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Abstract. This study proposes two prey–predator models with strong and weak Allee effects in
prey population with Crowley–Martin functional response. Further, gestation delay of the predator
population is introduced in both the models. We discussed the boundedness, local stability and
Hopf-bifurcation of both nondelayed and delayed systems. The stability and direction of Hopf-
bifurcation is also analyzed by using Normal form theory and Center manifold theory. It is shown
that species in the model with strong Allee effect become extinct beyond a threshold value of Allee
parameter at low density of prey population, whereas species never become extinct in weak Allee
effect if they are initially present. It is also shown that gestation delay is unable to avoiding the
status of extinction. Lastly, numerical simulation is conducted to verify the theoretical findings.
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1 Introduction

Prey-predator relationship is a very dominant phenomenon that occurs in nature. It has
been an issue of attention among ecologists and biologists since last few decades. First
model on prey–predator interaction is formulated and proposed by Lotka and Volterra. It
contains a pair of first-order nonlinear differential equations frequently used to describe
the dynamics of biological systems in which two species interact. After that several
attempts have been made to generalize and extend these equations.

A general two dimensional model of interaction between prey and predator is repre-
sented by

dx

dt
= xf(x)− yg(x, y),

dy

dt
= y
(
−d+ cg(x, y)

)
,

where x and y denote prey and predator densities at time t respectively. f(x) is per
capita growth rate of prey. g(x, y) and cg(x, y) are functional and numerical response
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of predator for prey, where c (0 < c < 1) stands for conversion coefficient denoting the
number of newly born predators for each captured prey. d is mortality rate of predator
population.

One vital factor of the prey–predator interaction is the intake rate of prey by a predator
i.e. functional response. It helps to predict about a prey–predator dynamics with more ac-
curacy. There are many types of functional response: Holling type I-III, ratio dependent,
Beddington–DeAngelis, Crowley–Martin, Hassel–Verley. Holling type I–III functional
responses are prey dependent whereas Beddington–DeAngelis, Crowley–Martin, Hassel–
Verley are prey and predator dependent i.e. functional response is function of both the
prey and predator’s density.

Crowley–Martin [11] assumed that predation will decrease when the predator density
is high due to interference among predators. Some investigations have been conducted
on prey–predator model including Crowley–Martin functional response [11, 25, 38]. This
type of response function is written as

η(x, y) =
αx

(1 + ax)(1 + by)
,

where α, a and b are positive parameters denoting attack rate, handling time and magni-
tude of interference among predators, respectively.

The effect of intraspecific interference among predators has been investigated in prey–
predator model with Holling type II functional response in [37, 42], with Holling type
III functional response in [17], with Beddington–DeAngelis type functional response in
[23, 29].

Allee effect plays a major role in the structure of population. It creates the possibilities
of extinction of species [13, 42] and has a huge impact in population dynamics [1]. The
Allee effect can be classified into two types on the basis of per capita growth rate at low
density. These are known as strong Allee effect and weak Allee effect. Strong Allee effect
have negative per capita growth rate at low population level and implies the existence
of a threshold level of population so that the species become extinct below this level.
Recently, Verma and Misra [40] have studied the impact of a constant prey refuge on
the dynamics of a ratio-dependent predator-prey system with strong Allee effect in prey
growth. They found that if prey refuge is less than the Allee threshold, the incorporation of
prey refuge increases the threshold value of the predation rate and conversion efficiency
at which unconditional extinction occurs. They also vindicated that the species can be
protected by creating safe zones in accordance with the Allee threshold. On the other
hand, in weak Allee effect, the per capita growth rate decreases but remains positive at low
population level. Sexual selection [3, 27], reduced mating efficiency [12] and alleviated
foraging efficiency [2] are some other reasons to give rise to Allee effect. Figure 1 makes
us more clear that initially, the per capita growth rate is negative in strong Allee effect
(blue) while it remains positive in weak Allee effect (brown).

The Allee effects are observed in many natural species. For example, in plants [15,18],
insects [22], marine invertebrates [35], in birds and mammals [10]. Recently, many
ecologists have paid attention to the Allee effect [9,13,14,16,28,30,36,41]. Some crucial
results have been investigated in [7, 42] via a comparative analysis of prey–predator
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Figure 1. Plot of per capita growth rate as a function of population size. (Online version in color.)

system with and without Allee effect. Some studies have been conducted on strong Allee
effect on prey–predator model [17, 29, 30]. Weak Allee effect has been well studied by
ecologists [16, 32, 33]. Some researchers have found the natural evidence of weak Allee
effect by experimental work on flour beetles of the genus Tribolium [1,21,39]. They have
shown that the per capita growth of beetles reaches its maximum at a medium density and
the rate is positive at low density. Hopf-bifurcation is an important tool which helps to
understand the behavior of system. It gives us such a critical value of a parameter that
the stability behavior of system is contrasty in both the sides of the critical value [16,23].
Hopf-bifurcation analysis with Allee effect has been carried out in [5, 16, 29, 31].

Time delay occurs in every biological movement. A delay differential equation shows
much more complicated behavior than an ordinary differential equation. Delay is capable
to change the stability behavior of any system. Due to time lag in conversion of prey
population to predator population (gestation delay), dynamics of system changes. The
prey–predator population model with gestation delay [6, 8, 20, 26, 38] [24, 25] has been
studied. Some authors [32,33] have considered an eco-epidemiological model with weak
Allee effect in prey–predator population. They have concluded that chaotic dynamics can
be controlled by the Allee parameter. Further Biswal et al. [6] have applied gestation delay
and observed that the system exhibits chaotic oscillation due to increase of the delay.

Some studies have been conducted with Allee effect including gestation delay [4, 5,
29, 31]. Li et al. [23] investigated the stability and Hopf-bifurcation of a delayed density
dependent prey–predator system with Beddington-DeAngelis functional response. Pal
and Mandal [29] analyzed a modified delayed Leslie–Gower prey–predator model with
strong Allee effect and shown that delay is incapable to decrease the risk of extinction.
A prey–predator model with Crowley–Martin functional response including prey refuge
has been considered by Maiti et al. [25]. They also examined the effect of gestation delay
on the dynamics of the system.

To the best knowledge of the authors, a comparative analysis between strong and weak
Allee effect in a prey–predator model with Crowley–Martin type functional response and
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gestation delay has not been studied. The main motive of this work is to analyze the
dynamical complexity of Allee effect in the prey–predator model, studied by Tripathi et
al. [38], and further to show the impact of gestation time delay on the dynamics of the
system. Keeping all these in mind, we reconstruct the model described by Tripathi et
al. [38] by incorporating strong and weak Allee effects. Then we introduce gestation
delay in the predator population.

2 Model formulation

Tripathi et al. [38] have analyzed the dynamics of following density dependent nonlinear
mathematical model

dx

dt
= x

(
1− x− cy

1 + a1x+ b1y + c1xy

)
,

dy

dt
= y

(
− d− ey − fx

1 + a1x+ b1y + c1xy

)
,

x(0) = x0 > 0, y(0) = y0 > 0.

(1)

In this model prey population grows logistically and predator is survived only on the prey
population. They follow Crowley–Martin functional response to hunt the prey population.
r,K, α, a, b, δ0 and δ1 are positive constants representing intrinsic rate of prey, carrying
capacity, capture rate, handling time, magnitude of interference among predators, natural
death rate of predators and crowding effect, respectively.

Now at low and sparse population, prey exhibits strong Allee effect. Let θs be the
Allee parameter and f an auxiliary parameter, which shapes the Allee function. The
prey–predator dynamics with strong Allee effect in prey population is governed by the
following system:

dx

dt
= rx

(
1− x

K

)(
1− θs + f

x+ f

)
− αxy

(1 + ax)(1 + by)
,

dy

dt
=

cαxy

(1 + ax)(1 + by)
− δ0y − δ1y2,

x(0) = x0 > 0, y(0) = y0 > 0.

(2)

On the other hand, the model with weak Allee effect is based on probability of
successful mating of prey population. It is incorporated into the population growth model
by multiplying the probability P(x) with birth term of prey population, where P(x) is
the probability of successful mating for a female prey during the reproductive period and
should follow the bellow criteria:

1. No mating occurs at zero population size, P(0) = 0.
2. P′(x) > 0 i.e. if population size increases the probability of successful mating

increases.
3. Mating is guaranteed when the population is sufficiently large, that is P(x) → 1

as x→∞.
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We consider the probability function as P(x) = x/(θw + x), θw > 0 (rectangular
hyperbolic) [12, 32]. Thus, model (1) with weak Allee effect can be written as

dx

dt
= rx

(
1− x

K

)(
x

θw + x

)
− αxy

(1 + ax)(1 + by)
,

dy

dt
=

cαxy

(1 + ax)(1 + by)
− δ0y − δ1y2,

x(0) = x0 > 0, y(0) = y0 > 0.

(3)

In real situation, the conversion of hunted prey into predators growth is not instanta-
neous process rather, there occurs a time lag for gestation of predator biomass. Therefore,
we assume that the reproduction of predator population after hunting prey is arbitrated
by a constant time lag, called gestation delay. In order to get the rich dynamics of the
system, we introduce gestation delay τs and τw in models (2) and (3), respectively. Then
model (2) takes the form

dx

dt
= rx

(
1− x

K

)(
1− θs + f

x+ f

)
− αxy

(1 + ax)(1 + by)
,

dy

dt
=

cαx(t− τs)y(t− τs)
(1 + ax(t− τs))(1 + by(t− τs))

− δ0y − δ1y2,
(4)

subject to the nonnegative condition x(ζ) = φ1(ζ) > 0, y(ζ) = φ2(ζ) > 0, ζ ∈ [−τs, 0],
where φi ∈ C([−τs, 0]→ R+), i = 1, 2.

Similarly, in the presence of gestation delay, model (3) can be written as

dx

dt
= rx

(
1− x

K

)(
x

x+ θw

)
− αxy

(1 + ax)(1 + by)
,

dy

dt
=

cαx(t− τw)y(t− τw)

(1 + ax(t− τw))(1 + by(t− τw))
− δ0y − δ1y2,

(5)

subject to the nonnegative condition x(χ) = φ3(χ) > 0, y(χ) = φ4(χ) > 0, χ ∈
[−τw, 0], where φi ∈ C([−τw, 0]→ R+), i = 3, 4.

3 Dynamics of nondelayed systems

In this section, we will study the dynamics of models (2) and (3).

3.1 Positivity and boundedness of model system (2)

It is necessary to prove that the model is biologically well behaved before the detailed
study.
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From model system (2) we can write

x(t) = x(0) exp

{ t∫
0

{
r

(
1− x(s)

K

)(
x(s)− θs
x(s) + f

)
− αy(s)

(1 + ax(s))(1 + by(s))

}
ds

}
,

y(t) = y(0) exp

{ t∫
0

{
cαx(s)

(1 + ax(s))(1 + by(s))
− δ0 − δ1y(s)

}
ds

}
,

which shows that all solutions remain within the first quadrant of the xy-plane starting
from an interior point.

In the following theorem, we show that all solutions of system (2) are bounded, which
refers that the model is biologically well behaved.

Theorem 1. The set

Ω =

{
(x, y): 0 6 x 6 K, 0 6 x+

1

c
y 6

2rK

δ

}
is a positive invariant set for all the solutions initiating in the interior of the positive
quadrant, where δ = min{r, δ0}.

Proof. From first equation of the model system (2)

dx

dt
6 rx

(
1− x

K

)(
x− θs
x+ f

)
6 rx

(
1− x

K

)
,

which yields
lim sup
t→∞

x(t) 6 K.

Now suppose W (t) = x(t) + y(t)/c. Then we have

dW

dt
=

dx

dt
+

1

c

dy

dt
= rx

(
1− x

K

)
− δ0

c
y − δ1

c
y2 6 2rK − δW,

where δ = min{r, δ0}. Hence it follows that

lim sup
t→∞

W (t) 6
2rK

δ
.

We also note that dW/dt < 0 if W > 2rK/δ. Hence all solutions of system (2) point
towards Ω. Thus, Ω is a positively invariant set and all the solutions of model (2) are
bounded.

3.2 Local stability and Hopf-bifurcation

In this subsection, first we will find out all feasible equilibrium points of system (2) and
present all possibilities for interior equilibrium. Then a brief description on their local
stability has been done and lastly the analysis of Hopf-bifurcation through local stability
of the positive equilibrium has been carried out.
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Figure 2. Four possible relative of the prey and predator zero growth isoclines. (a) Interior equilibrium does
not exist for the parametric values θs = 5, δ0 = 0.8, δ1 = 0.5. (b)–(c) Interior equilibrium exists uniquely for
the values of parameters θs = 5, δ0 = 4, δ1 = 2 and θ = 5, δ0 = 0.8, δ1 = 1, respectively. (d) Two interior
equilibria for parameter values θs = 5, δ0 = 0.8, δ1 = 2. Rest of the parameters are same as that in (15).

3.2.1 Existence of equilibrium points

System (2) has following equilibrium points:

1. The trivial equilibrium point E0(0, 0).
2. The axial equilibrium points E1(θs, 0) and E2(K, 0).
3. System (2) has a unique positive equilibrium point E∗(x∗, y∗) if the following

condition holds true:

θs <
δ0

cα− aδ0
< K. (6)

Remark 1. The number of positive equilibrium for system (2) depends on values of
parameters, which we have chosen. Several possibilities are depicted in Fig. 2.
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3.2.2 Local stability analysis

To analyze the local stability behavior of the equilibria, whenever they exist, we compute
the Jacobian matrix for the model system (2), and further this matrix is calculated at each
of equilibria. Then using Routh–Hurwitz criteria, we get following results:

1. The equilibrium point E0(0, 0) is always asymptotically stable.
2. The equilibrium point E1(θs, 0) is unstable.
3. • E2(K, 0) is locally asymptotic stable if cαK < δ0(1 + aK).
• E2(K, 0) is saddle point having stable manifold along the x-axis and unstable

manifold along the y-axis if cαK > δ0(1 + aK).

In order to investigate the stability behavior of positive equilibrium, let M(E∗) denotes
the variational matrix evaluated at E∗

M(E∗) =

[
A11 A12

A21 A22

]
,

where

A11 = −rx
∗

K

[
x∗ − θs
x∗ + f

− (K − x∗)(f + θs)

(x∗ + f)2

]
+

αax∗y∗

(1 + ax∗)2(1 + by∗)
,

A12 = − αx∗

(1 + ax∗)(1 + by∗)2
, A21 =

cαy∗

(1 + ax∗)2(1 + by∗)
,

A22 = − bcαx∗y∗

(1 + ax∗)(1 + by∗)2
− δ1y∗.

Then the characteristic equation of M(E∗) is given by

λ2 +A1λ+A2 = 0, (7)

whereA1 = − tr(M(E∗)) = −(A11+A22) andA2 = det(M(E∗)) = A11A22−A12A21.
Using the Routh–Hurwitz criteria, both the eigenvalues of M(E∗) have negative real part
if and only if A1 > 0, A2 > 0. Thus we can state the following theorem.

Theorem 2. System (2) is locally asymptotic stable around the interior equilibrium E∗ if
and only if A1 > 0, A2 > 0.

Remark 2. It can be noted that if A11 < 0, then A1 > 0, A2 > 0. Consequently the
interior equilibrium E∗ is asymptotically stable.

In equation (7), if we assume A2 < 0, then one eigenvalue is real and positive and
other eigenvalue is real and negative. Thus, the following theorem follows:

Theorem 3. If A2 < 0, then the interior equilibrium E∗ is a saddle point.

Now, assume that A1 < 0, and A2 > 0. Then both the eigenvalues are real and
positive, or both the eigenvalues are complex conjugate having positive real parts. Thus,
we can state the following theorem.
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Theorem 4. If A1 < 0, and A2 > 0, then the interior equilibrium E∗ is unstable.

Remark 3. We have seen thatE0 is always stable equilibrium and interior equilibriumE∗

is stable if A11 < 0. Hence, if A11 < 0 holds, then system (2) exhibits bistability. Bi-
stability is a phenomenon where the system can converge to different equilibrium in the
same parametric region based on the variation of initial condition.

3.2.3 Hopf-bifurcation analysis

Here auxiliary parameter f is an important parameter which shapes the Allee function. In
this subsection, we analyze how the dynamics of system (2) changes with respect to f by
using Hopf-bifurcation analysis.

Now, to show the existence of Hopf-bifurcation, we assume that A1 = 0, A2 > 0.
This gives f = f∗, where f∗ satisfies

rx∗

K

[
x∗ − θs
x∗ + f∗

− (K − x∗)(f∗ + θs)

(x∗ + f∗)2

]
− αax∗y∗

(1 + ax∗)2(1 + by∗)
+

bcαx∗y∗

(1 + ax∗)(1 + by∗)2
+ δ1y

∗ = 0, (8)

and it leads us to the following theorem.

Theorem 5. Assume that f = f∗ and A2 > 0. Then system (2) has Hopf-bifurcation
near the equilibrium point E∗(x∗, y∗) if following condition is satisfied:

(x∗ − f∗)(K + θs) + 2x∗f∗ 6= 0.

Proof. At f = f∗, we have tr(M(E∗)) = 0 and det(M(E∗)) > 0, which shows the
eigenvalues are purely imaginary and conjugate to each other at f = f∗. We also have

d

df

[
tr
(
M(E∗)

)]
f=f∗

=
rx∗

K(x∗ + f)2

[
(x∗ − θs) +

(K − x∗){(x∗ + f)− 2(f + θs)}
(x∗ + f)

]
=

rx∗

K(x∗ + f)2
[
(x∗ − f∗)(K + θs) + 2x∗f∗

]
.

Hence, the transversality condition holds under the condition

(x∗ − f∗)(K + θs) + 2x∗f∗ 6= 0.

This shows that E∗ changes its nature from locally asymptotic stable to unstable as
parameter f crosses the critical value f = f∗. Therefore by the Hopf-bifurcation theorem,
system (2) exhibits Hopf-bifurcation near the interior equilibrium point E∗.

Nonlinear Anal. Model. Control, 25(3):417–442
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3.3 Dynamics of weak Allee effect model

The analysis of model (3) with weak Allee effect is similar to that of model (2) with strong
Allee effect. Thus, in this section, we omit the detail mathematical analysis and present
the main results of this model system briefly.

1. All the solutions of model system (3) with initial conditions that initiate in R2
+ are

positive invariant and uniformly bounded.
2. System (3) has following equilibrium points: E0(0, 0), E2(K, 0) and the unique

interior equilibrium E∗(x∗, y∗). E∗ exists if the following condition holds:

0 <
δ0

cα− aδ0
< K. (9)

3. • The equilibrium point E0(0, 0) is stable proper node.
• E2(K, 0) is locally asymptotic stable if cαK < δ0(1 + aK), and a saddle point

having stable manifold along the x-axis and unstable manifold along the y-axis
if cαK > δ0(1 + aK).

4. In order to analyze the stability behavior of interior equilibrium, let M ′(E∗) de-
notes the variational matrix evaluated at E∗. Then

M ′(E∗) =

[
A′11 A′12
A′21 A′22

]
,

where

A′11 = − rx∗
K(θw + x∗)

[
x∗ −

θw(K − x∗)
(x∗ + θw)

]
+

αax∗y∗
(1 + ax∗)2(1 + by∗)

,

A′12 = − αx∗
(1 + ax∗)(1 + by∗)2

, A′21 =
cαy∗

(1 + ax∗)2(1 + by∗)
,

A′22 = − bcαx∗y∗
(1 + ax∗)(1 + by∗)2

− δ1y∗.

Then the characteristic equation of M ′(E∗) is given by

λ2 +A′1λ+A′2 = 0,

whereA′1 = − tr(M ′(E∗)) = −(A′11+A′22) andA′2 = det(M ′(E∗)) = A′11A
′
22−

A′12A
′
21. Using the Routh–Hurwitz criteria, we have:

• System (3) is locally asymptotic stable around the interior equilibrium E′∗ if and
only if A′1 > 0, A′2 > 0.
• It can be noted that if A′11 < 0, then the interior equilibrium E∗ is locally

asymptotically stable.
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Table 1. Comparative results for strong Allee (2) and weak Allee system (3).

S. No. Strong Allee effect Weak Allee effect
1 The per capita growth rate of prey population

is negative.
The per capita growth rate of prey population
is slower then without Allee effect but remains
positive (see Fig.1).

2 Model (2) has locally asymptotically stable
trivial equilibrium point. Consequently possi-
bility of extinction is high at low population
density.

Species always coexist if they initially exist
under weak Allee effect (model (3)).

3 Model (2) shows bistability when E∗ is
locally asymptotically stable. IfE∗ is unstable
then population moves to (0, 0).

Model (3) never shows bistability. When in-
terior equilibrium is unstable then populations
fluctuate around it.

4 Model (2) does not show the Hopf-bifurcation
with respect to Allee parameter θs.

Model (3) shows the Hopf-bifurcation with
respect to Allee parameter θs.

5. Now, to show the existence of Hopf-bifurcation, we assume that A′1 = 0, A′2 > 0.
This gives θw = θ∗w, where

rx∗
K(θ∗w + x∗)

[
x∗ −

θ∗w(K − x∗)
(x∗ + θ∗w)

]
− αax∗y∗

(1 + ax∗)2(1 + by∗)
+

bcαx∗y∗
(1 + ax∗)(1 + by∗)2

+ δ1y∗ = 0.

Thus, we can state the following.

Theorem 6. Assume that θw = θ∗w, A′2 > 0 and x∗ > θ∗w. Then system (3) has Hopf-
bifurcation near the equilibrium point E∗(x∗, y∗).

Now, we are in position to compare the system with strong Allee effect and weak
Allee effect. In Table 1, comparison between both the cases has been carried out.

4 Local stability and Hopf-bifurcation of delayed models

In this section, we will investigate local stability of the positive equilibrium E∗ and
exhibition of local Hopf-bifurcation. We know that delay does not affect the equilibrium
of the system. Therefore equilibrium points are same as nondelayed model system. We
omit the proof of the following theorem as it is similar to nondelayed system.

Theorem 7. All the solutions of model system (4) and (5) with positive initial conditions
are positive invariant and uniformly bounded.

To see the effect of time delay on the dynamics of the system, we can rewrite model
system (4) as

dU(t)

dt
= F

(
U(t), U(t− τs)

)
,

where U(t) = [x(t), y(t)]T, U(t− τs) = [x(t− τs), y(t− τs)]T.
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Let x(t) = x∗ + x′(t), y(t) = y∗ + y′(t). Then linearizing system (4) about the
interior equilibrium solution E∗(x∗, y∗), we have

dZ

dt
= PZ(t) +QZ(t− τs),

where

P =

(
∂F

∂U(t)

)
E∗

=

[
a3 − a1 −a2

0 −a4

]
, Q =

(
∂F

∂U(t− τs)

)
E∗

=

[
0 0
ca1 ca2

]
,

a1 =
αy∗

(1 + ax∗)2(1 + by∗)
, a2 =

αx∗

(1 + ax∗)(1 + by∗)2
,

a3 = r

(
1− 2x∗

K

)(
x∗ − θs
x∗ + f

)
+ rx∗

(
1− x∗

K

)
(f + θs)

(x∗ + f)2
, a4 = δ0 + 2δ1y

∗

and Z(t) = [x′(t), y′(t)]T. Thus, the variational matrix of system (4) at E∗ is given by

J = P +Qe−λτs =

[
a3 − a1 −a2
ca1e−λτs ca2e−λτs − a4

]
,

and corresponding characteristic equation is

λ2 +Aλ+ (Bλ+ C)e−λτs +D = 0, (10)

where A = a1 − a3 + a4, B = −ca2, C = ca2a3 and D = a4(a1 − a3).

Case 1: τs = 0. Then characteristic equation becomes

λ2 + (A+B)λ+ (C +D) = 0. (11)

Remark 4. The characteristic equation is same as the characteristic equation (7) of the
nondelayed model system (2) studied earlier.

All the roots of characteristic equation (11) have negative real part if and only if

(H1) A+B > 0, C +D > 0.

Case 2: τs > 0. Let iω (ω > 0) be a root of equation (10), then we have

−ω2 +Aiω + (Biω + C)
(
cos(ωτs)− i sin(ωτs)

)
+D = 0.

On equating real and imaginary parts, we obtain

Bω sin(ωτs) + C cos(ωτs) = ω2 −D,
C sin(ωτs)−Bω cos(ωτs) = Aω,

(12)

which leads to
z2 + pz + q = 0, (13)

where p = A2 −B2 − 2D, q = D2 − C2 and z = ω2.
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Let f(z) = z2 + pz + q.

(H2) p > 0, q > 0.

Remark 5.
1. If (H2) holds, then equation (13) has no positive roots. Hence, all the roots of

(10) have negative real part, and hence E∗(x∗, y∗) is asymptotically stable for all
τs > 0 under conditions (H1) and (H2).

2. If (H1) fails and (H2) holds true, then E∗ is unstable for all τs > 0.

(H3) q < 0.

If (H1) and (H3) hold, then equation (13) has a unique positive root ω2
0 . Substitution

of ω0 into equation (12) gives us

Bω0 sin(ω0τs) + C cos(ω0τs) = ω2
0 −D,

C sin(ω0τs)−Bω0 cos(ω0τs) = Aω0,

which yields

τsi =
1

ω0
cos−1

[
C(ω2

0 −D)−ABω2
0

B2ω2
0 + C2

]
+

2iπ

ω0
, i = 0, 1, 2 . . . . (14)

(H4) p < 0, q > 0, p2 > 4q.

If (H1) and (H4) hold, then equation (13) has two positive roots ω2
1 and ω2

2 , substitut-
ing ω2

1,2 into equation (12), we have

τ1,2sj =
1

ω1,2
cos−1

[
C(ω2

1,2 −D)−ABω2
1,2

B2ω2
1,2 + C2

]
+

2jπ

ω1,2
, j = 0, 1, 2 . . . .

Let λ(τs) be a root of equation (10) satisfying Re{λ(τsi)} = 0. Then differentiating
equation (10) with respect to τs, we obtain.(

dλ

dτs

)−1
=

(2λ+A)eλτs

(Bλ+ C)λ
+

B

(Bλ+ C)λ
− τs
λ
,[

dλ

dτs

]−1
λ=iω0

=
(2iω0 +A)eiω0τs

(Biω0 + C)iω0
+

B

(Biω0 + C)iω0
− τs

iω0
,

Re

[
dλ

dτs

]−1
λ=iω0

=
1

B2ω4
0 + C2ω2

0

(
−Bω2

0

(
A cos(ω0τs)− 2ω0 sin(ω0τs)

)
+ Cω0

(
2ω0 cos(ω0τs) +A sin(ω0τs)

)
−B2ω2

0

)
,

where sin(ω0τs) computed as

sin(ω0τs) =
ACω0 +Bω0(ω2

0 −D)

B2ω2
0 + C2

.
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After a little calculation, we obtain

Re

[
dλ

dτs

]−1
λ=iω0

=
f ′(ω2

0)

B2ω2
0 + C2

.

But sign[d Re(λ)/dτs]λ=iω0
= sign[Re(dλ/dτs)]λ=iω0

.

(H5) f ′(ω2
0) 6= 0.

Hence [d Re(λ)/dτs]λ=iω0
6= 0 under condition (H5).

Now we are in position to state the following theorem.

Theorem 8. For system (4), assume that (H1), (H3) and (H5) hold. Then there exists
a positive number τs0 such that the equilibrium E∗ is locally asymptotically stable when
τs < τs0 and unstable when τs > τs0 . Furthermore system undergoes a Hopf-bifurcation
at E∗ when τs = τs0 .

The investigation of local stability and Hopf-bifurcation for model (5) is similar. In the
case of weak Allee effect in prey population. Let (H1′), (H3′) and (H5′) are hypotheses
for model system (5) corresponding to (H1), (H3) and (H5) respectively.

Theorem 9. For system (5), assume that (H1′), (H3′) and (H5′) hold, there exists a pos-
itive number τw0

such that the equilibrium E∗ is locally asymptotically stable when
τw < τw0

and unstable when τw > τw0
. Furthermore system exhibits a Hopf-bifurcation

at E∗ when τw = τw0
.

5 Stability and direction of Hopf-bifurcation

In the previous section, we obtained the condition under which periodic solution bi-
furcates from the steady state at the critical value of τs. In this section, we will study
the direction of Hopf-bifurcation and stability of the periodic solution by using normal
form theory and center manifold theory introduced in Hassard et al. [19]. We assume
that system (4) undergoes Hopf-bifurcation at the steady state E∗ for τs = τs0 and
±iω0 is corresponding purely imaginary roots of the characteristic equation at E∗. Let
x1(t) = x(t) − x∗, y1(t) = y(t) − y∗ and still denote x1(t), y1(t) by x(t), (t). Let
τs = τs0 + µ, µ ∈ R, so that Hopf-bifurcation occurs at µ = 0, system (4) is transformed
into

dx

dt
= (a3 − a1)x(t)− a2y(t) +

∑
i+j>2

1

i!j!
F

(1)
ij x

i(t)yj(t),

dy

dt
= ca1x(t− τs) + ca2y(t− τs)− a4y(t)

+
∑

i+j+l>2

1

i!j!l!
F

(2)
ijl x

i(t− τs)yj(t− τs)yl(t),
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where

F (1) = rx

(
1− x

K

)(
x− θs
x+ f

)
− αxy

(1 + ax)(1 + by)
,

F (2) =
cαx(t− τs)y(t− τs)

(1 + ax(t− τs))(1 + by(t− τs))
− δ0y − δ1y2,

F
(1)
ij =

[
∂i+jF (1)

∂xi∂yj

]
E∗
, F

(2)
ijl =

[
∂i+j+lF (2)

∂xi(t− τs)∂yj(t− τs)∂yl

]
E∗
.

Here we omit the detailed analysis and write only the results, which are obtained. One can
easily derive them by using the computation process similar to that in Song and Wei [34]
and Tripathi et al. [38]. The standard results can be computed as

c1(0) =
i

2ω0τs0

(
g20g11 − 2|g11|2 −

|g02|2

3

)
+
g21
2
, µ2 = − Re{c1(0)}

Re{λ′(τs0)}
,

β2 = 2 Re
{
c1(0)

}
, T2 = − Im(c1(0)) + µ2 Im(λ′(τs0))

ω0τs0
,

where g20, g11, g02 and g21 are evaluated as follows:

g20 =
τs0
d̄

[
F

(1)
20 + 2ρF

(1)
11 + ρ̄∗

(
e−2iω0τs0F

(2)
200 + 2ρe−2iω0τs0F

(2)
110

)]
,

g11 =
τs0
d̄

[
F

(1)
20 + 2 Re{ρ}F (1)

11 + ρ̄∗
(
F

(2)
200 + 2 Re{ρ}F (2)

110

)]
,

g02 =
τs0
d̄

[
F

(1)
20 + 2ρ̄F

(1)
11 + ρ̄∗

(
e2iω0τs0F

(2)
200 + 2ρ̄e2iω0τs0F

(2)
110

)]
,

g21 =
τs0
d̄

[
F

(1)
11 W

(2)
20 (0) + ρ̄F

(1)
11 W

(1)
20 (0)

+ ρ̄∗
(
F

(2)
110

(
ρ̄eiω0τs0W

(1)
20 (−1) + eiω0τs0W

(2)
20 (−1)

+ 2ρe−iω0τs0W
(1)
11 (−1) + 2e−iω0τs0W

(2)
11 (−1)

))]
,

where

W20(θ) =
ig20
ω0τs0

q(0)eiω0τs0θ +
iḡ02

3ω0τs0
q̄(0)e−iω0τs0θ + E1e2iω0τs0θ,

W11(θ) = − ig11
ω0τs0

q(0)eiω0τs0θ +
iḡ11
ω0τs0

q̄(0)e−iω0τs0θ + E2,

E1 =(E
(1)
1 , E

(2)
1 )T∈R2 and E2 =(E

(1)
2 , E

(2)
2 )T∈R2 are constant vectors computed as

E1 = 2

[
2iω0 − a3 + a1 a2
−ca1e−2iω0τs0 2iω0 + a4 − ca2e−2iω0τs0

]−1
×

[
F

(1)
20 + 2ρF

(1)
11 + ρ2F

(1)
02

e−2iω0τs0F
(2)
200 + 2ρe−2iω0τs0F

(2)
110 + ρ2e−2iω0τs0F

(2)
020 − δ1ρ2

]
,
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E2 = −2

[
a3 − a1 −a2
ca1 −a4 + ca2

]−1 [
F

(1)
20 + 2 Re{ρ}F (1)

11 + |ρ|2F (1)
02

F
(2)
200 + 2 Re{ρ}F (2)

110 + |ρ|2F (2)
020 − δ1|ρ|2

]
,

ρ =
ca1e−iω0τs0

iω0 + a4 − ca2e−iω0τs0
, ρ∗ =

a2
iω0 + ca2eiω0τs0 − a4

,

d̄ = 1 + ρρ̄∗ + cρ̄∗τs0(a1 + ρa2)e−iω0τs0 .

These expressions give a description of the bifurcating periodic solution in the center
manifold of system (4) at critical values τs = τs0 which can be stated as follows:

1. µ2 determines the direction of Hopf-bifurcation. If µ2 > 0 (< 0) then the Hopf-
bifurcation is supercritical (subcritical).

2. β2 determines the stability of bifurcated periodic solution. If β2 > 0 (< 0) then
the bifurcated periodic solutions are unstable (stable).

3. T2 determines the period of bifurcating periodic solution. The period increases
(decreases) if T2 > 0 (< 0).

Remark 6. We can also analyze the properties of bifurcating periodic solution for weak
Allee case by adopting the same process.

6 Numerical simulation

In this section, we will present numerical simulations to validate the analytical findings,
obtained in previous sections using MATLAB R2017a.

6.1 Nondelayed models

For model (2), we consider a set of parameters as follows:

r = 3, K = 90, θs = θw = 0.05, f = 0.002, α = 0.7,

a = 0.02, b = 0.03, c = 0.6, δ0 = 0.8, δ1 = 0.25
(15)

with initial conditions x(0) = y(0) = 2.

6.1.1 Strong Allee effect

For the set of values of parameters (15), condition (6) is satisfied. Thus, there exists
a positive equilibrium E∗(6.4758, 5.1441). It is also noted that A11 < 0 holds for the
set of parameters chosen in (15). So the interior equilibrium E∗ is asymptotically stable,
depicted in Fig. 3. This figure shows that the density of prey and predator species both
are increasing initially, then some fluctuations occur and eventually settle down to their
respective steady states.

The trivial equilibrium pointE0 is always asymptotically stable for system (2). There-
fore, under the condition of stability of positive equilibrium E∗, system shows bistability.
A separatrix lies in the xy-plane,which divides the plane into two regions in such a way
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Figure 3. (a) Time series of x and y; (b) Trajectories initiated from region of attraction of both the locally stable
equilibrium points, system (2) shows bistability.
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Figure 4. Time series evolution of x and y for the different values of parameter δ1.

that trajectories starting from different regions approach to different steady states. This
phenomenon of system (2) is depicted in Fig. 3(b). From the figure, it is clear that solution
curves, which are initiated from left of the separatrix, approach to E0(0, 0) and solution
curves, which are initiated from right of the separatrix, approach to interior equilibrium
point E∗. The effect of parameter δ1 on both the prey and predator species is shown in
Fig. 4. In Figs. 4(a) and 4(b), time series analysis is shown for four different values of
δ1 (δ1 = 0.15, 0.7, 1.5, 2). From Fig. 4(a) it is noted that prey population increases with
the parameter δ1. The predator population initially grows up with δ1 but after a threshold
value of δ1=δ∗1 = 0.825 it starts to decrease and settles down at its equilibrium level (see
Fig. 4(b)).

Now, we observe the dynamical behavior of the system for the variation of the Allee
parameter θs. It is noted that as we increase the value of parameter θs, the time of
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Figure 5. Time series solutions of x and y for the different values of Allee parameter θs.
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Figure 6. Time evolution of species and existence of periodic solution when f = 3.7 > f∗.

fluctuations for both prey and predator increase. Time series analysis has been shown in
Figure 5 for different values of θs, which refers that the system is stable for θs = 0.1, 0.5
and 1. At θs > θ∗s = 1.4985, interior equilibrium E∗ becomes unstable and beyond
this threshold value of θs, system converges to the stable trivial equilibrium point E0.
This shows that as we increase Allee parameter θs, the life expectancy of both biological
species decreases and after a critical value of θs (= θ∗s ), they move to extinction.

In the model system (2), the auxiliary parameter f is also a crucial parameter because
it shapes the Allee function. Therefore we will analyze how the dynamics of system
changes with respect to f by using Hopf-bifurcation analysis. The condition of Hopf-
bifurcation, which is derived in Theorem 5, is satisfied. The critical value of parameter f ,
where bifurcation occurs is calculated from equation (8) and it is f = f∗ = 3.22. In
Fig. 3, we depicted time series (Fig. 3(a)) and phase portrait (Fig. 3(b)) for f = 0.002 <
f∗ = 3.22, which refers that the system (2) is stable. Figure 6 shows that the system is
unstable for f = 3.7 > f∗ = 3.22 and periodic solution occurs.
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6.1.2 Weak Allee effect

On the other hand for system (3), with weak Allee effect in prey population and with
same values of parameters as in (15), condition for the existence of unique equilibrium
E∗(x∗, y∗) is satisfied and it is given byE∗(6.4782, 5.1464). The conditions of Theorem 6
are also satisfied. Therefore, Hopf-bifurcation with respect to θw occurs near the interior
equilibrium E∗. The threshold value of θw is evaluated as θ∗w = 3.36. Thus the equilib-
rium point E∗ is asymptotically stable for θw = 2.5 < θ∗w which is shown in Figure 7
and unstable for θw = 4.3 > θ∗w (Fig. 8) and a periodic solution exists around E∗. The
bifurcation diagram has been shown in Fig. 9 by taking θw as a bifurcation parameter.
This figure depicts the dynamics of the system as the Allee parameter increases. From the
figure, it is clear that for θw < θ∗w, the system (3) is stable but as θw crosses its critical
value, the system loses its stability and undergoes Hopf-bifurcation.
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Figure 7. (a) Time series of x and y; (b) phase portrait when θw = 2.5 < θ∗w . E∗ is asymptotically stable.
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Figure 8. Time series of x and y and existence of periodic solution when θw = 4.3 > θ∗w.
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Figure 9. Bifurcation diagram of the prey and predator population with respect to Allee parameter θw.
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Figure 10. Phase portrait of system with strong Allee effect, weak Allee effect and without Allee effect for
same values of all parameters and initial conditions (2,2).

We have drawn phase portrait for model (2) and (3) together in a single figure keeping
all the values of parameters and initial pair same. Then both are compered with the model
proposed by Tripathi et al. [38]. The significant difference can be seen among model with
strong Allee effect, model with weak Allee effect and model with no Allee effect in the
Fig. 10. The figure shows that possibilities of extinction of species are high at low density
under strong Allee effect whereas under weak Allee effect, both species coexist.

6.2 Delayed models

6.2.1 Strong Allee effect

In order to verify the theoretical predictions derived in case of delayed systems, first we
simulate model (4), having strong Allee effect in prey population, with same values of
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Figure 11. System (4) is locally asymptotically stable when τs = 0.16 < τs0 , other parameters are same as
in (15).

parameters as that in (15). We know that introduction of delay does not affect equilibrium
of the system. Thus, the interior equilibrium E∗(6.4758, 5.1441) remains as it is.

For τs > 0, we note that conditions (H1) and (H3) are satisfied. So, equation (13) has
a unique positive root. Taking i = 0 in equation (14), our computer simulation yields the
following:

ω0 = 1.4472, τs0 = 0.3914,

and transversality condition (H5) is satisfied. Here all three conditions of Theorem 8
hold true. Therefore system undergoes a Hopf-bifurcation at τs = τs0 = 0.3914. By the
algorithm obtained in Section 5, we computed the following:

µ2 = 0.0166 > 0, β2 = −0.0259 < 0, T2 = 0.0093 > 0.

This shows that the Hopf-bifurcation with respect to τs is supercritical, bifurcating peri-
odic solution is stable and the period increases. Thus, the system is stable for τs = 0.16 <
τs0 = 0.3914 which is shown in Fig. 11. As τs passes through its critical value τs0 , the
system loses its stability and a Hopf-bifurcation occurs into the system. In Fig. 12(a), we
have shown time series analysis for τs = 0.45 > τs0 = 0.3914. Figure 12(b) shows that
a periodic solution exists and any solution trajectory initiating from inside and outside the
closed trajectory, approaches towards the closed trajectory. This shows the existence of
a stable limit cycle.

Bifurcation diagram has also been carried out in Fig. 13 by taking τs as a bifurcation
parameter. Figure makes us clear that τs changes the stable behavior of the system into
instable behavior.

6.2.2 Weak Allee effect

The model system (5), with weak Allee effect in prey population has one interior equilib-
rium E∗(6.4782, 5.1464), with set of parameters (15). We see that the conditions (H1′)
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Figure 12. System (4) is unstable and have a periodic solution when τs = 0.45 > τs0 other parameters are
same as in (15).
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Figure 13. Bifurcation diagram of the prey and predator population with respect to gestation time delay τs.

and (H3′) are satisfied and we obtain

ω1 = 1.447, τw0 = 0.3921,

and transversality condition (H5′) is also satisfied. Therefore, system (5) undergoes a Hopf-
bifurcation around interior equilibrium at τw = τw0 = 0.3921 (Theorem 9). Using
algorithm derived in previous section, it is obtained

µ′2 = 0.0281 > 0, β′2 = −0.0437 < 0, T ′2 = 0.0379 > 0.

This shows that the Hopf-bifurcation with respect to τw is also supercritical, bifurcating
periodic solution is stable and its period increases. Thus, the positive equilibrium E∗ is
asymptotically stable for τw = 0.22 < τw0

= 0.3921 which is shown in Figure 14(a) and
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Figure 14. System (5) is (a) locally asymptotically stable when τw = 0.22 < τw0 ; (b) unstable when
τw = 0.48 > τw0 . Other parameters are same as in (15).

unstable for τw = 0.48 > τw0 = 0.3921 (Fig. 14(b)). When τw = τw0 , system undergoes
a Hopf-bifurcation at the positive equilibrium E∗. The phase portrait has been shown in
Fig. 14(b), which shows the existence of a stable limit cycle.

7 Conclusion

In this work, we made an attempt to discuss the impact of Allee effect (strong and
weak both) with gestation delay in the model proposed by Tripathi et al. [38]. They
analyzed a density dependent nonlinear mathematical model (1). In that model, prey
grows logistically and predator fully depends on prey for food that follows Crowley–
Martin functional response.

Allee effect plays an important role in the structure of population. The Allee effect
increases the possibilities of extinction. Thus, we include Allee effect into model (1).
Since there are two types of Allee effect; strong and weak, so we studied both the models
separately. In the study, we discussed positivity, boundedness of the solutions, existence
of equilibrium points and their stability analysis of both the models. Positivity and bound-
edness of the solutions refer that the system is well behaved.

We have shown that system (2) and (3) may have more than one interior equilibrium
point. Under sufficient condition (6) (for system (2)) and (9) (for system (3)) they have
unique interior equilibrium point. We also derived a sufficient condition for asymptotic
stability of interior equilibrium point. Then we found that model system (2) is bistable
in the presence of positive equilibrium. The existence of periodic solution via Hopf-
bifurcation with respect to auxiliary parameter f in model (2) and Allee parameter θw
in model (3) have also been shown. In Table 1, we presented that how the dynamics
of model (2) differs from model (3). We also observed that the time of fluctuations
for both prey and predator increases with increase in Allee parameter for system (2).
But after a critical value, interior equilibrium E∗ becomes unstable. In this situation
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system converges to stable trivial equilibrium E0, which shows extinction of species after
a critical value of Allee parameter.

Delay exhibits much more realistic behavior. The reproduction of predator after hunt-
ing prey is not instantaneous i.e. there is some time lag for gestation. Therefore to make
the model biologically more realistic, we consider gestation delay for predator into both
the models (2) and (3). We have analyzed Hopf-bifurcation through local stability con-
sidering delay as a bifurcation parameter. When the time delay is small then trajectory
of system oscillates around the positive equilibrium for finite time and eventually settle
down to equilibrium level. As the time delay increases, time of oscillations also increases
and beyond a critical value of gestation delay, then stability of system switches and we
obtain periodic solutions. This proves that the time delay can cause a stable equilibrium
to become unstable. The stability and direction of Hopf-bifurcation also have been inves-
tigated using Normal form theory and Center manifold theory.

The numerical simulation is based on some biologically feasible data to support our
theoretical results. We found that Hopf-bifurcation is supercritical and stable with increas-
ing period. Bifurcation diagram with respect to θw and τs help us to understand about the
stability behavior of the system. This study has some new and significant results that
we hope very helpful to understanding the dynamics of prey–predator system with Allee
effect and gestation delay.
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