
https://doi.org/10.15388/namc.2020.25.18135
Nonlinear Analysis: Modelling and Control, Vol. 25, No. 4, 658–674

eISSN: 2335-8963
ISSN: 1392-5113

Controllability of conformable differential systems∗

Xiaowen Wanga, JinRong Wanga,b, Michal Fečkanc,d
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Abstract. This paper deals with complete controllability of systems governed by linear and
semilinear conformable differential equations. By establishing conformable Gram criterion and rank
criterion, we give sufficient and necessary conditions to examine that a linear conformable system
is null completely controllable. Further, we apply Krasnoselskii’s fixed point theorem to derive
a completely controllability result for a semilinear conformable system. Finally, three numerical
examples are given to illustrate our theoretical results.
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1 Introduction

Conformable calculus and equations has a rapid development in basic theory and appli-
cation in many fields. For example, Khan and Khan [9] concerned the open problem
in Abdeljawad [1] and introduced the generalized conformable operators, which are the
generalizations of Katugampola, Riemann–Liouville, and Hadamard fractional operators.
Bendouma and Hammoudi [3] established the conformable dynamic equations on time
scales with nonlinear functional boundary value conditions and obtained the existence
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of solutions. Bohner and Hatipoǧlu [4] used conformable derivatives to establish the-
new dynamic cobweb models and obtained the general solutions and stability criteria.
Abdeljawad et al. [2] proposed conformable quadratic and cubic logistic models and
obtained existence theorems and stability of solutions. Jaiswal and Bahuguna [7] proposed
conformable abstract Cauchy problems via semigroup theory, introduced the concept of
mild and strong solution, and obtained existence and uniqueness theorem. Bouaouid et
al. [5] investigated nonlocal problems for second-order evolution differential equation in
the frame of sequential conformable derivatives and presented Duhamel’s formula and
existence, stability, and regularity of mild solutions. Martínez et al. [11] applied this new
conformable derivative to analyze RC, LC, and RLC electric circuits described by linear
differential equations with noninteger power variable coefficients derivative. However,
there are quite a few papers on controllability of systems governed by conformable dif-
ferential equations.

In this paper, we study controllability of linear and semilinear conformable control
systems governed by

D0
αx(t) = Mx(t) +Qu1(t), t ∈ J := [0, t1], t1 > 0, x(0) = x0, (1)

D0
αx(t) = Mx(t) + f

(
t, x(t)

)
+Qu(t), t ∈ J, x(0) = x0, (2)

where D0
α (0 < α < 1) denotes the conformable derivative with lower index zero (see

Definition 1), M ∈ Rn×n and Q ∈ Rn×r, f : J × Rn → Rn. The state x(·) take values
from Rn, the control functions u1(·) and u(·) belong to L2(J,Rr).

The main contributions are stated as follows: (i) We establish conformable Gram
criterion and rank criterion to give the necessary and sufficient conditions to guarantee
(1) is null completely controllable. The corresponding control function is also presented.
(ii) We construct a suitable control function and apply Krasnoselskii’s fixed point to derive
complete controllability of (2).

2 Preliminaries and notation

Let Rn be the n-dimensional Euclid space with the vector norm ‖·‖ and Rn×n be the n×n
matrix space with real value elements. Denote by C(J,Rn) the Banach space of vector-
value continuous functions from J → Rn endowed with the norm ‖x‖C = supt∈J ‖x(t)‖
for a norm ‖·‖ on Rn. Let X , Y be two Banach spaces, Lb(X,Y ) denotes the space of
all bounded linear operators from X to Y , and Lp(J, Y ) denotes the Banach space of all
the Bochner-integrable functions endowed with ‖·‖Lp(J,Y ) for some 1 < p < ∞. For
M : Rn → Rn, we consider its matrix norm ‖M‖ = sup‖x‖=1 ‖Mx‖ generated by ‖·‖.
0 denotes the n-dimensional zero vector.

Definition 1. (See [8, Def. 2.1].) The conformable derivative with lower index a of
a function x : [a,∞)→ R is defined as

Da
βx(t) = lim

ε→0

x(t+ ε(t− a)1−β)− x(t)

ε
, t > a, 0 < β 6 1,

Da
βx(a) = lim

t→a+
Da
βx(t).
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Remark 1. If Da
βx(t0) exists and is finite, we consider that x is β-differentiable at t0. If

x : [a,∞) → R is a once continuous differential function, then Da
βx(t) = (t− a)1−β ×

x′(t).

Definition 2. (See [10, Thm. 3.3].) A solution x ∈ C(J,Rn) of system (1) has the
following form:

x(t) = eMtα/αx0 +

t∫
0

eM(tα−τα)/αQu1(τ) d
τα

α
. (3)

Obviously, a solution x ∈ C(J,Rn) of system (2) has the following form:

x(t) = eMtα/αx0 +

t∫
0

eM(tα/α−τα/α)(f(τ, x(τ)
)

+Qu(τ)
)

d
τα

α
. (4)

Definition 3. System (1) is called null completely controllable on J if for an arbitrary
initial vector function x0, the terminal state vector 0 ∈ Rn, and terminal time t1, there
exists a control u1 ∈ L2(J,Rr) such that the state x ∈ C(J,Rn) of system (1) satisfies
x(t1) = 0.

Definition 4. System (2) is called completely controllable if for an arbitrary initial vector
function x0, for the terminal state of vector x1 ∈ Rn and time t1, there exists a control
u ∈ L2(J,Rr) such that the state x ∈ C(J,Rn) of system satisfies x(t1) = x1.

Lemma 1 [Krasnoselskii’s fixed point theorem]. Let B be a bounded closed and convex
subset of Banach space X , and let F1, F2 be maps of B into X such that F1x+ F2y ∈ B
for every pair x, y ∈ B. If F1 is a contraction and F2 is compact and continuous, then
the equation F1x+ F2x = x has a solution on B.

3 Controllability results

3.1 Linear systems

In this section, we are going to investigate the null completely controllable of system (1).
We introduce a notation of a conformable Gram matrix as follows:

Wc[0, t1] :=

t1∫
0

e−Mτα/αQQ>eM(tα1−τ
α)/α d

τα

α
, (5)

where the> denotes the transpose of the matrix. Then we will give the first controllability
result.

Theorem 1. System (1) is null completely controllable if and only if Wc[0, t1] defined
in (5) is nonsingular.
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Proof. Sufficiency. Owing to Wc[0, t1] is nonsingular, its inverse W−1c [0, t1] is well
defined. For any nonzero state x in the state space, the corresponding control input u1(τ)
can be constructed as:

u1(τ) = −Q>e−M
>τα/αW−1c [0, t1]x0, τ ∈ [0, t1]. (6)

According to (3), for all x0 ∈ Rn, one can get

x(t1) = eMtα1/αx0 +

t1∫
0

eM(tα1−τ
α)/αQu1(τ) d

τα

α

= eMtα1/αx0 +

t1∫
0

eM(tα1−τ
α)/αQ

(
−Q>e−M

>τα/αW−1c [0, t1]x0
)

d
τα

α

= eMtα1/αx0 − eMtα1/α

t1∫
0

e−Mτα/αQQ>e−M
>τα/αW−1c [0, t1]x0 d

τα

α

= eMtα1/αx0 − eMtα1/αWc[0, t1]W−1c [0, t1]x0

= eMtα1/αx0 − eMtα1/αx0 = 0.

Necessity. Assume Wc[0, t1] is singular. There exists at least one nonzero state
x̄0 ∈ Rn such that x̄>0 Wc[0, t1]x̄0 = 0.

Consequently, we can get

0 = x̄>0 Wc[0, t1]x̄0 =

t1∫
0

x̄>0 e−Mτα/αQQ>e−M
>τα/αx̄0 d

τα

α

=

t1∫
0

[
Q>e−M

>τα/αx̄0
]>[

Q>e−M
>τα/αx̄0

]
d
τα

α

=

t1∫
0

∥∥Q>e−M
>τα/αx̄0

∥∥2 d
τα

α
,

which implies that

Q>e−M
>τα/αx̄0 = 0 ∀τ ∈ [0, t1]. (7)

Owing to system (1) is relatively controllable, according to Definition 3, there exists
a control u(τ) that drives the initial state to zero at t1, that is,

x(t1) = eMtα1/αx̄0 +

t1∫
0

eMtα1/αe−Mτα/αQu1(τ) d
τα

α
= 0. (8)
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According to (8), we can have

x̄0 = −
t1∫
0

e−Mτα/αQu1(τ) d
τα

α
.

Then we get

‖x̄0‖2 = x̄>0 x̄0 =

[
−

t1∫
0

e−Mτα/αQu1(τ) d
τα

α

]>
x̄0

= −
t1∫
0

u>1 (τ)
[
Q>e−M

>τα/αx̄0
]

d
τα

α
. (9)

By (7) and (9), one can get ‖x̄0‖2 = 0, that is

x̄0 = 0, (10)

which contradicts the conditions of the x̄0 6= 0. Thus, Wc[0, t1] is nonsingular. The proof
is complete.

Now, we introduce a notation of a rank criterion as follows:

Γc =
[
Q MQ . . . Mn−1Q

]
. (11)

Then we are ready to give the second controllability result.

Theorem 2. The necessary and sufficient condition for null complete controllability
of (1) is rankΓc = n.

Proof. Sufficiency. Assuming that system (1) is not controllable. By Theorem 1,Wc[0, t1]
is nonsingular. Namely, there exists at least one nonzero state vector β such that

0 = β>Wc[0, t1]β =

t1∫
0

β>e−Mτα/αQQ>e−Mτα/αβ d
τα

α

=

t1∫
0

[
β>e−Mτα/αQ

][
β>e−Mτα/α

]>
d
τα

α
,

which implies that

β>e−Mτα/αQ = 0 ∀τ ∈ [0, t1]. (12)

For (12), find the derivative of z = τα/α to n− 1 times and then take τ = 0. We have

β>Q = 0, β>MQ = 0, . . . , β>Mn−1Q = 0,
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that is,
β>
[
Q MQ . . . Mn−1Q

]
= 0. (13)

According to β 6= 0, we can know Γc < n, which contradicts to our assumption. So
system (1) is controllable.

Necessity. Assume rankΓc < n. Namely, there exists at least one nonzero state β
in Rn such that

β>Γc = β>
[
Q MQ . . . Mn−1Q

]
= 0. (14)

From (14) we obtain

β>M iQ = 0, i = 0, 1, . . . , n− 1. (15)

According to Cayley–Hmilton theorem, Mn, Mn+1 can be expressed as a linear
combination of I , M , . . . , Mn−1. Then the upper form can be expanded to

β>M iQ = 0, i = 0, 1, . . . .

For all t > 0, one can obtain

±β>
M i( τ

α

α )i

i!
Q = 0 ∀τ ∈ [0, t1], i = 0, 1, . . . ,

or

0 = β>
[
I −M

(
τα

α

)
+

1

2!
M2

(
τα

α

)2

− 1

3!
M3

(
τα

α

)3

+ · · ·
]
Q

= β>e−Mτα/αQ ∀τ ∈ [0, t1].

That is,

0 = β>
t1∫
0

e−Mτα/αQQ>e−M
>τα/α d

τα

α
β = β>Wc[0, t1]β. (16)

From (16) we can know Wc[0, t1] is singular, namely, the system is not controllable,
which is contradictory to what is known. Thus, rankΓc = n. The proof is complete.

3.2 Semilinear systems

We introduce the following assumptions:

(A1) The operator W : L2(J,Rr) −→ Rn defined by

Wu =

t1∫
0

eM(tα1/α−τ
α/α)Qu(τ) d

τα

α

has an inverse operator W−1, which takes values in L2(J,Rr) \ kerW .

Then we set
H =

∥∥W−1∥∥
Lb(Rn,L2(J,Rr)\kerW )

.
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Remark 2. Obviously, W must be surjective to satisfy (A1). We recommend the reader
to see the demonstrated examples in [6,12]. On the other side, if W is surjective, then we
can define an inverseW−1 : Rn → L2(J,Rr)\kerW . We present its natural construction
as follows. Let (·, ·) denote the Euclid scalar product in Rn. Since L2(J,Rr) is a Hilbert
space, we can use kerW = imW ∗⊥. We need to find W ∗. Let W̃ (τ) = eM(tα1−τ

α)/αQ,
and for any w ∈ Rn and u ∈ L2(J,Rr), we derive

(Wu,w) =

( t1∫
0

W̃ (τ)u(τ) d
τα

α
, w

)
=

t1∫
0

(
u(τ), W̃ (τ)>w

)
d
τα

α
,

which gives W ∗w = W̃ (τ)>w. Thus kerW ∗ = {0} if and only if

t1∫
0

∥∥W̃ (τ)>w
∥∥2 d

τα

α
6= 0

for any 0 6= w ∈ Rn. But

t1∫
0

∥∥W̃ (τ)>w
∥∥2 d

τα

α
=

t1∫
0

(
W̃ (τ)>w, W̃ (τ)>w

)
d
τα

α

=

t1∫
0

(
W̃ (τ)W̃ (τ)>w,w

)
d
τα

α
=
(
Wc[0, t1]w,w

)
. (17)

So the surjectivity of W is equivalent to the regularity of Wc[0, t1], and we assume
this. To solve Wu = v, u ∈ kerW⊥ = imW ∗, we take u(t) = W (t)>w and then solve

v = W
(
W̃ (·)>w

)
=

t1∫
0

W̃ (τ)W̃ (τ)>w d
τα

α
= Wc[0, t1]w,

which gives w = Wc[0, t1]−1v, and this implies

u(t) = W−1w = W̃ (t)>Wc[0, t1]−1v.

In addition, by (17), we derive

t1∫
0

∥∥u(τ)
∥∥2 d

τα

α
=

t1∫
0

∥∥W̃ (τ)>Wc[0, t1]−1v
∥∥2 d

τα

α

=

t1∫
0

(
W̃ (τ)>Wc[0, t1]−1v, W̃ (τ)>Wc[0, t1]−1v

)
d
τα

α

http://www.journals.vu.lt/nonlinear-analysis
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=

t1∫
0

((
Wc[0, t1]−1

)>
W̃ (τ)W̃ (τ)>Wc[0, t1]−1v, v

)
d
τα

α

=

((
Wc[0, t1]−1

)> t1∫
0

W̃ (τ)W̃ (τ)> d
τα

α
Wc[0, t1]−1v, v

)

=
((
Wc[0, t1]−1

)>
v, v

)
=
(
w, Wc[0, t1]−1v

)
,

which gives
H =

∥∥Wc[0, t1]−1
∥∥1/2. (18)

We note that (17) also implies

‖W‖ = ‖W ∗‖ =
∥∥Wc[0, t1]

∥∥1/2.
(A2) The function f : J×Rn→Rn is continuous, and there existsLf (·)∈Lqα(J,R+),

q > 1, i.e.,
∫ t
0
Lqf (τ) d(τα/α) <∞, such that∥∥f(t, x1)− f(t, x2)

∥∥ 6 Lf (t)‖x1 − x2‖, xi ∈ Rn, t ∈ J, i = 1, 2.

In viewing of (A1), for arbitrary x(·) ∈ C(J,Rn), consider a control function ux(t)
given by

ux(t) = W−1

[
x1 − eMtα1/αx0 −

t1∫
0

eM(tα1/α−τ
α/α)f

(
τ, x(τ)

)
d
τα

α

]
(t), t ∈ J. (19)

Next, we state our main idea to prove our main result via fixed point method. We
firstly show that, using control (19), the operator P : C(J,Rn)→ C(J,Rn) defined by

(Px)(t) = eMtα/αx0 +

t∫
0

eM(tα/α−τα/α)f
(
τ, x(τ)

)
d
τα

α

+

t∫
0

eM(tα/α−τα/α)Qux(τ) d
τα

α
, t ∈ J,

has a fixed point x, which is just a solution of system (2). Then we check (Px)(t1) = x1
and (Px)(0) = x0, which means that ux steers system (2) from x0 to x1 in finite time t1.
This implies system (2) is relatively controllable on J .

For each positive number r, we define Br = {x ∈ C(J,Rn): ‖x‖C 6 r}, which is
obviously a bound, closed and convex set of C(J,Rn). For the sake of brevity, we set
Rf = supt∈J ‖f(t, 0)‖ and N = ‖M‖.

In the following, we apply Krasnoselskii’s fixed point theorem to derive the relative
controllability result for system (2).
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Theorem 3. Assumptions (A1) and (A2) are satisfied. Then system (2) is completely
controllable provided that

H2

[
1 +

H

(2N)1/2
(
e2Nt

α
1/α − 1

)1/2‖Q‖] < 1, (20)

where H2 = [(eNpt
α
1/α − 1)/(Np)]1/p‖Lf‖Lqα(J,R+), 1/p+ 1/q = 1, p, q > 1.

Proof. To examine the conditions for Lemma 1, we divide our proof into several steps.

Step 1. We attest that there exists a positive number r such that P(Br) ⊆ Br. Note
t∫

0

eN(tα/α−τα/α)Lf (τ) d
τα

α

6

( t∫
0

eNp(t
α/α−τα/α) d

τα

α

)1/p( t∫
0

Lqf (τ) d
τα

α

)1/q

6

[
1

Np

(
eNpt

α/α − 1
)]1/p

‖Lf‖Lqα(J,R+), t ∈ J,

and
t∫

0

eN(tα/α−τα/α)∥∥f(τ, 0)
∥∥d

τα

α

6 Rf

t∫
0

eN(tα/α−τα/α) d
τα

α
6
Rf
N

(
eNt

α/α − 1
)
, t ∈ J.

In consideration of (19), using (A1), (A2), and ‖eAt‖ 6 e‖A‖t, t ∈ R, we have

‖ux‖L2(J,Rr)\kerW

= inf
ux∈[ux]

‖ux‖L2(J,Rr)

6
∥∥W−1∥∥

Lb(Rn,L2(J,Rr)\kerW )

×

∥∥∥∥∥x1 − eMtα1/αx0 −
t1∫
0

eM(tα1/α−τ
α/α)f

(
τ, x(τ)

)
d
τα

α

∥∥∥∥∥
6 H‖x1‖+HeNt

α
1/α‖x0‖

+H

t1∫
0

eN(tα1/α−τ
α/α)

∥∥f(τ, x(τ)
)
− f(τ, 0) + f(τ, 0)

∥∥d
τα

α

6 H‖x1‖+HeNt
α
1/α‖x0‖+H

t1∫
0

eN(tα1/α−τ
α/α)Lf (τ)

∥∥x(τ)
∥∥d

τα

α

http://www.journals.vu.lt/nonlinear-analysis
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+H

t1∫
0

eN(tα1/α−τ
α/α)

∥∥f(τ, 0)
∥∥d

τα

α

6 H‖x1‖+HeNt
α
1/α‖x0‖+H

[
1

Np

(
eNpt

α
1/α − 1

)]1/p
‖Lf‖Lqα‖x‖C

+
HRf
N

(
eNt

α
1/α − 1

)
6 H‖x1‖+Ha+HH2r,

where a = eNt
α
1/α‖x0‖+ (Rf/N)(eNt

α
1/α − 1), and H2 is defined in the above.

According to (A1) and (A2), we have

∥∥P (x)(t)
∥∥ 6 eNt

α/α‖x0‖+

t∫
0

eN(tα/α−τα/α)∥∥f(τ, x(τ)
)∥∥d

τα

α

+

t∫
0

eN(tα/α−τα/α)‖Q‖
∥∥ux(τ)

∥∥d
τα

α

6 eNt
α/α‖x0‖+

t∫
0

eN(tα/α−τα/α)Lf (τ)
∥∥x(τ)

∥∥d
τα

α

+

t∫
0

eN(tα/α−τα/α)∥∥f(τ, 0)
∥∥d

τα

α

+

[ t∫
0

e2N(tα/α−τα/α)

]1/2
‖ux‖L2(J,Rr)‖Q‖

6 eNt
α/α‖x0‖+

[
1

Np

(
eNpt

α/α− 1
)]1/p

‖Lf‖Lqα‖x‖C +
Rf
N

(
eNt

α/α− 1
)

+

[
1

2N

(
e2Nt

α/α − 1)

]1/2
‖Q‖

[
H‖x1‖+Ha+HH2r

]
6 a

[
1 +

[
H

(2N)1/2
(
e2Nt

α
1/α − 1

)]1/2
‖Q‖

]
+

H

(2N)1/2
(
e2Nt

α
1/α − 1

)1/2‖Q‖‖x1‖
+H2

[
1 +

H

(2N)1/2
(
e2Nt

α
1/α − 1

)1/2‖Q‖]r
= r
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for

r =
a[1 + H

(2N)1/2
(e2Nt

α
1/α − 1)]1/2‖Q‖+ H

(2N)1/2
(e2Nt

α
1/α − 1)1/2‖Q‖‖x1‖

1−H2[1 + H
(2N)1/2

(e2Nt
α
1/α − 1)1/2‖Q‖]

.

Therefore, we obtain P(Br) ⊆ Br for such an r.
Next, we split P into two operators P1 and P2 on Br as, respectively,

(P1x)(t) = eMtα/αx0 +

t∫
0

eM(tα/α−τα/α)Qux(τ) d
τα

α
, t ∈ J,

(P2x)(t) =

t∫
0

eM(tα/α−τα/α)f
(
τ, x(τ)

)
d
τα

α
, t ∈ J.

Step 2. We prove that P1 is a contraction mapping.
Let x, y ∈ Br. In light of (A1) and (A2), for each t ∈ J , we obtain

‖ux − uy‖L2(J,Rr)\kerW

=

∥∥∥∥∥W−1
[ t1∫

0

eM(tα1/α−τ
α/α)

(
f
(
τ, x(τ)

)
− f

(
τ, y(τ)

))]∥∥∥∥∥
6
∥∥W−1∥∥

L(Rn,L2(J,Rr)\kerW )

×

∥∥∥∥∥
t1∫
0

eM(tα1/α−τ
α/α)

(
f
(
τ, x(τ)

)
− f

(
τ, y(τ))

)∥∥∥∥∥
Rn

6 H

t1∫
0

eN(tα1/α−τ
α/α)Lf (τ)

∥∥x(τ)− y(τ)
∥∥d

τα

α

6 H

[
1

Np

(
eNpt

α
1/α − 1

)]1/p
‖Lf‖Lqα‖x− y‖C 6 HH2‖x− y‖C .

From the above fact we get∥∥(P1x)(t)− (P1y)(t)
∥∥

6

t∫
0

eN(tα/α−τα/α)‖Q‖
∥∥ux(τ)− uy(τ)

∥∥d
τα

α

6 ‖Q‖

[ t∫
0

e2N(tα/α−τα/α) d
τα

α

]1/2
‖ux − uy‖L2

6 ‖Q‖
[

1

2N

(
e2Nt

α
1/α − 1

)]1/2
HH2‖x− y‖C ,
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which gives that

‖P1x− P1y‖C 6 L‖x− y‖C , L := ‖Q‖ HH2

(2N)1/2
(
e2Nt

α
1/α − 1

)1/2
.

According to (20), we conclude that L < 1, which implies P1 is a contraction.

Step 3. We show that P2 is a compact and continuous operator.
Let xn ∈ Br with xn → x in Br. Denote Fn(·) = f(·, xn(·)) and F (·) = f(·, x(·)).

Using (A2), we have Fn → F in C(J,Rn) and thus

∥∥(P2xn)t− (P2x)(t)
∥∥ 6

t∫
0

eN(tα/α−τα/α)∥∥Fn(τ)− F (τ)
∥∥d

τα

α

6
1

N

(
eNt

α
1/α − 1

)
‖Fn − F‖C → 0 as n→∞

uniformly for t ∈ J , which implies that P2 is continuous on Br.
In order to check the compactness of P2, we prove that P2(Br) ⊂ C(J,Rn) is

equicontinuous and bounded.
In fact, for any x ∈ Br, t1 > t+ h > t > 0, it holds

(P2x)(t+ h)− (P2x)(t)

=

t+h∫
0

eM(t+h)α/α−τα/α)F (τ) d
τα

α
−

t∫
0

eM(tα/α−τα/α)F (τ) d
τα

α

= I1 + I2,

where

I1 =

t+h∫
t

eM((t+h)α/α−τα/α)F (τ) d
τα

α
,

I2 =

t∫
0

[
eM((t+h)α/α−τα/α) − eM(tα/α−τα/α)]F (τ) d

τα

α
.

Combining the previous derivations, we have∥∥(P2x)(t+ h)− (P2x)(t)
∥∥ 6 ‖I1‖+ ‖I2‖.

Then we check ‖Ii‖ → 0 as h→ 0, i = 1, 2, uniformly for t.
For I1, using (A2),

‖I1‖ 6
t+h∫
t

eN((t+h)α/α−τα/α)∥∥F (τ)
∥∥d

τα

α

6

t+h∫
t

eN((t+h)α/α−τα/α)Lf (τ)
∥∥x(τ)

∥∥d
τα

α
+

t+h∫
t

eN((t+h)α/α−τα/α)∥∥f(τ, 0)
∥∥d

τα

α
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6 ‖x‖C

t+h∫
t

eN((t+h)α/α−τα/α)Lf (τ) d
τα

α
+Rf

t+h∫
t

eN((t+h)α/α−τα/α) d
τα

α

6

[
1

Np

(
epN((t+h)α/α−tα/α) − 1

)]1/p
‖Lf‖Lqαr

+
Rf
N

(
eN((t+h)α/α−tα/α) − 1

)
→ 0 as h→ 0.

For I2, it is easy to get that

‖I2‖ 6
t∫

0

∥∥eM((t+h)α/α−τα/α) − eM(tα/α−τα/α)∥∥∥∥F (τ)
∥∥d

τα

α

6

t∫
0

eNτ
α/α
∥∥eM(t+h)α/α − eMtα/α

∥∥(Lf (τ)‖x‖C +
∥∥f(τ, 0)

∥∥) d
τα

α

6

t∫
0

eNτ
α/α
∥∥eM(t+h)α/α − eMtα/α

∥∥(Lf (τ)r +Rf
)

d
τα

α

6
∥∥eM(t+h)α/α − eMtα/α

∥∥[r t∫
0

eNτ
α/αLf (τ) d

τα

α
+Rf

t∫
0

eNτ
α/αe

τα

α

]
6
∥∥eM(t+h)α/α − eMtα/α

∥∥
×
[

1

(Np)1/p
(
eNpt

α
1/α − 1

)1/p‖Lf‖Lqαr +
Rf
N

(
eNt

α
1/α − 1

)]
→ 0 as h→ 0.

From above we obtain∥∥(P2x)(t+ h)− (P2x)(t)
∥∥→ 0 as h→ 0,

uniformly for all t and x ∈ Br. Thus, P2(Br) ⊂ C(J,Rn) is equicontinuous.
According to the above computations, one can get

∥∥(P2x)(t)
∥∥ 6

t∫
0

eN(tα/α−τα/α)(Lf (τ)r +Rf ) d
τα

α

6
1

(Np)1/p
(
eNpt

α
1/α − 1

)1/p‖Lf‖Lqαr +
Rf
N

(
eNt

α
1/α − 1

)
.

Thus P2(Br) is bounded. By Arzela–Ascoli theorem, P2(Br) ⊂ C(J,Rn) is relatively
compact.

Hence, P2 is a compact and operator. Then Krasnoselskii’s fixed point theorem gives
that P has a fixed point x on Br. Apparently, x is a solution of system (2) satisfying
x(t1) = x1. The proof is completed.
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4 Numerical examples

Example 1. Let n = r = 2. Consider the following linear control system:

D0
αx(t) = Mx(t) +Qu1(t), t ∈ J1 := [0, 1], x(0) = x0, (21)

where

M =

(
2 0
0 3

)
, Q =

(
0.6 0
0 0.6

)
, x0 =

(
0.5
0.5

)
, (22)

and α = 0.9.
By elementary calculation, the conformable Gram matrix of system (21) with (22)

via (5) can be written into:

Wc[0, 1] =

1∫
0

e−Mτα/αQQ>e−M
>τα/α d

τα

α

=

1∫
0

(
e−2τ

α/α 1
1 e−3τ

α/α

)(
0.36 0

0 0.36

)(
e−2τ

α/α 1
1 e−3τ

α/α

)
d
τα

α

=

(
0.489 0.276
0.276 0.460

)
.

Then we can get

W−1c [0, 1] =

(
3.095 −1.859
−1.859 3.291

)
.

Obviously, Wc[0, 1] is nonsingular.
Therefore, according to (6), we obtain

u1(·) = −Q>e−M
>(·α/α)W−1c [0, 1]x0

=

(
−0.6 0

0 −0.6

)(
e−2(·

α/α) 1
1 e−3(·

α/α)

)(
3.095 −1.859
−1.859 3.291

)(
0.5
0.5

)
=

(
−0.371e−2(·

α/α) − 0.430
−0.430e−3(·

α/α) − 0.380

)
.

Finally, by Theorem 1, system (21) with (22) is null completely controllable on [0, 1].

Example 2. Let n = 3 and r = 2. Consider the following linear control system:

D0
αx(t) = Mx(t) +Qu1(t), t ∈ J1 := [0, 1], (23)

where

M =

2 3 1
0 6 7
2 4 1

 , Q =

0 1
2 0
1 2

 , (24)

and α = 0.9.
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By elementary calculation, the rank criterion of system (23) with (24) can be written
into

Γc =

0 1 7 ∗ ∗ ∗
2 0 19 ∗ ∗ ∗
1 2 9 ∗ ∗ ∗

 .

From the first three columns of the above matrix it can be determined

det

0 1 7
2 0 19
1 2 9

 6= 0,

that is, rankΓc = 3 = n. From Theorem 2, system (23) with (24) is null completely
controllable on [0, 1].

Example 3. Let n = r = 2. Consider the following semilinear controlled system:

D0
αx(t) = Mx(t) + f

(
t, x(t)

)
+Qu(t), x(t) ∈ R2, t ∈ [0, 1] := J1, (25)

u ∈ L2(J1,R2), where

M =

(
0.2 0
0 0.2

)
, Q =

(
2 0
0 2

)
, M> =

(
0.2 0
0 0.2

)
, (26)

and

f
(
t, x(t)

)
=

(
1
5 (t+ 0.1)x1(t)
1
5 (t+ 0.1)x2(t)

)
, α = 0.5. (27)

By elementary calculation, we have N = ‖M‖ = 0.2. Now we use (18) to esti-
mate H . For this purpose, we need to obtain Wc[0, 1] and then derive Wc[0, 1]−1. By
computation, the Gram matrix (5) can be written into

Wc[0, 1] =

1∫
0

e−Mτα/αQQ>e−M
>τα/α d

τα

α

=

1∫
0

(
e−0.2τ

α/α 1
1 e−0.2τ

α/α

)(
4 0
0 4

)(
e−0.2τ

α/α 1
1 e−0.2τ

α/α

)
d
τα

α

=

(
13.507 13.187
13.187 13.507

)
.

Therefore, we derive

Wc[0, 1]−1 =

(
1.584 −1.546
−1.546 1.584

)
. (28)
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Consequently, we get

H =
∥∥Wc[0, 1]−1

∥∥1/2 = 3.1301/2 = 1.769.

Hence, W satisfies assumption (A1).
Then it is easy to see that for any x(t), y(t) ∈ R2 and t ∈ J1,∥∥f(t, x)− f(t, y)

∥∥ =
1

5
(t+ 0.1)

((
x1(t)− y1(t)

)2
+
(
x2(t)− y2(t)

)2)1/2
6

1

5
(t+ 0.1)‖x− y‖.

Therefore, f satisfies assumption (A2), where we set

Lf (·) =
·+ 0.1

5
∈ Lqα

(
J1,R+

)
.

Obviously, (1/5)‖Lf‖Lqα(J1,R+) = ((1.1q+1 − 0.1q+1)/(q + 1))1/q and Rf =
supt∈J1 ‖f(t, 0)‖ = 0. Next, ‖Q‖ = 2, ‖Lf‖Lqα(J1,R+) = 0.133, and

H2 =

[
1

2N

(
e2Nt

α/α − 1
)]1/2

‖Lf‖Lqα(J1,R+) = 0.233

when we choose p = q = 2. Therefore,

γ = H2

[
1 +

H

(2N)1/2
(
e2Nt

α/α − 1
)1/2‖Q‖]

= 0.233

[
1 + 0.5

1.769

0.41/2
(
e0.8 − 1

)1/2]
= 0.864 < 1,

which guarantees that condition (20) holds.
Thus all the conditions of Theorem 3 are satisfied. Hence, system (25) with (26)

and (27) is completely controllable on [0, 1].
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