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Abstract. This paper investigates the exponential state estimation problem for competitive neural
networks via stochastic sampled-data control with packet losses. Based on this strategy, a switched
system model is used to describe packet dropouts for the error system. In addition, transmittal
delays between neurons are also considered. Instead of the continuous measurement, the sampled
measurement is used to estimate the neuron states, and a sampled-data estimator with probabilistic
sampling in two sampling periods is proposed. Then the estimator is designed in terms of the
solution to a set of linear matrix inequalities (LMIs), which can be solved by using available
software. When the missing of control packet occurs, some sufficient conditions are obtained to
guarantee that the exponentially stable of the error system by means of constructing an appropriate
Lyapunov function and using the average dwell-time technique. Finally, a numerical example is
given to show the effectiveness of the proposed method.

Keywords: exponential state estimation, competitive neural network, sampled-data control, packet
losses.

1 Introduction

During the last few decades, neural networks have become increasingly popular due to
their wide application prospects, such as image processing, associative memory, pattern
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recognition and optimization problems [6, 19, 23]. Recently, many important results have
been reported on various aspects of neural networks [3,10,16,24]. The competitive neural
network model was first proposed by Cohen and Grossberg in 1983 [5], which has two
types of state variables: the short-term memory (STM) variable and the long-term memory
(LTM) variable. They describe the fast neural activity and the slow unsupervised synaptic
modifications, respectively. Competitive neural networks contain two time scales: the
one dealing with the fast change of the state, and the other one with the slow change
of the synapse by external stimulation. Currently, the dynamic behavior of competitive
neural networks with different time scales has been considered in [7, 9]. Especially,
analysis problems of stability and synchronization for the competitive neural networks
have aroused the interest of a large number of research scholars [31, 34].

In many applications, the neuron states need to be known to achieve certain practical
performance. In practice, it is sometimes the case that only partial information about the
neuron states is available in the network output [32]. Therefore, it is of great significance
to estimate the neuron states through available output measurements of the networks,
and the state estimation problem for neural networks has received increasing research
attention. Recently, some profound results of the state estimation problem have been
established [2, 22, 30]. For instance, in [1], the sampled-data state estimation problem
has been studied for genetic regulatory networks with time-varying delays. In [14], the
authors studied the state estimation problem for delayed recurrent neural networks with
sampled-data.

As we all know, time delay is an important factor that widely exists in practical
systems due to the transmission congestion in networks [4, 8, 11, 28], it can cause many
uncertain complex dynamic behaviors, for instance, oscillation divergence and instability.
Recently, there are many results that consider the impact of time-varying delay on system
stability. The state estimation problem for delayed neural networks with time-varying
delays has been considered in [13]. On the other hand, transmittal delays between neurons
are often neglected, which are important for the analysis of practical systems. As the
transmittal delay varies from neuron to neuron, a common buffer is employed to make
all controllers operate at the same time. In [12], the authors studied a leader-following
consensus problem for nonlinear multi-agent systems with stochastic sampling, and the
transmittal delay from the sensor to the controller is considered.

Note that there exist information exchanges among the interconnected neurons. When
the network scale is large, it is easy to make the channel block for the continuous infor-
mation transmission. So, if unnecessary information transmission can be reduced, it will
improve the operational efficiency of the networks. However, most existed controllers
focus on using continuous-time control [17, 20, 29]. With the rapid development of high-
speed computers, sampled-data control theory has gained considerable attention in control
area [15, 33]. In a general way, many researchers have analyzed sampled-data control
systems with constant sampling period. As the large sampling interval means that signals
are sampled during a relatively long time period and less energy is consumed, therefore,
the sampling scheme with fewer signals sampled is more efficient. Stochastic sampling
[25], a further extension which allows the sampling period to switch among different
values, has received more and more attention. The synchronization problem for a chaotic
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Lur’e system via stochastic sampled-data control has been studied in [26]. So far, there
are few results about exponential state estimation for the competitive neural networks
via stochastic sampled-data control. Moreover, developing a practical controller with
stochastic sampling for the competitive neural networks and further investigating the
effects of transmittal delays on state estimation problem is the motivation of this paper.

It is worth noting that all of the above mentioned work assumed that the control
packet from the controller to the actuator is transmitted in a perfect way, that is, there
is no loss in the control information. However, this assumption may fail in many practical
situations due to actuator failure, communication interference or congestion, intermittent
unavailability of controllers and so on. When the control packet from the controller to the
actuator is lost, the actuator input to the plant will be zero, it will lead to many difficulties
in the study of the stability of the system. Thus, it is necessary to consider the influence
of the control packet loss. At present, synchronization of neural networks with control
packet losses has been investigated in [21]. In [35], the authors studied the sampled-data
consensus problem for linear multi-agent systems with packet losses. Actually, until now,
the exponential state estimation problem for competitive neural networks via stochastic
sampled-data control with packet losses has not been resolved.

Motivated by the above discussion, the exponential state estimation problem is inves-
tigated for competitive neural networks via stochastic sampled-data control with packet
losses, transmittal delays between neurons are also considered. The sampling period is
assumed to be time-varying that switches between two different values in a random way
with the given probability. Furthermore, exponential stability criteria for the error systems
are derived by constructing an appropriate Lyapunov function and designing stochastic
sampled-data controllers. The solvability of derived conditions depends on not only the
size of the delay, but also the probability of taking values of the sampling period. Finally,
a numerical example is given to demonstrate the effectiveness of the proposed method.

The remainder of this paper is organized as follows. In Section 2, the model formula-
tion and some preliminaries are briefly outlined. The main results will be obtained in the
form of LMIs in Section 3. An example is given to show the effectiveness of our results
in Section 4. Finally, conclusions are made in Section 5.

Notations. Throughout this paper, Rn denotes n-dimensional real numbers set, N denotes
natural numbers set. For symmetric matricesX and Y , the notationX < Y means that the
matrix X−Y is negative definite. Am×n and In refer to m×n matrix and n×n identity
matrix, respectively. The superscript “T” denotes vector transposition. “∗” denotes the
symmetric terms in a symmetric matrix. P{π} is the occurrence probability of an event π.
If not explicitly stated, matrices are assumed to have compatible dimensions.

2 Preliminaries

In this section, a competitive neural network model is first proposed. Furthermore, some
preliminaries including definition, assumptions, and lemmas are given.
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Considering the following competitive neural networks with time-varying delays:

STM: ẋ(t) = −Ax(t) +Bf
(
x(t)

)
+ B̄f

(
x
(
t− τ(t)

))
+DS(t) + I,

LTM: Ṡ(t) = −CS(t) +Mf
(
x(t)

)
,

(1)

where x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn is the state vector of the competitive neu-
ral networks, S(t) = (S1(t), S2(t), . . . , Sn(t))T is the dynamic variable about synaptic
efficiency; f(x(t)) = (f1(x1(t)), f2(x2(t)), . . . , fn(xn(t)))T ∈ Rn denotes the neuron
activation function, τ(t) is the time-varying delay and satisfies 0 < τ(t) 6 τ̄ , τ̇(t) 6
µ < 1, where τ̄ and µ are known constants; A = diag(a1, a2, . . . , an) is a diagonal
matrix with ai > 0 for i = 1, 2, . . . , n represents the time constant of the neuron, B =
(bij)n×n and B̄ = (b̄ij)n×n are the connection weight matrix and the delayed connection
weight matrix, respectively; D = (dij)n×n is the strength of the external stimulus,
I = (I1, I2, . . . , In)T ∈ Rn is an external input vector; C = diag(c1, c2, . . . , cn) with
ci > 0 represents disposable scaling constant, M = (mij)n×n is the constant external
stimulus.

There are generally two kinds of state variables in the practical biological neural
networks model: STM and LTM variables. STM variables represent the instantaneous
change of the dynamic behavior of neurons, while the corresponding LTM variables
represent the slow change of the dynamic behavior of neurons. Thus, for this type of
neural network model, there are two kinds of time scale, the first is a kind of instant
changes, and the second one is of slow action.

Define the network measurements as follows:

yx(t) = Ex(t), yS(t) = GS(t), (2)

where yx(t) ∈ Rm, yS(t) ∈ Rm are the measurement outputs, and E,G ∈ Rm×n are
known constant matrices.

Assumption 1. (See [27].) The activation function fi(·) satisfies the following inequality:

0 6
fi(a)− fi(b)

a− b
6 %i for every a, b ∈ R, a 6= b,

where %i > 0, i = 1, 2, . . . , n, is known constant, and Λ = diag(%1, %2, . . . , %n) > 0.

The purpose of this paper is to present an efficient estimation scheme to observe the
neuron states from the available network output. For this reason, the following full-order
state estimator for the competitive neural networks (1) is proposed:

STM: ˙̂x(t) = −Ax̂(t) +Bf
(
x̂(t)

)
+ B̄f

(
x̂
(
t− τ(t)

))
+DŜ(t) + I + U1(t),

LTM: ˙̂
S(t) = −CŜ(t) +Mf

(
x̂(t)

)
+ U2(t).

(3)

Then, the estimation output vector is as follows:

ŷx(t) = Ex̂(t), ŷS(t) = GŜ(t), (4)
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where x̂(t) ∈ Rn, Ŝ(t) ∈ Rn are the estimation of neuron state variables x(t) and S(t),
respectively. U1(t) ∈ Rn, U2(t) ∈ Rn are the control input. ŷx(t) ∈ Rn, ŷS(t) ∈ Rm are
the estimated output vector.

Define the error vector by ex(t) = x(t) − x̂(t), eS(t) = S(t) − Ŝ(t). The error
dynamical system is expressed from (1) and (4) as follows:

ėx(t) = −Aex(t) +BF
(
ex(t)

)
+ B̄F

(
ex
(
t− τ(t)

))
+DeS(t)− U1(t),

ėS(t) = −CeS(t) +MF
(
ex(t)

)
− U2(t),

(5)

where F (ex(t)) = f(x(t))−f(x̂(t)), F (ex(t−τ(t))) = f(x(t−τ(t)))−f(x̂(t−τ(t))).
In this paper, the controller was assumed to use sampled-data control with stochastic

sampling, at the same time, the transmittal delay from the sensor to the controller is
considered. Let τik, i = 1, 2, . . . , n, be the communication delay between the sensor i
and the buffer. Thus, the delay from the sensor i to the controller i can be defined as
τk = max{τik, i = 1, 2, . . . , n}. The controller i updates its input and sends its output
to the actuator with zero-order hold (ZOH). The function of ZOH is to keep the control
input constant from t = tk + τk to t = tk+1 + τk+1. Then, the sampled-data controller
can be described as

U1(t) = K
(
yx(tk)− ŷx(tk)

)
= KEex(tk),

U2(t) = K̄
(
yS(tk)− ŷS(tk)

)
= K̄GeS(tk),

(6)

where t ∈ [tk+ τk, tk+1 + τk+1), K and K̄ are the gain matrix of the feedback controller
to be determined later, and tk denotes the sampling instant satisfying: 0 = t0 < t1 <
· · · < tk < · · · , limk→∞tk = ∞. Let h(t) = t − tk for t ∈ [tk + τk, tk+1 + τk+1), as
tk = t− h(t), then controller (6) can be written as

U1(t) = KEex
(
t− h(t)

)
U2(t) = K̄GeS

(
t− h(t)

)
(7)

with τk 6 h(t) 6 tk+1 − tk + τk+1. The sampling period {tk+1 − tk} is allowed to
randomly switch between two different values h1 and h2, where h1 and h2 are known
constants satisfies 0 < h1 < h2. The probabilities are P{h = h1} = ρ and P{h =
h2} = 1 − ρ, where ρ ∈ [0, 1] is a given constant. Therefore, the time delay h(t) in (7)
satisfies

τk 6 h(t) < h1 + τk+1 or τk 6 h(t) < h2 + τk+1.

Since the sampling period can switch between h1 and h2, h(t) is a random variable
ranging from τk to h2 + τk+1. The probability of h(t) can be calculated by

P
{
τk 6 h(t) < h1 + τk+1

}
= ρ+

(
1− h2 − h1

h2 + τk+1 − τk

)
(1− ρ), (8)

P
{
h1 + τk+1 6 h(t) < h2 + τk+1

}
=

h2 − h1

h2 + τk+1 − τk
(1− ρ), (9)
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The probability distribution in (8) and (9) depends on transmittal delays. To simplify
the analysis, it is assumed that transmittal delays are uniform, that is, τk = τ for k =
0, 1, 2, . . . . Then (8) and (9) turn to

P
{
τ 6 h(t) 6 h1 + τ

}
= ρ+

h1

h2
(1− ρ),

P
{
h1 + τ 6 h(t) 6 h2 + τ

}
=

(
1− h1

h2

)
(1− ρ).

By introducing a new random variable

α(t) =

{
1, τ 6 h(t) < h1 + τ,

0, h1 + τ 6 h(t) < h2 + τ.

Accordingly, P{α(t) = 1} = α and P{α(t) = 0} = 1−α with α = ρ+(h1/h2)(1−ρ),
where α is known constant satisfies α ∈ [0, 1]. α(t) satisfies a Bernoulli distribution with
E{α(t)} = α and E{(α(t)−α)2} = α(1−α). Then, the controller (7) can be converted
into

U1(t) = α(t)KEex
(
t− h1(t)

)
+
(
1− α(t)

)
KEex

(
t− h2(t)

)
,

U2(t) = α(t)K̄GeS
(
t− h1(t)

)
+ (1− α(t))K̄GeS

(
t− h2(t)

)
where h1(t) and h2(t) are time-varying delays, satisfying τ 6 h1(t) < h1 + τ and
h1 + τ 6 h2(t) < h2 + τ . Therefore, system (5) with two sampling intervals can be
expressed as follows:

ėx(t) = −Aex(t) +BF
(
ex(t)

)
+ B̄F

(
ex
(
t− τ(t)

))
+DeS(t)

− α(t)KEex
(
t− h1(t)

)
−
(
1− α(t)

)
KEex

(
t− h2(t)

)
,

ėS(t) = −CeS(t) +MF
(
ex(t)

)
− α(t)K̄GeS

(
t− h1(t)

)
−
(
1− α(t)

)
K̄GeS

(
t− h2(t)

)
.

(10)

By setting η(t) = [eT
x (t) eT

S (t)]T, the following augmented system can be obtained
from (10):

η̇(t) = Âη(t) + B̂F
(
Hη(t)

)
+ ĈF

(
Hη
(
t− τ(t)

))
− Ŵ0η

(
t− h1(t)

)
− Ŵ1η

(
t− h2(t)

)
, (11)

where

Â =

(
−A D
0 −C

)
, B̂ =

(
B
M

)
, Ĉ =

(
B̄
0

)
, H =

(
I 0

)
,

Ŵ0 =

(
α(t)KE 0

0 α(t)K̄G

)
, Ŵ1 =

(
(1− α(t))KE 0

0 (1− α(t))K̄G

)
.
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In addition, it cannot be guaranteed that the control packet from the controller to the
actuator will always be received completely. So, in this paper, we consider the problem of
exponential state estimation for competitive neural network with control packet loss. If
the control packet from controller to actuator is lost, then, the actuator does nothing, that
is, U1(tk) = 0 and U2(tk) = 0, the error system (10) reduces to the following system:

ėx(t) = −Aex(t) +BF
(
ex(t)

)
+ B̄F

(
ex
(
t− τ(t)

))
+DeS(t),

ėS(t) = −CeS(t) +MF
(
ex(t)

)
,

(12)

or equivalently,

η̇(t) = Âη(t) + B̂F
(
Hη(t)

)
+ ĈF

(
Hη
(
t− τ(t)

))
. (13)

In order to describe the control packet loss status of system (10), a piecewise notation
function σ(t) : [0,+∞) → {1, 2} is used to estimate the competitive neural network
suffering from packet losses or not. When σ(t) = 1 and K1 = K, K̄1 = K̄. Otherwise,
σ(t) = 2, K2 = 0, K̄2 = 0, we have a control packet loss happens during the interval
[tk, tk+1). Then system (10) can be described as the following switched system:

ėx(t) = −Aex(t) +BF
(
ex(t)

)
+ B̄F

(
ex
(
t− τ(t)

))
+DeS(t)

− α(t)Kσ(t)Eex
(
t− h1(t)

)
−
(
1− α(t)

)
Kσ(t)Eex

(
t− h2(t)

)
,

ėS(t) = −CeS(t) +MF
(
ex(t)

)
− α(t)K̄σ(t)GeS

(
t− h1(t)

)
−
(
1− α(t)

)
K̄σ(t)GeS

(
t− h2(t)

)
,

(14)

similarly,

η̇(t) = Âη(t) + B̂F
(
Hη(t)

)
+ ĈF

(
Hη
(
t− τ(t)

))
− ˆ̄W0η

(
t− h1(t)

)
− ˆ̄W1η

(
t− h2(t)

)
, (15)

where

ˆ̄W0 =

(
α(t)Kσ(t)E 0

0 α(t)K̄σ(t)G

)
, ˆ̄W1 =

(
(1− α(t))Kσ(t)E 0

0 (1− α(t))K̄σ(t)G

)
.

Therefore, σ(t) can be referred to a switching signal, the switched system (14) consists
of the controlled subsystem (10) and uncontrolled subsystem (12).

Definition 1. (See [14].) The system described by (15) is said to be exponentially mean-
square stable if there exist two constants ε > 0 and δ > 0 such that

E
{∥∥η(t)

∥∥2}
6 εe−δt sup

−τ∗6θ60
E
{∥∥φ(θ)

∥∥2}
,

where τ∗ = max{τ̄ , h2 + τ}, η(t) = [eT
x (t) eT

S (t)]T is the error vector in (15), φ(·) is
the initial function of system (15) defined as φ(t) = η(t), t ∈ [−τ∗, 0].
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Definition 2. (See [18].) If there exist scalars N0 > 0 and τα > 0 such that the following
inequality holds:

Nσ(T, t) 6 N0 +
t− T
τα

∀t > T > 0,

where N0 is the chatter bound, and Nσ(T, t) is the switching numbers of σ(t) over the
interval [T, t), respectively, then the switching signal σ(t) is said to have an average dwell
time τα.

Remark 1. The average dwell time means that the time interval between consecutive
switching is at least τα on the average. Then, a basic problem for the networks (5) is to
specify the minimal τα and get the admissible switching signals that the networks (5) are
stable.

Lemma 1. (See [35].) For any constant matrix Γ ∈ Rn×n, Γ = ΓT > 0, scalar
$ > 0, and vector function ψ : [0, $]→ Rn such that the integration is well defined, the
following inequality holds:( $∫

0

ψ(s) ds

)T

Γ

( $∫
0

ψ(s) ds

)
6 $

$∫
0

ψT(s)Γψ(s) ds.

3 Main results

In this section, our main aim is to design the sampled-data state estimator to estimate
the state of the competitive neural networks (1) such that the estimation error system is
exponentially stable. At the same time, several sufficient conditions will be derived for
systems (11) by using Lyapunov functional approach.

Theorem 1. For given scalar µ > 0, τ̄ > 0, τ > 0, ε1 > 0, ε2 > 0, γ1 > 0 and
matrices U > 0, Λ = diag(%1, %2, . . . , %n) > 0, the exponential mean square stable of
error system (11) can be reached if there exist appropriate dimension matrices P > 0,
Ri > 0 (i = 1, 2, 3, 4, 5), Qi > 0 (i = 1, 2, 3, 4) such that the following inequality hold:

Φ =



Φ11 Φ12 Φ13 0 Φ15 −αUW̄ 0 Φ18 0 UB̂ UĈ

∗ Φ22 0 0 0 −αUW̄ 0 Φ28 0 UB̂ UĈ
∗ ∗ Φ33 0 0 0 0 0 0 0 0
∗ ∗ ∗ Φ44 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Φ55 Φ56 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Φ66 Φ67 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Φ77 Φ78 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88 Φ89 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε1I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −ε2I


< 0, (16)
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where

Φ11 = 2γ1P +R1 +R2 +R3 − e−2γ1τ̄Q1 − e−2γ1τQ2 + ε1H
TΛTΛH + 2UÂ,

Φ12 = P − U + UÂ, Φ13 = e−2γ1τ̄Q1, Φ15 = e−2γ1τQ2,

Φ18 = (α− 1)UW̄ , Φ22 = W1 − 2U, Φ28 = (α− 1)UW̄ ,

Φ33 = −e−2γ1τ̄R2 − e−2γ1τ̄Q1, Φ44 = (µ− 1)e−2γ1τ̄R1 + ε2H
TΛTΛH,

Φ55 = e−2γ1τ (R4 −R3)− e−2γ1τQ2 − e−2γ1(h1+τ)Q3,

Φ56 = e−2γ1(h1+τ)Q3, Φ66 = −2e−2γ1(h1+τ)Q3, Φ67 = e−2γ1(h1+τ)Q3,

Φ77 = −e−2γ1(h1+τ)Q3 − e−2γ1(h2+τ)Q4 + e−2γ1(h1+τ)(R5 −R4),

Φ78 = e−2γ1(h2+τ)Q4, Φ88 = −2e−2γ1(h2+τ)Q4, Φ89 = e−2γ1(h2+τ)Q4,

Φ99 = −e−2γ1(h2+τ)(R5 +Q4),

W̄ =

(
KE 0

0 K̄G

)
, W1 = τ̄2Q1 + τ2Q2 + h2

1Q3 + (h2 − h1)2Q4.

Proof. Constructing the following Lyapunov functional:

V1(t) = V11(t) + V12(t) + V13(t), (17)

where

V11(t) = ηT(t)Pη(t),

V12(t) =

t∫
t−τ(t)

e2γ1(s−t)ηT(s)R1η(s) ds+

t∫
t−τ̄

e2γ1(s−t)ηT(s)R2η(s) ds

+

t∫
t−τ

e2γ1(s−t)ηT(s)R3η(s) ds+

t−τ∫
t−h1−τ

e2γ1(s−t)ηT(s)R4η(s) ds

+

t−h1−τ∫
t−h2−τ

e2γ1(s−t)ηT(s)R5η(s) ds,

V13(t) = τ̄

0∫
−τ̄

t∫
t+θ

e2γ1(s−t)(ϕT(s)Q1ϕ(s) + ϕ̄T(s)Q1ϕ̄(s)
)

dsdθ

+ τ

0∫
−τ

t∫
t+θ

e2γ1(s−t)(ϕT(s)Q2ϕ(s) + ϕ̄T(s)Q2ϕ̄(s)
)

dsdθ

Nonlinear Anal. Model. Control, 25(4):523–544

https://doi.org/10.15388/namc.2020.25.17803


532 X. Sui et al.

+ h1

−τ∫
−h1−τ

t∫
t+θ

e2γ1(s−t)(ϕT(s)Q3ϕ(s) + ϕ̄T(s)Q3ϕ̄(s)
)

dsdθ

+ (h2 − h1)

−h1−τ∫
−h2−τ

t∫
t+θ

e2γ1(s−t)(ϕT(s)Q4ϕ(s) + ϕ̄T(s)Q4ϕ̄(s)
)

dsdθ,

ϕ(t) = Âη(t) + B̂F
(
Hη(t)

)
+ ĈF

(
Hη
(
t− τ(t)

))
− αW̄η

(
t− h1(t)

)
− (1− α)W̄η

(
t− h2(t)

)
,

ϕ̄(t) = W̄2

(
η
(
t− h1(t)

)
− η
(
t− h2(t)

))
,

W̄2 =

(√
α(1− α)KE 0

0
√
α(1− α)K̄G

)
.

Let LV (t) = lim∆→0+ ∆−1[E{V (t + ∆) | r(t)} − V (t)] be the infinitesimal operator
of V (t). It follows from (17) that

LV1(t) = LV11(t) + LV12(t) + LV13(t). (18)

Then the time derivative of (17) along the solution of system (11) can be calculated as
follows:

LV11(t) + 2γ1V11(t) = 2ηT(t)P η̇(t) + 2γ1η
T(t)Pη(t),

LV12(t) + 2γ1V12(t)

6 ηT(t)(R1 +R2 +R3)η(t)− (1− µ)e−2γ1τ̄ηT
(
t− τ(t)

)
R1η

(
t− τ(t)

)
− e−2γ1τ̄ηT

(
t− τ̄

)
R2η

(
t− τ̄

)
+ e−2γ1τηT(t− τ)(R4 −R3)η(t− τ)

+ e−2γ1(h1+τ)ηT(t− h1 − τ)(R5 −R4)η(t− h1 − τ)

− e−2γ1(h2+τ)ηT(t− h2 − τ)R5η(t− h2 − τ),

LV13(t) + 2γ1V13(t)

6 ϕT(t)W1ϕ(t) + ϕ̄T(t)W1ϕ̄(t)− e−2γ1τ̄ τ̄

t∫
t−τ̄

Π1(s) ds

− e−2γ1ττ

t∫
t−τ

Π2(s) ds− e−2γ1(h1+τ)h1

t−τ∫
t−h1−τ

Π3(s) ds

− (h2 − h1)e−2γ1(h2+τ)

t−h1−τ∫
t−h2−τ

Π4(s) ds, (19)

where
Πi(s) = ϕT(s)Qiϕ(s) + ϕ̄T(s)Qiϕ̄(s) (i = 1, 2, 3, 4).
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By simple calculation, it is easy to obtain that

E
{
ϕT(t)W1ϕ(t) + ϕ̄T(t)W1ϕ̄(t)

}
= E

{
η̇T(t)W1η̇(t)

}
, (20)

on the other hand,

−e−2γ1τ̄ τ̄E

{ t∫
t−τ̄

Π1(s) ds

}
= −e−2γ1τ̄ τ̄E

{ t∫
t−τ̄

η̇T(s)Q1η̇(s) ds

}

6 −e−2γ1τ̄E

{( t∫
t−τ̄

η̇(s) ds

)T

Q1

( t∫
t−τ̄

η̇(s) ds

)}

= e−2γ1τ̄E

{(
ηT(t), ηT(t− τ̄)

)
Γ1

(
η(t)

η(t− τ̄)

)}
, (21)

similarly, one has

−e−2γ1ττE

{ t∫
t−τ

Π2(s) ds

}

6 e−2γ1τE

{(
ηT(t), ηT(t− τ)

)
Γ2

(
η(t)

η(t− τ)

)}
,

− e−2γ1(h1+τ)h1E

{ t−τ∫
t−h1−τ

Π3(s) ds

}

6 e−2γ1(h1+τ)E

{
−
(
t− τ −

(
t− h1(t)

)) t−τ∫
t−h1(t)

η̇T(s)Q3η̇(s) ds

−
((
t− h1(t)

)
− (t− h1 − τ)

) t−h1(t)∫
t−h1−τ

η̇T(s)Q3η̇(s) ds

}

6 e−2γ1(h1+τ)E

{(
ηT(t− τ), ηT

(
t− h1(t)

))
Γ3

(
η(t− τ)

η(t− h1(t))

)}

+ e−2γ1(h1+τ)E

{(
ηT
(
t− h1(t)

)
, ηT

(
t− h1 − τ)

)
Γ3

(
η(t− h1(t))
η(t− h1 − τ)

)}
,

− e−2γ1(h2+τ)(h2 − h1)E

{ t−h1−τ∫
t−h2−τ

Π4(s) ds

}
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6 e−2γ1(h2+τ)E

{(
ηT(t− h1 − τ), ηT

(
t− h2(t)

))
Γ4

(
η(t− h1 − τ)
η(t− h2(t))

)}
+ e−2γ1(h2+τ)E

{(
ηT
(
t− h2(t)

)
, ηT(t− h2 − τ)

)
Γ4

(
η(t− h2(t))
η(t− h2 − τ)

)}
, (22)

where

Γi =

(
−Qi Qi
Qi −Qi

)
, i = 1, 2, 3, 4.

From Assumption 1, for a diagonal matrix Λ = diag(%1, %2, . . . , %n) > 0, one can obtain
the following inequalities:

FT
(
Hη(t)

)
F
(
Hη(t)

)
− ηT(t)HTΛTΛHη(t) 6 0,

FT
(
Hη
(
t− τ(t)

))
F
(
Hη
(
t− τ(t)

))
− ηT

(
t− τ(t)

)
HTΛTΛHη

(
t− τ(t)

)
6 0.

(23)

Noting that, for any positive scalars ε1 > 0 and ε2 > 0, there exist:

ε1

[
ηT(t)HTΛTΛHη(t)− FT(Hη(t))F

(
Hη(t)

)]
> 0,

ε2

[
ηT
(
t− τ(t)

)
HTΛTΛHη

(
t− τ(t)

)
− FT

(
Hη
(
t− τ(t)

))
F
(
Hη
(
t− τ(t)

))]
> 0.

(24)

Then, for any appropriately dimensioned matrix U , the following equation holds:

E
{

2
[
ηT(t)U + η̇T(t)U

][
−η̇(t) + Âη(t) + B̂F

(
Hη(t)

)
+ ĈF

(
Hη
(
t− τ(t)

))
− Ŵ0η

(
t− h1(t)

)
− Ŵ1η

(
t− h2(t)

)]}
= 0. (25)

From (25) one has

−2ηT(t)Uη̇(t)− 2η̇T(t)Uη̇(t) + 2ηT(t)UÂη(t) + 2η̇T(t)UÂη(t)

+ 2ηT(t)UB̂F
(
Hη(t)

)
+ 2η̇T(t)UB̂F

(
Hη(t)

)
+ 2ηT(t)UĈF

(
Hη
(
t− τ(t)

))
+ 2η̇T(t)UĈF

(
Hη
(
t− τ(t)

))
− 2αηT(t)UW̄η

(
t− h1(t)

)
− 2αη̇T(t)UW̄η

(
t− h1(t)

)
− 2(1− α)ηT(t)UW̄η

(
t− h2(t)

)
− 2(1− α)η̇T(t)UW̄η

(
t− h2(t)

)
= 0. (26)

From (17)–(26) one can obtain that

LV1(t) + 2γ1V1(t)} 6 E
{
ξT(t)Φξ(t)

}
6 0, (27)
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where Φ is defined in (16), and

ξ(t) =
[
ηT(t) η̇T(t) ηT(t− τ̄) ηT

(
t− τ(t)

)
ηT(t− τ)

ηT
(
t− h1(t)

)
ηT(t− h1 − τ) ηT

(
t− h2(t)

)
ηT(t− h2 − τ) FT

(
Hη(t)

)
FT
(
Hη
(
t− τ(t)

))]T
.

From (27) one has

V1(t) 6 e−2γ1(t−tk)V1(tk) 6 e−2γ1(t−tk−1)V1(tk−1) 6 · · · 6 e−2γ1tV1(0). (28)

Moreover, from the definition of V1(t) we have

e2γ1tE
{∥∥η(t)

∥∥2}
λmin(P ) 6 e2γ1tE

{
V1(t)

}
6 E

{
V1(0)

}
. (29)

On the other hand, let

ζ1 =
1− e−2γ1τ̄

2γ1
, ζ2 =

1− e−2γ1τ

2γ1
,

ζ3 = τ̄

(
τ̄

2γ1
− 1− e−2γ1τ̄

4γ2
1

)
, ζ4 = τ

(
τ

2γ1
− 1− e−2γ1τ

4γ2
1

)
.

Then from (16) one can obtain that

E
{
V1(0)

}
6 χ sup

−τ∗6θ60
E
{∥∥φ(θ)

∥∥2}
(30)

with
χ = λmax(P ) + ζ1

(
λmax(R1) + λmax(R2)

)
+ ζ2λmax(R3) + ζ3λmax(Q1) + ζ4λmax(Q2).

From (28)–(30) we have

E
{∥∥η(t)

∥∥2}
6 χ

e−2γ1t

λmin(P )
sup

−τ∗6θ60
E
{∥∥φ(θ)

∥∥2}
(31)

Therefore, according to Definition 1, the exponential mean square stable of error sys-
tem (11) can be reached. This completes the proof.

Remark 2. For any t > s, let Ts(s, t) (resp., Tu(s, t)) denote the total activation time
of the controlled subsystem (resp., uncontrolled subsystem) during (s, t). The packet loss
rate over the time interval (s, t) is defined by θ = Tu(s, t)/(s − t). Obviously, Ts(s, t)
and Tu(s, t) satisfy Ts(s, t) + Tu(s, t) = t − T . The main purpose of this paper is to
estimate the upper bound θ∗ of θ such that the exponential mean square stable of error
system (15) can be reached for any admissible switching signal σ(t) satisfying θ 6 θ∗.
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In the next theorem, system (15) with deterministic packet losses will be studied.
Next, construct the following Lyapunov functional for system (13):

V2(t) = V21(t) + V22(t) + V23(t),

where

V21(t) = ηT(t)P̃ η(t),

V22(t) =

t∫
t−τ(t)

e2γ2(s−t)ηT(s)R̃1η(s) ds+

t∫
t−τ̄

e2γ2(s−t)ηT(s)R̃2η(s) ds

+

t∫
t−τ

e2γ2(s−t)ηT(s)R̃3η(s) ds,

V23(t) = τ̄

0∫
−τ̄

t∫
t+θ

e2γ2(s−t)η̇T(t)Q̃1η̇(t) dsdθ

+ τ

0∫
−τ

t∫
t+θ

e2γ2(s−t)η̇T(t)Q̃2η̇(t) dsdθ.

Then the following theorem can be developed.

Theorem 2. For given scalar µ > 0, τ̄ > 0, τ > 0, ε3 > 0, ε4 > 0, γ2 < 0 and matrices
U > 0, Λ = diag(%1, %2, . . . , %n) > 0 if there exist appropriate dimension matrices
P̃ > 0, R̃i > 0 (i = 1, 2, 3), Q̃1 > 0, Q̃2 > 0, such that the following inequality hold:

Φ̄ =



Φ̄11 P̃−U+UÂ e−2γ2τ̄ Q̃1 0 e−2γ2τ Q̃2 UB̂ UĈ

∗ τ̄2Q̃1+τ2Q̃2−2U 0 0 0 UB̂ UĈ
∗ ∗ Φ̄33 0 0 0 0
∗ ∗ ∗ Φ̄44 0 0 0
∗ ∗ ∗ ∗ Φ̄55 0 0
∗ ∗ ∗ ∗ ∗ −ε3I 0
∗ ∗ ∗ ∗ ∗ ∗ −ε4I


< 0, (32)

where

Φ̄11 = 2γ2P̃ + R̃1 + R̃2 + R̃3 − e−2γ2τ̄ Q̃1 − e−2γ2τ Q̃2 + ε3H
TΛTΛH + 2UÂ,

Φ̄33 = −e−2γ2τ̄ (R̃2 + Q̃1), Φ̄44 = (µ− 1)e−2γ2τ̄ R̃1 + ε4H
TΛTΛH,

Φ̄55 = −e−2γ2τ (R̃3 + Q̃2).

Then, the Lyapunov functional (30) satisfies

V2(t) 6 e−2γ2(t−tk)V2(tk), t ∈ [tk, tk+1).
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Proof. Proceeding with the same procedure in Theorem 1, for any positive scalars ε3 > 0
and ε4 > 0, add the left-hand side of the inequalities

ε3

[
ηT(t)HTΛTΛHη(t)− FT

(
Hη(t)

)
F (Hη(t))

]
> 0,

ε4

[
ηT
(
t− τ(t)

)
HTΛTΛHη

(
t− τ(t)

)
− FT

(
Hη
(
t− τ(t)

))
F
(
Hη
(
t− τ(t)

))]
> 0.

According to (31), one has

LV2(t) + 2γ2V2(t) 6 0,

and therefore

V2(t) 6 e−2γ2(t−tk)V2(tk), t ∈ [tk, tk+1).

This completes the proof.

In the following, based on Theorems 1 and 2, we will propose a condition to guarantee
that the exponential mean square stable of error system (15) with control packet loss can
be reached.

Theorem 3. For given scalar µ > 0, τ̄ > 0, τ > 0, εi > 0 (i=1, 2, 3, 4), γ1 > 0, γ2 < 0,
υ1 > 1, υ2 > 1 and matricesΛ = diag(%1, %2, . . . , %n) > 0, the exponential mean square
stable of error system (15) can be reached if there exist appropriate dimension matrices
P > 0, P̃ > 0, Ri > 0 (i = 1, 2, 3, 4, 5), R̃i > 0 (i = 1, 2, 3), Qi > 0 (i = 1, 2, 3, 4),
Q̃i > 0 (i = 1, 2) and any matrix U > 0 such conditions (16) ,(31) and the following
LMIs hold:

P 6 υ1P̃ , P̃ 6 υ2P, R1 6 υ1R̃1, R̃1 6 υ2R1,

R2 6 υ1R̃2, R̃2 6 υ2R2, R3 6 υ1R̃3, R̃3 6 υ2R3,

Q1 6 υ1Q̃1, Q̃1 6 υ2Q1, Q2 6 υ1Q̃2, Q̃2 6 υ2Q2,

and if the switching signal σ(t) has an average dwell time τα satisfying

τα > τ∗α =
ln(υ1υ2)

2(γ1 − (γ1 − γ2)θ)
, θ 6 θ∗ =

γ1

γ1 − γ2
. (33)

Proof. Considering the following Lyapunov functional:

V (t) = Vσ(t)(t),

where V1(t) and V2(t) are given as in (18) and (30), respectively. When σ(t) = 1, one
can obtain that

V (t) 6 e−2γ1(t−tk)V (tk), t ∈ [tk, tk+1),
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and
V1(tk) 6 υ1V2(t−k ).

Similarly, if σ(t) = 2, then

V (t) 6 e−2γ2(t−tk)V (tk), t ∈ [tk, tk+1),

and
V2(tk) 6 υ2V1(t−k ).

For any t > 0, there exists a scalar k > 0 such that t ∈ [tk, tk+1). Let T1, T2, . . . , Tj be
the switching instants of σ(t) on the interval [0, t) and assume 0 < T1 < T2 < · · · < Tj .
Then, for each Ti, there exists l ∈ {1, 2, . . . , k} such that Ti = tl. Thus, for any t ∈
[tk, tk+1),

V (t) 6 e−2γσ(Tj)(t−Tj)Vσ(Tj)(Tj)

6 e−2γσ(Tj)(t−Tj)(υ1υ2)Vσ(T−
j )(T

−
j )

6 · · ·

6 e−2γ1Ts(0,t)−2γ2Tµ(0,t)(υ1υ2)Nσ(0,t)Vσ(0)(0)

6 e−2γ1(1−θ)t−2γ2θte(N0+t/τα) ln(υ1υ2)Vσ(0)(0)

= eN0 ln(υ1υ2)e−2γtVσ(0)(0),

where Ts(0, t) and Tµ(0, t) are defined in Remark 2, and

γ = γ1 − (γ1 − γ2)θ − ln(υ1υ2)

2τα
∈
(
0, γ1 − (γ1 − γ2)θ

]
. (34)

From the definition of V (t), let c1 = min{λmin(P ), λmin(P̃ )}, one can deduce that

c1E
{∥∥η(t)

∥∥2}
6 E

{
V (t)

}
6 eN0 ln(υ1υ2)e−2γtE

{
Vσ(0)(0)

}
.

Next, similar to the same procedure in Theorem 1, we have

E{‖η(t)‖2} 6 c2
eN0 ln(υ1υ2)

c1
e−2γt sup

−τ∗6θ60
E{‖φ(θ)‖2},

where

c2 = λmax(P ) + ζ1
(
λmax(R1) + λmax(R2)

)
+ ζ2λmax(R3) + ζ3λmax(Q1) + ζ4λmax(Q2),

+ λmax(P̃ ) + ζ̃1
(
λmax(R̃1) + λmax(R̃2)

)
+ ζ̃2λmax(R̃3) + ζ̃3λmax(Q̃1) + ζ̃4λmax(Q̃2)
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and

ζ̃1 =
1− e−2γ2τ̄

2γ2
, ζ̃2 =

1− e−2γ2τ

2γ2
,

ζ̃3 = τ̄

(
τ̄

2γ2
− 1− e−2γ2τ̄

4γ2
2

)
, ζ̃4 = τ

(
τ

2γ2
− 1− e−2γ2τ

4γ2
2

)
.

Thus, according to Definition 1, for any switching signal σ(t) with the average dwell time
satisfying τα > ln(υ1υ2)/(2(γ1 − (γ1 − γ2)θ)), the exponential mean square stable of
error system (15) with control packet loss can be reached. This completes the proof.

Remark 3. Compared with the reference [14] and [15], the controller we designed is
a stochastic sampling controller, which can save control cost and more realistic. Com-
pared with the reference [13] and [25], we consider the loss of control packets. Therefore,
our results enrich and expand the results of the above work.

Remark 4. It is worth noting that the matrix inequalities (16) and (32) in Theorem 3
need to be satisfied, which narrows the scope of the solution to a certain extent. We need
to solve them by means of LMI in the MATLAB toolbox, and we still found a feasible
solution. Thus, for any θ 6 θ∗, the exponential state estimation problem can be solved.
In the existing literature, there were only a very few works based on the exponential state
estimation problem for competitive neural network. Therefore, the main contribution of
this paper is to deal with the exponential state estimation problem for competitive neural
network under a sampled-data controller with stochastically varying sampling periods and
control packet loss. Thus, the theoretical results proposed enrich the study on exponential
state estimation problem.

Remark 5. It can be viewed from (49) that the exponential decay rate γ of the error
system (5) depends on θ and τα, it is easy to see that a smaller τα and a larger θ lead to
a smaller exponential decay rate γ. Thus, it means that the loss of more control packet
and frequent switching between the cases of packet and nonpacket-missing will degrade
the exponential stability of system (5).

Remark 6. It is worth pointing out that, from (33), the upper bound of the control packet
loss rate θ∗ not only depends on the convergence rate γ1 but also on the divergence rate
γ2. On the other hand, the lower bound of average dwell-time τ∗α not only depends on the
packet loss rate θ but also on the convergence rate γ1 and the divergence rate γ2. It also
reflects the admissible switching frequency between the cases of nonpacket-missing and
packet-missing.

4 Numerical simulations

In this section, a numerical example with simulation results is given to show the effec-
tiveness of the proposed method.
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Example 1. Consider a competitive neural network (1) and the measurement equation (2),
the parameters are given as ε1 = 1.1, ε2 = 1.2, ε3 = 1.3, ε4 = 1.4, γ1 = 0.54,
γ2 = −1.50, υ1 = 1, υ2 = 1.1, h1 = 0.2, h2 = 0.3, ρ = 0.6, τ = 0.016, and

A =

(
0.3 0
0 −0.2

)
, B =

(
2.55 −0.1
−0.16 3.5

)
, B̄ =

(
−2.1 −0.52
−0.3 −2

)
,

D =

(
1.2 −0.1
0.2 0.3

)
, C =

(
1.28 0

0 2

)
, M =

(
2 −0.16
−0.1 1.5

)
.

The nonlinear function f(x) = tanh(x), τ(t) = 0.2(1 + sin(t)), µ = 0.2, τ̄ = 0.4. Let
W = UW̄ , from the parameters above, according to solve the LMI conditions (16) and
(32), the following feasible solution can be obtained:

U =


0.0377 0.0013 0 0
0.0013 0.0359 0 0

0 0 0.2009 0.0076
0 0 0.0076 0.1690

 ,

W =


0.0736 0.0011 0 0
0.0011 0.0792 0 0

0 0 0.2042 0.0424
0 0 0.0424 0.1081

 ,

W̄ = U−1W =


1.9531 −0.0455 0 0
−0.0389 2.2072 0 0

0 0 1.0088 0.1874
0 0 0.2058 0.6312

 .

We take E = G = I , the gain matrix can be obtained:

K =

(
1.9531 −0.0455
−0.0389 2.2072

)
, K̄ =

1.0088 0.1874
0.2058 0.6312

.

In this simulation, let h1 = 0.2, h2 = 0.3, γ1 = 0.54, γ2 = −1.5, υ1 = 1, υ2 = 1.1,
the average dwell time τα = 0.36, and the control packet loss rate as θ = 0.15. From these
values one has τα > τ∗α = 0.2037, θ < θ∗ = 0.2647 and the exponential convergence
rate γ = 0.1149. In addition, we take h1 = 0.2, γ2 = −1.5, υ1 = 1, υ2 = 1.1, for
a different sampling interval h2, Table 1 lists the admissible convergence rate γ1, the
upper bound θ∗ of control packet missing rate, the lower bound τ∗α of average dwell time,
and the convergence rate γ. It can be seen from Table 1 that the sampling interval h2 has
an important influence on the above-mentioned parameters. When the sampling interval
h2 becomes larger, it will reduce the control cost, but the convergence rate of system (5)
will also slow down. Furthermore, for a fixed control packet missing rate θ < θ∗, a larger
sampling interval h2 corresponds to a larger τ∗α. At the same time, if the average dwell
time τα > τ∗α is fixed, the convergence rate of system (5) is faster when the sampling
interval h2 becomes smaller. Therefore, there exists a tradeoff between convergence speed
and control cost.
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Table 1. γ1, θ∗, τ∗α and γ for different values of h2.

h2 0.25 0.3 0.35 0.4

γ1 0.58 0.54 0.51 0.48
θ∗ 0.2788 0.2647 0.2537 0.2424
τ∗α (θ = 0.15) 0.1778 0.2037 0.2286 0.2604
γ (θ = 0.15, τα = 0.36) 0.1356 0.1016 0.0761 0.0506
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Figure 1. The true state x(t) and its estimated
state x̂(t).
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Figure 2. The true state S(t) and its estimated
state Ŝ(t).
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Figure 3. The error of true state x(t) and its
estimated state x̂(t).
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Figure 4. The error of true state S(t) and its
estimated state Ŝ(t).

For the networks (1) and (3), the true state trajectories x(t), S(t) and its estimated
state trajectories x̂(t), Ŝ(t) are described in Figs. 1, 2. Figures 3, 4 display the error of
true state x(t), S(t) and its estimated state x̂(t), Ŝ(t). The sampling intervals are provided
in Fig. 5, and each stem shows the sampling time tk, k = 0, 1, 2, 3 . . . . The value of each
stem represents the length of the time period tk+1− tk. Finally, the switching signal σ(t)
is shown in Fig. 6.
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Figure 5. Sampling intervals.
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Figure 6. Switching signal σ(t).

Remark 7. Compared with the reference [21], we have a larger sampling interval, which
saves control costs. From Table 1 it can be seen that the sampling interval h2 has signif-
icant effects on the above-mentioned parameters, with the increase of sampling interval
h2, which means the reduction in control cost, system (5) has slower convergence speed.
Furthermore, for a fixed control packet missing rate θ < θ∗, a larger sampling interval h2

corresponds to a larger τ∗α. At the same time, when the average dwell time τα > τ∗α is
fixed, a smaller sampling interval h2, speeds up the convergence of system (5). Therefore,
there exists a tradeoff between convergence speed and control cost.

5 Conclusion

In this paper, the exponential state estimation problem has been studied for competitive
neural networks via stochastic sampled-data control with packet losses. First, transmittal
delays between neurons are considered to reflect more realistic dynamical behaviors of
competitive neural networks. Second, a sampled-data controller involving two sampling
periods is designed to ensure that the error system can achieve exponential stability and
the corresponding stability conditions are obtained in terms of LMIs. Third, by utilizing
an input delay approach, the probabilistic sampling state estimator is transformed into
a continuous time-delay system with stochastic delays and a piecewise constant func-
tion is used to specify deterministic packet losses. Then, by constructing an appropriate
Lyapunov function and using some basic inequality techniques, the exponential stability
problem can be solved with some appropriate feedback gains and sampling intervals.
Finally, the rightness of the proposed criteria is demonstrated by a numerical example.
It is possible to extend the study by using the stochastic sampled-data with actuator
saturation approach in the future.
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