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Abstract. The present paper deals with a reaction–diffusion Brusselator system subject to the
homogeneous Neumann boundary condition. When the effect of spatial diffusion is neglected, the
local asymptotic stability and the detailed Hopf bifurcation of the unique positive equilibrium of
the associated ODE system are analyzed. In the stable domain of the ODE system, the effect of
spatial diffusion is explored, and local asymptotic stability, Turing instability and existence of Hopf
bifurcation of the constant positive equilibrium are demonstrated. In addition, the direction of
spatially homogeneous Hopf bifurcation and the stability of the spatially homogeneous bifurcating
periodic solutions are also investigated. Finally, numerical simulations are also provided to check
the obtained theoretical results.

Keywords: Brusselator reaction–diffusion system, local stability, Turing instability, spatially
homogeneous Hopf bifurcation, normal form.

1 Introduction

In the chemical reaction process, assume that Ain and Bin represent the input chemicals,
D and E denote the out chemicals, as well as U and V are intermediates, respectively.
Then the well-known Brusselator system can be described by the chemical reaction pro-
cess [12]

Bin −→ U,

Ain + U ⇐⇒ V +D,

2U + V −→ 3U,

U −→ E.

(1)
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Turing instability and spatially homogeneous Hopf bifurcation 639

If the reactor for the above reaction process is bounded by a bounded open domain Ω
with a smooth boundary ∂Ω in RN (N > 1) and we use U(X,T ) and V (X,T ) to
denote respectively the concentrations of intermediates U and V at time T and space
location X ∈ Ω, then the chemical reaction process (1) can be described by the following
reaction–diffusion system [1]:

∂U

∂T
= D1∆U +A− (B + 1)U + U2V, X ∈ Ω, T > 0,

∂V

∂T
= D2∆V +BU − U2V, X ∈ Ω, T > 0,

∂U

∂n
=
∂V

∂n
= 0, X ∈ ∂Ω, T > 0,

U(X, 0) = V0(X) > 0, V (X, 0) = V0(X) > 0, X ∈ ∂Ω,

(2)

whereD1 andD2 are respectively the diffusion coefficients of the intermediates U and V ,
∆ is the Laplace operator in RN , and n is the outward unit normal vector on ∂Ω.

Introduce new time and space variables t and x: T = t and X =
√
D1x, and let

U(T,X) = U(t,
√
D1x) = Au(t, x), V (T,X) = V (t,

√
D1x) =

B

A
v(t, x).

Use a and b to denote the parameters A and B, respectively, and let σ = D2/D1. Then
system (2) is transformed into the following reaction–diffusion system:

∂u

∂t
= ∆u+ 1− (b+ 1)u+ bu2v, x ∈ Ω, t > 0,

∂v

∂t
= σ∆v + a2(u− u2v), x ∈ Ω, t > 0,

∂u

∂n
=
∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ ∂Ω,

(3)

in which the scaled spatial domain is still represented by Ω, and σ measures the ratio
of two diffusion coefficients D2 and D1. It is easy to see that system (3) has always the
constant positive equilibrium E∗ = (1, 1) for any positive parameters a and b, and the
diffusion coefficient σ has no any effect on the existence, positivity and location of the
constant equilibrium of system (3).

Reaction–diffusion systems similar to (2) and (3) have been concerned extensively by
many researchers from the theoretical and numerical aspects; see [6, 7, 9, 10, 13, 16, 17].
For example, for system (3), Peng and Wang in [10] obtained the existence and non-
existence of positive nonconstant steady states, and Zuo and Wei [16] investigated in
detail Hopf bifurcations and global steady state bifurcations, which bifurcate from the
unique positive constant equilibrium. Subsequently, Jia, Li and Wu [6] further considered
the coexistence of nonconstant positive steady states for system (2). In addition, by taking
b as the bifurcation parameter, Li and Wang [9] studied the local asymptotic stability of
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E∗ for system (3) when Ω is a general domain with a smooth boundary and the detailed
spatially homogeneous Hopf bifurcation of (3) at E∗ when Ω = (0, π). The stability and
Hopf bifurcation analysis for system (3) with the delayed feedback control is considered
by Zuo and Wei [17]. On the other hand, from the view points of numerical investigations,
Siraj-ul-Islam, Ali and Haq [13], as well as Jiwari and Yuan [7], provided respectively the
numerical difference methods solving system (2) when D1 = D2 and the spatial domain
Ω is taken as a rectangle (0, Lx) × (0, Ly) in the planes. For the study of dynamical
behaviors of the population reaction–diffusion systems with time periodic coefficients,
see [3, 4].

As pointed out by Turing [11], different diffusion rates of two chemical reactants
could sometimes lead to the so-called Turing instability or diffusion-driven instability.
Although Turing’s idea has attracted the attention of a great number of investigators and
was also successfully developed on the theoretical backgrounds, the search for Turing
patterns in real chemical or biological systems turned out to be difficult. Based on this
case, one aim of the present article is to explore the Turing instability of system (3). In
addition, under the case when a is fixed, the effect of the variation of b on the dynamics of
system (3) is investigated and the detailed spatially homogeneous Hopf bifurcation also
carried out when Ω is a general domain in RN with a smooth boundary.

The remaining parts of this paper are arranged as follows. In the next section, the
local asymptotic stability and the detailed Hopf bifurcation of the unique positive equi-
librium E∗ of the ODE system corresponding to the reaction–diffusion system (3) are
provided according to the qualitative theory of ODE dynamical systems. In Section 3, by
analyzing in detail the eigenvalue problem of the linearized system of (3) at the constant
positive steady state E∗, the local asymptotic stability and diffusion-driven instability of
the constant positive steady state E∗ of (3) are analyzed. In addition, the existence and
properties of Hopf bifurcation of (3) at E∗ are obtained in Section 4 by employing the
normal form method and the center manifold theorem for reaction–diffusion equations.
Finally, to check the theoretical conclusions, numerical approximations for system (3)
with Ω = (0, π) and special parameters values of a and b are also included at the end of
the paper by means of the MATLAB software package and the difference methods solving
reaction–diffusion equations.

2 Stability and Hopf bifurcation analysis of the local ODE system

In the absence of the effect of spatial diffusion, the reaction–diffusion system (3) is
reduced to the following local ODE system:

du

dt
= 1− (b+ 1)u+ bu2v, t > 0,

dv

dt
= a2u(1− uv), t > 0,

u(0) = u0 > 0, v(0) = v0 > 0.

(4)

For system (4), we have the following result on the positivity of solutions.
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Lemma 1. Let (u(t), v(t)) be any solution of system (4). Then u(t), v(t) > 0 for all
t > 0, that is, the set {(u, v) | u, v > 0} is a positive invariant set of system (4).

Proof. If u0 = 0, then from the first equation of system (4) we can observe that du(0)/dt =
1 > 0. Therefore, it follows from the continuity of solutions for the initial value problems
of the ODEs that there exists t1 > 0 such that u(t) > 0 when t ∈ (0, t1). Assume
that there exists t2 > t1 such that u(t2) = 0. Then one can know that du(t2)/dt 6 0.
However, the first equation of system (4) shows that du(t2)/dt = 1 > 0, and thus, a
contradiction is lead. Hence, we can derive that u(t) > 0 for any t > 0. If u0 > 0, then
one can get easily u(t) > 0 for any t > 0 by using the argument of contradiction.

In the sequel, we shall reveal the positivity of v(t) when t > 0.
If v0 = 0, then from the second equation of system (4) we can see that dv(0)/dt =

a2u0.

(i) Let u0 = 0. Then dv(0)/dt = 0. Assume that there exists t∗ > 0 such that
v(t) 6 0 when 0 < t < t∗. Then from the positivity of u(t) and the second
equation of (4) we know that dv(t)/dt > 0 when 0 < t < t∗. Accordingly, v(t)
is strictly monotonically increasing on [0, t∗], and this implies that v(t) > 0 when
0 < t < t∗. Thus, a contradiction is lead, and we know that there exists t∗ > 0
such that v(t) > 0 when 0 < t < t∗. Similarly to the proof of the positivity of
u(t), we can demonstrate that v(t) > 0 for any t > 0.

(ii) If u0 > 0, then dv(0)/dt = a2u0 > 0, and thus, we can know that there exists
t∗∗ > 0 such that v(t) > 0 for any 0 < t < t∗∗. Similarly to the above argument
of contradiction, it is easy to show that v(t) > 0 for any t > 0.

We can also further show that if v0 > 0, then v(t) when t > 0.
Summarizing the above arguments, the proof of the lemma is complete.

Now we consider the local asymptotic stability and Hopf bifurcation of the unique
positive equilibrium E∗ = (1, 1) of the ODE system (4). It is easy to derive that the
Jacobian matrix of (4) at E∗ has the form

J =

(
b− 1 b
−a2 −a2

)
.

Notice that D = det J = a2(1− b) + a2b = a2 > 0 and T = trace J = b− 1− a2.
Let b0 be defined by b0 = 1 + a2. Then one can know that the unique positive

equilibrium E∗ of system (4) is locally asymptotically stable when 0 < b < b0 and is
unstable when b > b0.

When b = b0, make the change of variables ū = u− 1, v̄ = v− 1 and still use u, v to
denote ū, v̄. Then system (4) becomes

du

dt
= a2u+

(
a2 + 1

)
v +

(
a2 + 1

)
u2 + 2

(
a2 + 1

)
uv +

(
a2 + 1

)
u2v,

dv

dt
= −a2

(
u+ v + u2 + 2uv + u2v

)
.

(5)
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Let (
u
v

)
=

(
1 0

− a2

a2+1 − a
a2+1

)(
x
y

)
.

Then system (5) is transformed into

dx

dt
= −ay +

(
1− a2

)
x2 − 2axy − a2x3 − ax2y,

dy

dt
= ax.

From the reference [2] one can obtain that the third focal value for the multiple focus
(0, 0) of system (5) is

α3 = − π

4a
(a2 + 2) < 0.

Thus, we know that when b = b0, the unique positive equilibrium E∗ = (1, 1) of
system (4) is a locally asymptotically stable multiple focus of multiplicity 1.

In addition, notice that when b = b0, the Jocabian matrix J has a pair of purely imagi-
nary eigenvalues ±ia. Let λ = γ(b) + iω(b) be a pair of conjugate complex characteristic
roots of J when b varies near b0. Then we have

γ(b) =
b− 1− a2

2
, ω(b) =

√
D − γ2(b).

Consequently,

γ′(b0) = γ′(b)|b=b0 =
1

2
> 0.

This demonstrates that a Hopf bifurcation occurs at the positive equilibrium E∗ of sys-
tem (4) when b = b0.

In the following, we devote to considering the direction of the above Hopf bifurcation
and the stability of bifurcating periodic solutions by means of the methods introduced in
the literature [8]. Rewrite system (5) into the following form:

dU

dt
= AU +

1

2
B(U,U) +

1

6
C(U,U, U),

where

A =

(
0 −a
a 0

)
, U =

(
u
v

)
,

and for X = (x1, x2)T, Y = (y1, y2)T and Z = (z1, z2)T ∈ C2, the multiple linear
forms B(X,Y ) and C(X,Y, Z) are defined as

B(X,Y ) =

(
2(1− a2)x1y1 − 2a(x2y1 + x1y2)

0

)
(6)

and

C(X,Y, Z) =

(
−6a2x1y1z1 − 2a[(x2y1 + x1y2)z1 + x1y1z2]

0

)
. (7)
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Obviously, the matrix A possesses two eigenvalues ±ia, and complex vectors q =
(i, 1)T and p = (1/2)(i, 1)T are, respectively, the eigenvectors of A and AT correspond-
ing to the eigenvalues iω and −iω, and 〈q, p〉 = 1. Based on (6) and (7), one can derive

g20 =
〈
p,B(q, q)

〉
= −2a+

(
1− a2

)
i,

g11 =
〈
p,B(q, q̄)

〉
= −

(
1− a2

)
i,

g21 =
〈
p, C(q, q, q̄)

〉
= −3a2 + ai.

(8)

Combining (8) and formulae (3.20) in [8], we can get that the first Lyapunov coefficient
of system (5) at the origin is

l(0) =
1

2a2
Re(ig20g11 + ag21) = −a

2 + 2

2a
< 0.

According to the condition γ′(b0) > 0, from [2] we have the following conclusion.

Theorem 1.
(i) If 0 < b 6 b0, then the unique positive equilibrium E∗ of system (4) is locally

asymptotically stable;
(ii) If b > b0, then the unique positive equilibrium E∗ of system (4) is unstable;

(iii) System (4) can undergo a supercritical Hopf bifurcation at the positive equilib-
rium E∗, and the bifurcating periodic solutions are stable when b = b0.

3 Local asymptotic stability and Turing instability of the reaction–
diffusion system

Define the real-valued Sobolev space X by

X =

{
(u, v) ∈ H2(Ω)×H2(Ω)

∣∣∣ ∂u
∂γ

=
∂v

∂γ
= 0, x ∈ ∂Ω

}
.

The complex expansion space of X is described by

Xc = X ⊕ iX = {x1 + ix2 | x1, x2 ∈ X}.

Let the linear operator L be defined by

L =

(
∆ + b− 1 b
−a2 σ∆− a2

)
.

Notice that, under the homogeneous Neumann boundary condition, the eigenvalues of the
operator −∆ satisfy

0 = µ0 < µ1 < µ2 < · · · .

Define the sequence of matrices Ln for n ∈ N0 = {0, 1, 2, . . . } by

Ln =

(
b− 1− µn b
−a2 −a2 − σµn

)
.
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We first may state the following result; see [14].

Lemma 2. β ∈ C is an eigenvalue of the operator L if and only if there exists some
certain n ∈ N0 such that β is also the eigenvalue of the matrix Ln.

From Lemma 2 and the analysis in Section 2, we can obtain immediately the following
result.

Theorem 2. If b > b0, then the positive constant equilibrium E∗of the reaction–diffusion
system (3) is unstable.

In the next, we are concerned with the local asymptotic stability and Turing instability
of the positive constant equilibrium E∗ of the reaction–diffusion system (3) when 0 <
b < b0. It is clear that the characteristic equation of Ln is

β2 − Tnβ +Dn = 0, (9)
where

Tn = T − (1 + σ)µn, Dn = σµ2
n +

[
a2 − σ(b− 1)

]
µn + a2.

Under the condition 0 < b < b0, one can see that T < 0, and from the positivity of σ and
the nonnegativity of µn we know that Tn < 0 for all n ∈ N0.

(i) If 0 < b 6 1, then we can see easily that Dn > 0 for all n ∈ N0. This implies
that all the roots of the characteristic equation (9) have negative real parts, and we
know that the positive constant equilibrium E∗ of the reaction–diffusion system
(3) is locally asymptotically stable.

(ii) If 1 < b < b0, then Dn > 0 for all n ∈ N0 when

0 < σ 6
a2

b− 1
.

Therefore, one can know that the positive constant equilibriumE∗ of the reaction–diffusion
system (3) is locally asymptotically stable. Assume that

σ >
a2

b− 1
and let

D =
(
a2 − σb+ σ

)2 − 4σa2 = σ2(1− b)2 − 2a2σ(b+ 1) + a4.

Consider the quadratic function

h(z) = (1− b)2z2 − 2a2(b+ 1)z + a4.

It is easy to see that the discriminant of H(z) is

D =
[
−2a2(b+ 1)

]2 − 4a4(1− b)2 = 4a4(b+ 1)2 − 4a4(1− b)2

= 4a4
[
(b+ 1)2 − (1− b)2

]
= 16a4b > 0.
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Accordingly, the equation h(z) = 0 has two different real positive roots

z1 =
a2(b+ 1)− 2a2

√
b

(1− b)2
, z2 =

a2(b+ 1) + 2a2
√
b

(1− b)2
. (10)

If z1 < σ < z2, then h(σ) < 0. So, D < 0 when z1 < σ < z2, and thus, we have that
Dn > 0 for all n ∈ N0. Note that

h

(
a2

b− 1

)
= − 4a4

b− 1
< 0.

Therefore, z1 < a2/(b− 1) < z2.
Summarizing the above discussions, one can obtain the following result.

Theorem 3. Define z2 by (10) when 1 < b < b0. Let one of the following conditions
holds:

(i) 0 < b 6 1 and σ > 0;
(ii) 1 < b < b0 and 0 < σ < z2.

Then the positive constant equilibrium E∗ of the reaction–diffusion system (3) is locally
asymptotically stable.

Now we consider the local asymptotic stability and Turing instability of the positive
constant equilibrium E∗ of the reaction–diffusion system (3) when 1 < b < b0 and
σ > z2.

Notice that D = 0 when σ = z2 > a2/(b− 1), and so the equation

σµ2 +
[
a2 − σ(b− 1)

]
µ+ a2 = 0

has two equal positive real roots µ = µ∗ := (σb − a2 − σ)/(2σ). If µ∗ 6= µn for all
n ∈ N0, then Dn > 0. Thus, we can obtain the following theorem.

Theorem 4. Assume that 1 < b < b0 and σ = z2. If µ∗ = (σb− a2 − σ)/(2σ) 6= µn for
all n ∈ N0, then the positive constant equilibrium E∗ of the reaction–diffusion system (3)
is locally asymptotically stable.

If σ > z2, then D > 0, and hence the equation

σk2 +
(
a2 − σb+ σ

)
k + a2 = 0

has two different real positive roots

k−(σ) =
−(a2 − σb+ σ)−

√
D

2σ
, k+(σ) =

−(a2 − σb+ σ) +
√

D

2σ
. (11)

Lemma 3. Assume that 1 < b < b0, σ > z2 and k±(σ) is defined by (11). Then k+(σ) is
strictly monotonically increasing, and k−(σ) is strictly monotonically decreasing.
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Proof. Notice that

k+(σ) =
−(a2 − σb+ σ) +

√
D

2σ

= − a
2

2σ
+
b− 1

2
+

1

2

√
a4

σ2
− 2a2(b+ 1)

σ
+ (b− 1)2.

It follows that

k′+(σ) =
a2

2σ2

[
1 +

σ(b+ 1)− a2

√
D

]
.

Since σ > z2 > a2/(b − 1), one can know that k′+(σ) > 0 when σ > z2, which implies
that k+(σ) is strictly monotonically increasing for σ > z2.

On the other hand, notice that k+(σ)k−(σ) = a2/σ. Thus,

k′+(σ)k−(σ) + k+(σ)k′−(σ) = − a
2

σ2
.

From the positivity of k+(σ), k−(σ) and k′+(σ) one can easily know that k′−(σ) < 0,
which demonstrates that k−(σ)is strictly monotonically decreasing for σ > z2.

Let σ →∞. Then

lim
σ→∞

k−(σ) = 0, lim
σ→∞

k+(σ) = b− 1.

The following result can be obtained.

Theorem 5. If 1 < b < b0 and µ1 > b− 1, then the positive constant equilibrium E∗ of
the reaction–diffusion system (3) is locally asymptotically stable for any σ > 0.

If there exists n ∈ N = {1, 2, . . . } such that k−(σ) < µn < k+(σ), then Dn < 0,
and thus, we have the following result.

Theorem 6. Assume that 1 < b < b0 and σ > z2. If there exists n ∈ N = {1, 2, . . . } such
that k−(σ) < µn < k+(σ), then the positive constant equilibrium E∗ of the reaction–
diffusion system (3) is Turing unstable.

Theorem 7. Assume that 1 < b < b0. If there exits n ∈ N = {1, 2, . . . } such that
0 < µn < b − 1, then the positive constant equilibrium E∗ of the reaction–diffusion
system (3) is Turing unstable when σ →∞.

4 Hopf bifurcation of reaction–diffusion system

This section devotes to considering the existence of Hopf bifurcation and the properties
of spatially homogeneous Hopf bifurcation of system (3) at the positive constant equi-
librium E∗ by using the methods due to Yi, Wei and Shi [15]; see also Yan, Chen and
Zhang [14] .
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4.1 Existence of Hopf bifurcation

For n ∈ N0, let Tn(b) and Dn(b) be defined by

Tn(b) = b− 1− a2 − (1 + σ)µn

and
Dn(b) = σµ2

n +
[
a2 − σ(b− 1)

]
µn + a2.

We know from [15] that if there exist some certain n ∈ N0 and b = bH > 0 such that

Tn
(
bH
)

= 0, Dn

(
bH
)
> 0

and for all j 6= n,
Tj
(
bH
)
6= 0, Dj

(
bH
)
6= 0

and
T ′n
(
bH
)
6= 0,

then the reaction–diffusion system (3) undergoes a Hopf bifurcation at the positive con-
stant equilibrium E∗ when b = bH . In addition, the corresponding Hopf bifurcation is
spatially homogeneous if n = 0 and is spatially inhomogeneous if n ∈ N.

Let b = b0 = 1+a2. Then it is easy to see from Section 2 that T0(b0) = 0,D0(b0) > 0
and Tj(b0) < 0 for all j ∈ N. Notice that

Dn(b0) = σµ2
n + (1− σ)a2µn + a2.

Therefore, one can see that if 0 < σ 6 1 or σ > 1 and a2(1 − σ)2 < 4σ holds, then
Dj(b0) > 0 for all j ∈ N. Combining the fact T ′0(b0) = 1, we can state the following
result regarding the existence of spatially homogenous Hopf bifurcation.

Theorem 8. If 0 < σ 6 1 or σ > 1 and a2(1 − σ)2 < 4σ is satisfied, then system (3)
undergoes a spatially homogenous Hopf bifurcation at the positive constant equilibrium
E∗ when b = b0.

In the sequel, we consider the existence of spatially heterogenous Hopf bifurcation of
system (3) at the positive constant equilibrium E∗. For n ∈ N, define bn by

bn = 1 + a2 + (1 + σ)µn. (12)

Then Tn(bn) = 0 and Tj(bn) 6= 0 for any j 6= n. Furthermore, let a, σ and µn satisfy one
of the following conditions:

σ < 1 and a2(1− σ) > σ(1 + σ)µn (13)

or
σ > 1 and σ(1 + σ)µn − a2(1− σ) < 2a. (14)

Then for any j ∈ N0,

Dj(bn) = σµ2
j +

[
a2(1− σ)− σ(1 + σ)µn

]
µj + a2 > 0.

Thus, we can derive the following result regarding the existence of spatially heterogenous
Hopf bifurcation of system (3) at the positive constant equilibrium E∗.

Nonlinear Anal. Model. Control, 25(4):638–657

https://doi.org/10.15388/namc.2020.25.17437


648 X.-P. Yan et al.

Theorem 9. For n ∈ N, let bn be defined by (12). If a, σ and µn satisfy one of the condi-
tions (13) or (14), then system (3) can undergo a spatially heterogenous Hopf bifurcation
at the positive constant equilibrium E∗ when b = bn.

4.2 Properties of spatially homogeneous Hopf bifurcation

In this subsection, we shall analyze mainly the properties of spatially homogeneous Hopf
bifurcation of system (3) at the positive constant equilibrium E∗ when b = b0. In order
to guarantee the existence of spatially homogeneous Hopf bifurcation of system (3) at
the positive constant equilibrium E∗, we always assume that 0 < σ 6 1 or σ > 1 and
a2(1−σ)2 < 4σ holds throughout this subsection. Moreover, for the sake of convenience,
we assume that the spatial domain Ω can be chosen such that all the eigenvalues µi
(i ∈ N0) of −∆ on Ω with homogenous Neumann boundary condition are simple.

Let the linear operator L(b) be defined by

L(b) =

(
∆ + b− 1 b
−a2 σ∆− a2

)
,

and the inner product 〈·, ·〉 on X2
C be given by 〈U, V 〉 =

∫ π
0

(ū1u2 + v̄1v2) dx for any
U = (u1, u2), V = (v1, v2) ∈ XC. Then the conjugate operator L∗(b) of L(b) under the
meaning of the inner product 〈·, ·〉 is given by

L∗(b) =

(
∆ + b− 1 −a2

b σ∆− a2

)
. (15)

From the discussions in Section 2 we see easily that ±ia are a pair of purely imaginary
eigenvalues of L(b0) and L∗(b0). Take q and q∗ respectively as

q =

(
1

−a2+ia
1+a2

)
, q∗ =

1

2a|Ω|

(
a+ ia2

i(1 + a2)

)
.

Then one can easily verify that q and q∗ satisfy the following equalities

〈q∗, q〉 = 1, 〈q∗, q̄〉 = 0, L(b0)q = iaq and L∗(b0)q∗ = −iaq∗. (16)

Let U = (u, v)T,

f1(U) =
(
1 + a2

)(
u2 + 2uv + u2v

)
,

f2(U) = −a2
(
u2 + 2uv + u2v

) (17)

and f(U) = (f1(U), f2(U))T. So, when b = b0, system (3) can be rewritten into the
following abstract form:

dU

dt
= L(b0)U + f(U). (18)

Define Xc and Xs by

Xc = {zq + z̄q̄ | z ∈ C} and Xs =
{
u ∈ X

∣∣ 〈q∗, u〉 = 0
}
.
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Then the Sobolev space X can be represented as the direct sum of Xc and Xs, that
is, X = Xc

⊕
Xs. Thus, we can know that for any U = (u, v)T ∈ X , there exists

a complex number z ∈ C and w = (w1, w2)T ∈ Xs such that

U = zq + z̄q̄ + w. (19)

Combining (16) and (19), the abstract system (18) can be changed into the system of the
form

dz

dt
= iaz +

〈
q∗, f(zq + z̄q̄ + w)

〉
,

dw

dt
= L(b0)w +H(z, z̄, w),

(20)

where

H(z, z̄, w) = f(zq + z̄q̄ + w)−
〈
q∗, f(zq + z̄q̄ + w)

〉
q

−
〈
q̄∗, f(zq + z̄q̄ + w)

〉
q̄. (21)

By the center manifold theorem in [5], we know that system (20) has a local center
manifold near the origin O and it is tangent to the center subspace of (20) at the origin O.
Consequently, w can be expressed into the following form:

w =
w20

2
z2 + w11zz̄ +

w02

2
z̄2 +O(|z|3). (22)

In view of (17) and (22), H(z, z̄, w) in (21) can be expanded as

H(z, z̄, w) =
H20

2
z2 +H11zz̄ +

H02

2
z̄2 +O

(
|z|3
)
. (23)

Substituting (22) and (23) into the second equation of (20), we can obtain(
2iω0 − L(b0)

)
w20 = H20,

(
−L(b0)

)
w11 = H11 and w02 = w20. (24)

Let q2 = (−a2 + ia)/(1 + a2) and define c0, d0, e0, f0, g0 and h0 by

c0 =
(
1 + a2

)
(1 + 2q2), d0 = −a2(1 + 2q2),

e0 = 2
(
1 + a2

)
(1 + q2 + q̄2), f0 = −2a2(1 + q2 + q̄2),

g0 =
(
1 + a2

)
(2q2 + q̄2), h0 = −a2(2q2 + q̄2).

Respectively, denote Qqq , Qqq̄ and Cqqq̄ by

Qqq =

(
c0
d0

)
, Qqq̄ =

(
e0

f0

)
and Cqqq̄ =

(
g0

h0

)
.

Then
f(zq + z̄q̄ + w) = Qqqz

2 +Qqq̄zz̄ + Q̄qq z̄
2 +O

(
|z|3
)
.

Nonlinear Anal. Model. Control, 25(4):638–657

https://doi.org/10.15388/namc.2020.25.17437


650 X.-P. Yan et al.

Define q∗1 and q∗2 by

q∗1 =
1 + ai

2
and q∗2 =

(1 + a2)i

2a
.

Thus, from the definitions of q2, q∗1 and q∗2 we can get

c0 − 〈q∗, Qqq〉 − 〈q̄∗, Qqq〉
= c0 − (q∗1 + q̄∗1)c0 − (q∗2 + q̄∗2)d0 = 0,

d0 − 〈q∗, Qqq〉q2 − 〈q̄∗, Qqq〉q̄2

= d0 − (q∗1 q̄2 + q̄∗1q2)c0 − (q∗2 q̄2 + q̄∗2q2)d0 = 0,

e0 − 〈q∗, Qqq̄〉 − 〈q̄∗, Qqq̄〉
= e0 − (q∗1 + q̄∗1)e0 − (q∗2 + q̄∗2)f0 = 0,

f0 − 〈q∗, Qqq̄〉q2 − 〈q̄∗, Qqq̄〉q̄2

= f0 − (q∗1 q̄2 + q̄∗1q2)e0 − (q∗2 q̄2 + q̄∗2q2)f0 = 0.

(25)

(25) together with (21) yield that H20 = H11 = 0, and further, we can also obtain from
(24) that w20 = w11 = 0 since L(b0) has only a pair of purely imaginary eigenvalues±ia
and has no the other eigenvalues. Now, we know that the reaction–diffusion system (15)
restricted to the center manifold in z, z̄ coordinates is

dz

dt
= iaz +

1

2
g20z

2 + g11zz̄ +
1

2
g02z̄

2 +
1

2
g21z

2z̄ +O
(
|z|4
)
,

where

g20 = 〈q∗, Qqq〉 = q̄∗1c0 + q̄∗2d0 =
1− a2

2
+ ia,

g11 = 〈q∗, Qqq̄〉 = q̄∗1e0 + q̄∗2f0 = 1− a2,

g21 = 〈q∗, Cqqq̄〉 = q̄∗1g0 + q̄∗2h0 =
−3a2 + ia

2
.

(26)

According to (26), we can compute

Rec1(0) = Re

[
i

2a

(
g20g11 − 2|g11|2 −

1

3
|g02|2

)
+
g21

2

]
= Re

(
i

2a
g20g11 +

g21

2

)
= −a

2 + 2

4
< 0. (27)

Combining the references [5, 15], (27) and T ′0(b0) = 1, we can state the following
result.

Theorem 10. Assume that the conditions 0 < σ 6 1 or σ > 1 and a2(1− σ)2 < 4σ are
satisfied. Then the spatially homogeneous Hopf bifurcation of system (3) at the positive
constant equilibrium E∗ is supercritical, and the corresponding spatially homogeneous
bifurcating periodic solutions are orbitally asymptotically stable.
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5 Examples and numerical simulations

In this section, we provide some numerical simulations for particular cases of system (3)
to support the theoretical conclusions obtained in Sections 2–4 by means of the MATLAB
software package and the numerical methods solving differential equations. In order to
complete our numerical verifications, we restrict the spatial domain Ω as (0, π) and
consider the following model:

∂u

∂t
=
∂2u

∂x2
+ 1− (b+ 1)u+ bu2v, x ∈ (0, π), t > 0,

∂v

∂t
= σ

∂2v

∂x2
+ a2

(
u− u2v

)
, x ∈ (0, π), t > 0,

∂u

∂n
=
∂v

∂n
= 0, x = 0, π, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ (0, π).

(28)

Example 1. Let a = 1 in system (4). Then b0 = 1 + a2 = 2. Therefore, by Theorem 1
we know that the equilibrium E∗ of system (4) is locally asymptotically stable when
0 < b < b0 = 2, while is unstable as b > b0 = 2, and a stable limit cycle can bifurcate
from E∗ if 0 < b− b0 � 1; see Fig. 1.

Example 2.
(i) Take a = 1 and b = 0.5 in system (28). Then 0 < b < 1, and from Theorem 3

we know that the positive constant equilibrium E∗ of system (28) is locally
asymptotically stable for any σ > 0; see Figs. 2–3.

(ii) Fix a = 2 and b = 4 in system (28). Then 1 < b < b0 = 1 + a2 = 5 and
z2 defined by (10) is equal to 4. Thus, by Theorem 3 one can know that the
positive constant equilibrium E∗ of system (28) is locally asymptotically stable
when 0 < σ < z2 = 4; see Fig. 4.

(a) (b)

Figure 1. Phase portraits of system (4) when a = 1: (a) b = 1.5, the equilibrium E∗ is locally asymptotically
stable; (b) b = 2.5, E∗ is unstable and (4) has a stable limit cycle bifurcating from E∗.
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Figure 2. Stable behavior of the constant positive equilibrium E∗ of (28) when a = 1, b = 0.5 and σ = 1.

Figure 3. Stable behavior of the constant positive equilibrium E∗ of (28) when a = 1, b = 0.5 and σ = 100.

Figure 4. Local stability of the constant positive equilibrium E∗ of (28) when a = 2, b = 4 and σ = 3.
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Figure 5. Stable behavior of system (28) when a =
√
2, b = 2 and σ = z2 = 6 + 4

√
2.

Figure 6. Stability of the positive constant equilibrium E∗ of system (28) when a = 1, b = 1.5 and σ = 2.

Example 3. Let a =
√

2 and b = 2 in system (28). Then 1 < b < b0 = 1 + a2 = 3 and
z2 = 6+4

√
2. If σ = z2 = 6+4

√
2, then µ∗ = (σb−a2−σ)/(2σ) =

√
2−1 6= µn = n2

for all n ∈ N0. Theorem 4 tells us that the positive constant equilibriumE∗ of system (28)
is locally asymptotically stable; see Fig. 5.

Example 4. Let a = 1 and b = 1.5 in (28). Then one can observe that 1 < b < b0 = 1 +
a2 = 2 and µ1 = 1 > b− 1 = 0.5. Therefore, from Theorem 5 we know that the positive
constant equilibrium E∗ of the reaction–diffusion system (28) is locally asymptotically
stable for any σ > 0; see Figs. 6–7.

Example 5. Let a = 3, b = 6 and σ = 8 in system (28). Then 1 < b = 6 < b0 = 1 +
a2 = 10 and σ > z2 = (63+ 18

√
6)/5 ≈ 4.2836. In addition, k−(σ) and k+(σ) given as

in (11) are respectively 0.3161 and 3.5589. Thus, we can see k−(σ) < µ1 = 1 < k+(σ),
and from Theorem 6 we know that the positive constant equilibrium E∗ of the reaction–
diffusion system (28) is Turing unstable; see Fig. 8.
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Figure 7. Stability of the positive constant equilibrium E∗ of system (28) when a = 1, b = 1.5 and σ = 100.

Figure 8. Turing instability of the positive constant equilibrium E∗ of (28) when a = 3, b = 6 and σ = 8.

Example 6. Let a = 2 and b = 3.5. Then 0 < µ1 = 1 < b − 1 = 2.5, and from
Theorem 7 we know that the positive constant equilibrium E∗ of the reaction–diffusion
system (28) is Turing unstable when σ →∞; see Figs. 9–10.

Example 7. Let a = 1 and σ = 0.5 in system (28). Then 0 < σ < 1, b0 = 1 + a2 = 2,
and by Theorems 2 and 10 one can see that the positive constant equilibrium E∗ of
system (28) is unstable when b > b0 = 2. Meanwhile, when b = b0 = 2, the system
can undergo a supercritical Hopf bifurcation at the positive equilibrium E∗, and the
bifurcating periodic solutions are stable; see Figs. 11–12.

Example 8. Take a = 2 and σ = 2 in system (28). Then σ > 1 and a2(1 − σ)2 =
4 < 4σ = 8 hold. Therefore, by Theorems 2 and 10 we know that the positive constant
equilibrium E∗ of system (28) is unstable when b > b0 = 5. Meanwhile, when 0 <
b − 5 � 1, the system can bifurcate a spatially homogeneous period solution form the
positive equilibriumE∗, and the bifurcating periodic solutions are stable; see Figs. 13–14.
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Figure 9. Turing instability of the positive constant equilibriumE∗ of (28) when a = 2, b = 3.5 and σ = 100.

Figure 10. Turing instability of the positive constant equilibrium E∗ of (28) when a = 2, b = 3.5 and
σ = 8000.

Figure 11. Instability of the constant positive equilibriumE∗ and the stable time-period solution of system (28)
when a = 1, b = 3 and σ = 0.5.
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Figure 12. Instability of the constant positive equilibriumE∗ and the stable time-period solution of system (28)
when a = 1, b = 3 and σ = 0.5.

Figure 13. Instability of the constant positive equilibriumE∗ and the stable time-period solution of system (28)
when a = 2, b = 5.5 and σ = 2.

Figure 14. Instability of the constant positive equilibriumE∗ and the stable time-period solution of system (28)
when a = 2, b = 5.5 and σ = 2.
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