
(
t, yi(t)

)
− g
(
t, xi(t)

)
−m

∣∣ei(t)∣∣−H(ei(t))) sin lt (23)

and

b′i(t) =
ecit/2

l

(
gi
(
t, xi(t)

)
− gi

(
t, yi(t)

)
−m

∣∣ei(t)∣∣−H(ei(t))) cos lt. (24)

Integrating (23) and (24) over [t0, t], respectively, it follows that

ai(t) = ai(t0) +
1

l

t∫
t0

ecis/2
(
gi
(
s, yi(s)

)
−gi

(
s, xi(s)

)
−m

∣∣ei(s)∣∣−H(ei(s)))
× sin lsds (25)

and

bi(t) = bi(t0) +
1

l

t∫
t0

ecis/2
(
gi
(
s, yi(s)

)
−gi

(
s, xi(s)

)
−am

∣∣ei(s)∣∣−H(ei(s)))
× cos lsds. (26)

Substituting (25) and (26) into (20) gives

ei(t) =

{
ai(t0) +

1

l

t∫
t0

ecis/2
(
gi
(
s, yi(s)

)
− gi

(
s, xi(s)

)
−m

∣∣ei(s)∣∣
−H

(
ei(s)

))
sin lsds

}
e−cit/2 cos lt

+

{
bi(t0) +

1

l

t∫
t0

ecis/2
(
gi
(
s, yi(s)

)
− gi

(
s, xi(s)

)
−m

∣∣ei(s)∣∣
−H

(
ei(s)

))
cos lsds

}
e−ct/2 sin lt. (27)

Based on (27), one has

ei(t0)e
cit0/2 = ai(t0) cos lt0 + bi(t0) sin lt0 (28)

and

e′i(t0)e
cit0/2 +

ci
2
ei(t0)e

cit0/2

=
1

l
ecit0/2 sin 2lt0

(
g
(
t0, y(t0)

)
− g
(
t0, x(t0)

)
−
[
H
(
ei(t0)

)
+m

∣∣ei(t0)∣∣])− ai(t0)l sin lt0 + bi(t0)l cos lt0. (29)
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On the basis of (28) and (29), we get

bi(t0) = ei(t0)e
cit0/2 sin lt0 +

1

l
ecit0/2 cos lt0

[
e′i(t0) +

ciei(t0)

2

]
− sin 2lt0

l

(
g
(
t0, y(t0)

)
− g
(
t0, x(t0)

)
−
[
H
(
ei(t0)

)
+m

∣∣ei(t0)∣∣])
= Fi (30)

and

ai(t0) =
ei(t0)e

cit0/2 − bi(t0) sin lt0
coslt0

=Mi. (31)

Substituting (30) and (31) into (27) gives

ei(t) =

{
Mi +

1

l

t∫
t0

ecis/2
(
g
(
s, yi(s)

)
− g
(
s, xi(s)

)
−m

∣∣ei(s)∣∣
−H

(
ei(s)

))
sin lsds

}
e−cit/2 cos lt

+

{
Fi +

1

l

t∫
t0

ecis/2
(
g
(
s, yi(s)

)
− g
(
s, xi(s)

)
−m

∣∣ei(s)∣∣−H(ei(s))) cos lsds}e−cit/2 sin lt,
from which, it follows that

∣∣ei(t)∣∣ 6 (|Mi|+
ki −m+ p

l

t∫
t0

ecis/2
∣∣ei(s)∣∣ds)e−cit/2

+

(
|Fi|+

ki −m+ p

l

t∫
t0

ecis/2
∣∣ei(s)∣∣ds)e−cit/2

=
(
|Mi|+ |Fi|

)
e−cit/2 +

2(ki −m+ p)

l
e−cit/2

t∫
t0

ecis/2
∣∣ei(s)∣∣ds. (32)

In view of (32), by using Lemma 1, we get∣∣ei(t)∣∣ 6 (|Mi|+ |Fi|
)
e−cit/2

+
2(ki −m+ p)(|Mi|+ |Fi|)

l
e−cit/2

t∫
t0

e−cis/2ecis/2 exp

{
2ki
l

t∫
s

edr

}
ds
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=
(
|Mi|+ |Fi|

)
e−cit/2

+
2(ki −m+ p)(|Mi|+ |Fi|)

l
e−cit/2

t∫
t0

exp

{
2(ki −m+ p)

l
(t− s)

}
ds

=
(
|Mi|+ |Fi|

)
e−cit/2

+
2(ki −m+ p)(|Mi|+ |Fi|)

l
e(2(ki−m+p)/l−ci/2)t l

2(ki −m+ p)

×
[
e−2(ki−m+p)t0/l − e−2(ki−m+p)t/l

]
=
(
|Mi|+ |Fi|

)
e−cit/2

+
(
|Mi|+ |Fi|

)[
e−2(ki−m+p)t0/l+(2(ki−m+p)/l−ci/2)t − e−cit/2

]
=
(
|Mi|+ |Fi|

)
e−2(ki−m+p)t0/l+(2(ki−m+p)/l−ci/2)t. (33)

Since ci > 0, 2(ki −m+ p)/l < ci/2, by (33), it follows that limt→∞ |ei(t)| = 0.
This accomplishes the proof of Theorem 2.

4 Global asymptotic synchronization by integral inequality skills

In this section, we will drive two sufficient conditions on global asymptotic synchroniza-
tion for Duffing-type oscillator system (2) by using integral inequality skills.

Setting x′i = zi, i = 1, 2, . . . , N , we can acquire the following system from sys-
tem (2):

x′i = zi, z′i = −cizi − gi
(
t, xi(t)

)
+ pi(t), i = 1, 2, . . . , N. (34)

Consequently, in order to study the synchronization of system (2) and its response system,
we only need to study the synchronization of system (34) and its response system.

We consider system (34) as the drive system, the response system is expressed as the
following equations:

u′i = vi + Pi(t), v′i = −civi − gi
(
t, ui(t)

)
+ pi(t) +Qi(t), (35)

where Pi(t), Qi(t) are the controllers.
By setting Ei(t) = ui(t) − xi(t), Ri(t) = vi(t) − zi(t), the error system can be

expressed as

E′i = Ri + Pi(t), R′i = −ciRi −
[
gi
(
t, ui(t)

)
− gi

(
t, xi(t)

)]
+Qi(t). (36)

The controllers are designed as follows:

Pi(t) = bEi(t) + h
(
Ei(t)

)
, Qi(t) = d1Ri(t) + h

(
Ri(t)

)
, (37)

where h(x) is a continuous function satisfying |h(x)| 6 α|x|, α > 0 is a constant.
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Definition 2. The drive system (34) and the response system (35) are said to be globally
asymptotically synchronized if

lim
t→∞

∣∣ui(t)− xi(t)∣∣ = 0, lim
t→∞

∣∣vi(t)− zi(t)∣∣ = 0, i = 1, 2, . . . , N.

Theorem 3. Assume that (H1) and (H4) hold, then the drive system (34) and the response
system (35) can acquire global asymptotical synchronization under controllers (37).

Proof. Two Lyapunov functions are designed as follows:

F1(t) =

N∑
i=1

∣∣Ei(t)∣∣, F2(t) =

N∑
i=1

∣∣Ri(t)∣∣.
In view of (36) and (37), one has

F ′1(t) =

N∑
i=1

sign
[
Ei(t)

][
Ri(t) + bEi(t) + h

(
Ei(t)

)]
6

N∑
i=1

[
(b+ α)

∣∣Ei(t)∣∣+ ∣∣Ri(t)∣∣] = (b+ α)F1(t) + F2(t) (38)

and

F ′2(t) =

N∑
i=1

sign
[
Ri(t)

](
−ciRi(t)−

[
gi
(
t, ui(t)

)
− gi

(
t, xi(t)

)]
+ d1Ri(t) + h

(
Ri(t)

))
=

N∑
i=1

[
(α− ci)

∣∣Ri(t)∣∣+ ki
∣∣Ei(t)∣∣+ d1

∣∣Ri(t)∣∣]
6 (d1 − c+ α)F2(t) + kF1(t). (39)

Multiplying (38) and (39) with e−(b+α)t and e(c−d1−α)t, respectively, it follows that

d[F1(t)e
−(b+α)t]

dt
6 F2(t)e

−(b+α)t (40)

and
d[F2(t)e

(c−d1−α)t]

dt
6 kF1(t)e

(c−d1−α)t. (41)

Integrating (40) and (41) over [t0, t], respectively, one has

F1(t) 6 F1(t0)e
(b+α)(t−t0) + e(b+α)t

t∫
t0

F2(s)e
−(b+α)s ds (42)

and

F2(t) 6 F2(t0)e
(c−d1−α)(t0−t) + ke−(c−d1−α)t

t∫
t0

F1(s)e
(c−d1−α)s ds. (43)
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Since d1 > b+ c, substituting (43) into (42) gives

F1(t) 6 F1(t0)e
(b+α)(t−t0) + e(b+α)t

×
t∫

t0

e−(b+α)s

{
F2(t0)e

(c−d1−α)(t0−s)+ke(d−c)s
s∫

t0

F1(r)e
(c−d1−α)r dr

}
ds

= L1e
(b+α)(t−t0) + L2e

(d1−c+α)(t−t0)

+ e(b+α)tk

t∫
t0

e(d1−c−b)s ds

s∫
t0

F1(r)e
(c−d1−α)r dr

= L1e
(b+α)(t−t0) + L2e

(d1−c+α)(t−t0)

+ e(b+α)tk

t∫
t0

F1(r)e
(c−d1−α)r dr

t∫
r

e(d1−c−b)s ds

= L1e
(b+α)(t−t0) + L2e

(d1−c+α)(t−t0)

+
ke(b+α)t

d1 − b− c

t∫
t0

F1(r)e
(c−d1−α)r

[
e(d1−c−b)t − e(d1−c−b)r

]
dr

6 L1e
(b+α)(t−t0)+L2e

(d1−c+α)(t−t0)+
ke(d1−c+α)t

d1−b−c

t∫
t0

F1(r)e
(c−d1−α)rdr. (44)

Setting z(t) =
∫ t
t0
F1(r)e

(c−d1−α)r dr, we have z′(t) = F1(t)e
(c−d1−α)t, then by (44),

z′(t) 6 L1e
(b+c−d1)t−(b+α)t0 + L2e

(c−d1−α)t0 +
k

d1 − c− b
z(t). (45)

Multiplying (45) with ekt/c+b−d1 and integrating over [t0, t], one has

z(t)ekt/(c+b−d1) 6

t∫
t0

(
L1e
−(b+α)t0eUis + L2e

(c−d1−α)t0eVis
)
ds

=
L1e
−(b+α)t0

Ui

[
eUit − eUit0

]
+
L2e

(c−d1−α)t0

Vi

[
eVit − eVit0

]
,

from which it follows that

z(t) 6
L1e
−(b+α)t0

Ui

[
e(b+c−d1)t − eUit0−Vit

]
+
L2e

(c−d1−α)t0

Vi

[
1− eVi(t0−t)

]
. (46)

Substituting (46) into (45) gives

0 6 F1(t) 6

(
L1 −

ViL1

Ui

)
e(b+α)(t−t0) +

(
L2 +

ViL1

Ui

)
e(d1+α−c−Vi)(t−t0). (47)
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Since b+ α < 0, b+ α + c < d+ α < c+ k/(c+ b− d) < c, then from (47) we have
limt→∞ F1(t) = 0. Hence,

lim
t→∞

Ei(t) = 0. (48)

Substituting (48) into (43) gives

0 6 F2(t) (49)

6 VF (t0)e
(c−d1−α)(t0−t)

+ ke(d1+α−c)t
t∫

t0

[(
L1 −

ViL1

Ui

)
e(b+α)(s−t0)e(c−d1−α)s

+

(
L2 +

ViL1

Ui

)
e(d1+α−c−Vi)(s−t0)e(c−d1−α)s

]
ds

=

[
F2(t0) +

k(L2 +
ViL1

Ui
)

Vi
−
kL1 − kViL1

Ui

b+ c− d1

]
e(d1+α−c)(t−t0)

+
kL1 − kViL1

Ui

b+ c− d1
e(b+α)(t−t0) −

k(L2 +
ViL1

Ui
)

Vi
e(d1+α−c−Vi)(t−t0). (50)

Since b+ α < 0, d1 + α < c, d1 + α− c+ k/(d1 − b− c) < 0, then from (50) we have
limt→∞ F2(t) = 0. Hence,

lim
t→∞

Ri(t) = 0. (51)

Combining (48) with (51) accomplishes the proof of Theorem 3.

Theorem 4. Assume that (H1) and (H5) hold, then the drive system (34) and the response
system (35) can acquire global asymptotical synchronization under controllers (37).

Proof. Two Lyapunov functions are designed as follows:

F1(t) =

N∑
i=1

∣∣Ei(t)∣∣, F2(t) =

N∑
i=1

∣∣Ri(t)∣∣.
In view of the proofs of (42) and (43), one has

F1(t) 6 F1(t0)e
(b+α)(t−t0) + e(b+α)t

t∫
t0

F2(s)e
−(b+α)s ds (52)

and

F2(t) 6 F2(t0)e
(c−d1−α)(t0−t) + ke−(c−d1−α)t

t∫
t0

F1(s)e
(c−d1−α)s ds. (53)
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Since d1 < b+ c, substituting (53) into (52), the similar proof to that of (44) gives

F1(t) 6 L1e
(b+α)(t−t0) + L2e

(d1−c+α)(t−t0) +
ke(b+α)t

b+ c− d1

t∫
t0

F1(r)e
−(b+α)r dr,

from which, we have

F1(t)e
−(b+α)t 6 L1e

−(b+α)t0 + L2e
(d1−c−b)t−(d1−c+α)t0

+
k

b+ c− d1

t∫
t0

F1(r)e
−(b+α)r dr. (54)

Setting Z(t) =
∫ t
t0
F1(s)e

−(b+α)s ds, we have Z ′(t) = F1(t)e
−(b+α)t. Consequently,

by (54), we can get

Z ′(t) 6 L1e
−(b+α)t0 + L2e

(d1−c−b)t−(d1−c+α)t0 +
k

b+ c− d1
Z(t). (55)

Multiplying (55) by ekt/(d1−b−c) gives

d[Z(t)ekt/(d1−b−c)]

dt
6 L1e

kt/(d1−b−c)−(b+α)t0

+ L2e
(d1−c−b+k/(d1−b−c))t−(d1−c+α)t0 . (56)

Integrating (56) over [t0, t], we have by noting Z(t0) = 0

Z(t)ekt/(d1−b−c) 6 L1e
−(b+α)t0

t∫
t0

eks/(d1−b−c) ds

+ L2e
−(d1−c+α)t0

t∫
t0

e(d1−c−b+k/(d1−b−c))s ds.

Consequently,

0 6 F1(t)e
−(b+α)t

6
L1e
−(b+α)t0

Vi

[
e−Vit0 − e−Vit

]
+ L2Uie

−(d1−c+α)t0
(
e−Uit0 − e−Uit

)
=
L1e
−(b+α+Vi)t0

Vi

[
1− e−Vi(t−t0)

]
+ L2Uie

−(d1−c+α+Ui)t0
[
1− e−Ui(t−t0)

]
,

from which it follows that since L2 < 0, L1 > 0, Ui > 0, Vi > 0,

0 6 F1(t)e
−(b+α)t

6
L1e
−(b+α+Vi)t0

Vi
+ L2Uie

−(d1−c+α+Ui)t0
[
1− e−Ui(t−t0)

]
. (57)

Nonlinear Anal. Model. Control, 25(3):378–399

https://doi.org/10.15388/namc.2020.25.16656


394 X. Yi et al.

By (57), one has

0 6 F1(t)

6
L1

Vi
e(b+α)t−(b+α+Vi)t0 + L2Uie

(b+α)t−(d1−c+α+Vi)t0
[
1− e−Vi(t−t0)

]
. (58)

Since b+ α < 0, Vi > 0, from (58) it follows that

lim
t→∞

F1(t) = 0.

Since L2 < 0, substituting (58) into (53) gives

0 6 F2(t)

6 F2(t0)e
(c−d1−α)(t0−t) + ke−(c−d1−α)t

×
t∫

t0

e(c−d1+b)s
{
L1

Vi
e−(b+α+Vi)t0 + e−(d1−c+α+Vi)t0L2Ui

[
1− e−Vi(s−t0)

]}
ds

6 F2(t0)e
(c−d1−α)(t0−t) + ke−(c−d1−α)t

t∫
t0

e(c−d1+b)s
L1

Vi
e−(b+α+Vi)t0 ds

= V2(t0)e
(α+d1−c)(t−t0)

+
kL1

Vi(c− d1 + b)

[
e(b+α)t−(b+α+Vi)t0 − e(α+d1−c)t−(c−d1+b)t0

]
. (59)

Since b + α < 0, d1 + α < c, on the basis of (59), we have limt→∞ F2(t) = 0. This
completes the proof of Theorem 4.

Remark 1. In [9,12] and [13], global exponential synchronization and global asymptotic
synchronization for system (2) were discussed by using graph theory, matrix theory and
Lyapunov function method. While in our paper, getting rid of using above methods, we ac-
quire four new sufficient conditions on global asymptotic synchronization for system (2)
and its response system by using constant variation method, integral factor method and
inequality skills. As a result, some new study methods are introduced in our paper.

Remark 2. In [12] and [13], a linear controller was respectively designed to achieve the
global asymptotic synchronization and global exponential synchronization between the
drive system and the response system discussed. In our paper, some more generalized
nonlinear controllers, which are linearly increasing in variable x, are designed to acquire
the global asymptotic synchronization between the drive system and the response system.
Consequently, new nonlinear controllers are introduced in our paper.

Remark 3. In [12], Assumption 1 was assumed:

Assumption 1. There are two positive numbers θ1 and θ2 such that

θ1(x− y)2 6 (x− y)
[
g(x)− g(y)

]
6 θ2(x− y)2.
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When x > y, from Assumption 1 we have

0 6 θ1(x− y) 6 g(x)− g(y) 6 θ2(x− y).

When x < y, from Assumption 1 we have

θ2(x− y) 6 g(x)− g(y) 6 θ1(x− y) 6 0.

Hence, g(x) is monotonously increasing on x. Thus, in [12], the restoring force of a spring
of oscillator dynamical networks was assumed to be increasing monotonously.

Remark 4. In [12], g(x) is assumed to be monotonously increasing, while in our paper,
without the assumption of monotonicity on g(x), we assume that g(t, x) only satisfies
global Lipschitz conditions. On other hand, in [12, 13], linear controllers were designed,
while in our paper, some generalized nonlinear controllers are designed. Consequently,
our results on global asymptotic synchronization for Duffing oscillator dynamical net-
works are less conservative than those obtained in [12, 13]. In [13], the sufficient con-
ditions on global impulsive synchronization for system (2) and its response system were
acquired. In our paper, we acquire new sufficient conditions on global asymptotic syn-
chronization for system (2) and its response system under new controllers.

5 Examples

In this section, we give four examples for showing our results.

Example 1. We consider the following dynamical network (the model was discussed in
[12]):

x′′i + cx′i + g
(
xi(t)

)
= p(t), (60)

where g(xi) = 2(xi + 1), p(t) = cos t. The control input was designed as in [12]:

µi = d

N∑
j=1

aij(uj − ui).

In [12], the coupled Duffing oscillator network and its response system can achieve the
global synchronization with the control input µi. We consider the drive system (60) and
the response system

y′′i + cy′i + g
(
yi(t)

)
= p(t) + qi(t) (61)

with the controller
qi(t) = −e−ctH ′

(
ei(t)

)
e′i(t), (62)

where g(xi(t)) = xi(t) + sinxi(t) + 2, p(t) = cos t, ki = 2, c = 1.2, η = 1.6,
H(ei(t)) = ei(t)/(1+e

2
i (t)) (linear growth |ei(t)/(1+e2i (t))| 6 |ei(t)|), p = 1, i = 1, 2.

Then the error system can be described by as follows:

e′′i (t) + ce′i(t) +
[
g
(
yi(t)

)
− g
(
xi(t)

)]
= −e−ct 1− e2i (t)

(1 + e2i (t))
2
e′i(t), i = 1, 2.
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(a) (b)

Figure 1. Example 1: (a) the trajectories of x1(t), y1(t) and x2(t), y2(t); (b) the error states e1(t) and e2(t).

We take all the initial conditions as: x1(0) = 1, y1(0) = 4, x′1(0) = 3, y′1(0) = 2,
x2(0) = −5, y2(0) = −8, x′2(0) = 2, y′2(0) = 3. It is easy to verify that (H1) and (H2)
are satisfied. Hence, by Theorem 1 the drive system (60) and the response system (61)
are globally asymptotically synchronized under controllers (62).

In [12], g(x) is assumed to be monotonously increasing (see Remark 5), while g(x) =
x(t)+sinx(t) is not monotonously increasing in our paper, in [12] and [13], the controller
µi is linear, while our controller (62) is nonlinear. Consequently, our result of global
asymptotic synchronization with nonlinear controller is less conservative than that in [12]
and [13].

The curves of variables x1(t), y1(t), x2(t) and y2(t) are shown in Fig. 1(a), the error
curves of the drive-response system e1(t) and e2(t) are shown in Fig. 1(b).

Example 2. In [12], the authors considered the Duffing-type oscillator dynamical net-
work (60)

x′′i + cx′i + g
(
xi(t)

)
= p(t),

where g(x) = 0.5x− 0.5 sinx+ 2, p(t) = cos t, the controller was designed as

µi = d

N∑
j=1

aij
[
(uj − ui) + (vj − vi)

]
.

The coupled Duffing oscillator network and its response system can achieve the global
synchronization with the control input. We consider the drive system (60) and the response
system (61) with the controller qi(t) = −aei(t) −m|ei(t)| − e3i (t)/(1 + e2i (t)), a = 2,
c = 1.8, p = 1, m = 2.5, g(xi(t)) = 0.5xi(t) − 0.5 sinxi(t) + 2, p(t) = cos t, ki = 1,
i = 1, 2, |e3i (t)/(1 + e2i (t))| 6 |ei(t)| (linear growth). The error system can be described
by as follows:

e′′i (t) + ce′i(t) +
[
g
(
yi(t)

)
− g
(
xi(t)

)]
= −aei(t)−m

∣∣ei(t)∣∣− e3i (t)

1 + e2i (t)
, i = 1, 2.
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(a) (b)

Figure 2. Example 2: (a) the trajectories of x1(t), y1(t) and x2(t), y2(t); (b) the error states e1(t) and e2(t).

We take all the initial conditions as follows: x1(0) = 5, y1(0) = 1, x′1(0) = 3,
y′1(0) = 4, x2(0) = −6, y2(0) = 2, x′2(0) = 1, y′2(0) = 2.

It is easy to verify that (H1) and (H3) are satisfied. Hence, by Theorem 2, the drive
system (60) and the response system (61) are globally asymptotically synchronized.

In [12,13], the linear controller was designed, while in our paper, the efficient nonlin-
ear controller is designed to achieve global synchronization; in [12], g(x) is monotonously
increasing, while in our paper, g(x) is not monotonously increasing, so, our result on
global asymptotic synchronization is less conservative than that in [12, 13].

The curves of variables x1(t), y1(t), x2(t) and y2(t) are shown in Fig. 2(a), the error
curve of the drive-response system e1(t) and e2(t) is shown in Fig. 2(b).

Example 3. (See [13, Ex. 4.1].). We consider the drive system

x′i = zi, z′i = −cizi − gi
(
t, xi(t)

)
+ pi(t), i = 1, 2. (63)

and the response system

u′i = vi + Pi(t), v′i = −civi − gi
(
t, ui(t)

)
+ pi(t) +Qi(t), i = 1, 2, (64)

with the controllers

Pi(t) = bEi(t) + 2 sin
(
Ei(t)

)
, Qi(t) = d1Ri(t) + 2 sin

(
Ri(t)

)
, (65)

where pi(t) = i cos t, gi(t, xi(t)) = θi(i + xi(t)) sin t with θi = 0.2
√
i, k1 = 0.2,

k2 = 0.2
√
2, ci = 5 + (−1)i0.5i, c1 = 4.5, c2 = 6, c = 4.5, b = −3, d1 = 2,

2| sinxi(t)| 6 2|xi(t)| (linear growth), α = 2, i = 1, 2. Correspondingly, the error
system can be described by as follows:

E′i = Ri + bEi(t) + 2 sin
(
Ei(t)

)
,

R′i = −ciRi −
[
gi
(
t, ui(t)

)
− gi

(
t, xi(t)

)]
+ d1Ri(t) + 2 sin

(
Ri(t)

)
, i = 1, 2.
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(a) (b)

Figure 3. Example 3: (a) the trajectories of x1(t), z1(t), u1(t), v1(t) and x2(t), z2(t), u2(t), v2(t); (b) the
error states E1(t) R1(t) and E2(t), R2(t).

In [13], the impulsive synchronization of system (63) was discussed. In this paper, we
consider the global asymptotical synchronization of system (63) and system (64). We take
all the initial conditions as follows: x1(0) = 2, z1(0) = −3, u1(0) = −1, v1(0) = −4,
x2(0) = 2.5, z2(0) = −1.5, u2(0) = 3.5, v2(0) = 4.5. It is easy to verify that (H1) and
(H4) are satisfied. Hence, by Theorem 4, the drive system (63) and the response system
(64) with i = 1, 2 are globally asymptotically synchronized under the controllers (65).
The curves of variables x1(t), z1(t), u1(t), v1(t), x2(t), z2(t), u2(t) and v2(t) are shown
in Fig. 3(a), the error curves of the drive-response system E1(t), R1(t), E2(t) and R2(t)
are shown in Fig. 3(b).

6 Conclusion

In this paper, the asymptotic synchronization of Duffing-type oscillator system is consid-
ered. Without using matrix measure theory, graphic theory and LMI method, four new
sufficient conditions on global asymptotic synchronization for above system are presented
by applying some new study methods: constant variation method, integral factor method
and integrating inequality method. Furthermore, our results on global asymptotic syn-
chronization of Duffing-type oscillator system are less conservative than those acquired
in [12] and different from those acquired in [13].
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