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Abstract. In this paper, optimal control problems containing ordinary nonlinear control systems
described by fractional Dirichlet and Dirichlet–Neumann Laplace operators and a nonlinear integral
performance index are studied. Using smooth-convex maximum principle, the necessary optimality
conditions for such problems are derived.
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1 Introduction

In this paper, we consider the following two optimal control problems:
{

(−∆k)βx(t) = f
(
t, x(t), u(t)

)
, t ∈ (0, π) a.e., (Ek)

u(t) ∈M ⊂ Rm, t ∈ (0, π),

J(x, u) =
π∫
0

f0

(
t, x(t), u(t)

)
dt→ min,

(OCPk)

where k = 1, 2, β > 1/4, f : (0, π)× Rn ×M → Rn and f0 : (0, π)× Rn ×M → R.
The first of them, denoted by (OCP1), contains the control system (E1) involving the
one-dimensional Dirichlet Laplace operator of order β (−∆1)β . The second one (OCP2)
includes the system (E2), which is described by the Dirichlet–Neumann Laplace operator
(−∆2)β . Operators (−∆1)β and (−∆2)β are defined through the spectral decomposi-
tion of the Laplace operator −∆ in (0, π) with zero Dirichlet and Dirichlet–Neumann
boundary conditions, respectively (cf. Section 2.2).

In the last years, fractional Laplacians are a topic of research of many scientists.
There exist many definitions of such operators (e.g. based on Fourier transform [19, 25],
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hypersingular integral [25], Riesz potential operator [24], Bochner’s definition [26], spec-
tral decomposition (cf. [6, 18])). These different definitions typically lead to different
operators (cf. [1, Sect. 2.3.]). Recent intensive investigations show that Laplacians can
be applied in various areas; for example, in economics (cf. [5, 18]), probability (cf. [5, 9,
10,17]), mechanics [8,10], material science (cf. [7]), fluid mechanics and hydrodynamics
(cf. [11, 14–16, 29–31]). Over the last years, they have been attracted interest of many
mathematicians also in the field of optimal control theory. In [12, 13], some optimal
control problems with a fractional Dirichlet–Laplace operator are investigated. The results
concerning the existence, stability, continuous dependence of solutions on controls and
existence of optimal solutions minimizing a some integral cost functional have been
obtained there. In [28], a some optimal control problem (inspired by considerations in
mathematical biology) with a general positive defined fractional operator (so-called dif-
fusion operator) is studied. To be more specific, an evolution equation of a diffusion
type with a some integral cost functional is considered. The necessary and sufficient
optimality conditions for such a problem have been derived. Results of such a type have
been also obtained in [3,4], where the linear–quadratic optimal control problems involving
fractional powers of elliptic operators are investigated. Furthermore, a numerical scheme
to solve the fractional optimal problems has been proposed there.

The aim of this paper is to derive the necessary optimality conditions for problems
(OCPk). Below, we formulate a result of such a type for the problem (OCP1) obtained in
[22] via Dubovitskii–Miljutin (D–M) approach (more details concerning (D–M) method
can be found in [22, Sect. 2.1]):

Theorem 1. Let us assume that:

(i) M ⊂ Rm is a closed convex set with nonempty interior,
(ii) f, f0 are measurable on (0, π), continuously differentiable on Rn × Rm and∣∣f(t, x, u)

∣∣, ∣∣fx(t, x, u)
∣∣, ∣∣fu(t, x, u)

∣∣ 6 a(t)γ
(
|x|
)

+ b(t)δ
(
|u|
)
;∣∣f0(t, x, u)

∣∣, ∣∣(f0)x(t, x, u)
∣∣, ∣∣(f0)u(t, x, u)

∣∣ 6 d(t)c
(
|x|, |u|

)
for (t, x, u) ∈ (0, π) × Rn × Rm, where a, b ∈ L2, d ∈ L1, γ, δ : R+

0 → R+
0 ,

c : R+
0 × R+

0 → R+
0 are continuous functions.

If (x∗, u∗) ∈ ((−∆1)β) × L∞ is a local minimum point for problem (OCP1), one of
the following conditions:

• β > 1/2 and ‖fx(·, x∗(·), u∗(·))‖L1 < π/(2ξ(2β));
• β > 1/2 and fx(t, x∗(t), u∗(t)) 6 0 for a.e. t ∈ (0, π);
• β > 1/4, fx(·, x∗(·), u∗(·)) ∈ L∞ and ‖fx(·, x∗(·), u∗(·))‖L∞ < 1;

is fulfilled and (f0)x(·, x∗(·), u∗(·)), (f0)u(·, x∗(·), u∗(·)) are not all identically zero,
then there exists a function λ ∈ D((−∆1)β) such that

(−∆1)βλ(t) = Hx

(
t, x∗(t), λ(t), u∗(t)

)
, t ∈ (0, π) a.e.,

Hu

(
t, x∗(t), λ(t), u∗(t)

)(
u− u∗(t)

)
> 0, t ∈ (0, π) a.e.,
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for any u ∈M , whereby H : (0, π)× Rn × Rn × Rm → R:

H(t, x, λ, u) = λTf(t, x, u) + f0(t, x, u).

However, there exist optimal control problems of type (OCPk) where the (D–M)
method cannot be applied. For example, if M is a finite set containing at least two
elements (such a set is often used in optimal control theory), then M does not satisfy
assumption (i) of Theorem 1 (the setM is not convex and its interior is empty). Moreover,
in view of a specific structure of the setM , the assumption that f and f0 are differentiable
with respect to u does not make sense. So, it is necessary to use an alternative method to
obtain optimality conditions. In our study, we use a smooth-convex extremum principle
(cf. [23]). In this approach, the assumption of differentiability of f , f0 with respect to
u is replaced with some “convexity assumption” (consequently, maximum conditions
obtained in both methods are different). On the other hand, in our approach, compactness
of the set M is required (cf. Lemma 4). Consequently, in contrast to the (D–M) approach,
it cannot be applied to optimal control problems where M is unbounded (in particular,
M = Rm). To sum up, from the above discussion it follows that both methods are useful
in practical applications. One can also show that if f , f0 are smooth and convex in u and
M is convex, then both methods are equivalent (more precisely, the minimum conditions
in both approaches are equivalent).

The paper is organized as follows. In Section 2, we give necessary notions and facts
concerning ordinary Dirichlet and Dirichlet–Neumann Laplace operators of fractional
order, as well as the extremum principle for a smooth-convex problem is formulated.
In Section 3, we derive the main result of this paper, namely the necessary optimality
conditions for problems (OCPk), k = 1, 2 (Theorem 3). Two illustrative examples are
presented in Section 4. We finish with Appendix A containing some basics from the
spectral theory of self-adjoint operators in a real Hilbert space.

2 Preliminaries

In the first part of this section, we formulate the so-called smooth-convex optimal control
problem and recall the extremum principle for it (cf. [23]). This tool will be used in the
proof of the main result of this paper (Theorem 3). The second part concerns fractional
ordinary Dirichlet and mixed Dirichlet–Neumann Laplace operators. The definitions of
these operators come from the Stone-von Neumann operator calculus and are based on
the spectral integral representation theorem for a self-adjoint operator in a Hilbert space
(cf. [21, 22] and Appendix A).

2.1 Smooth-convex extremum principle

LetX , Y be the Banach spaces, and U denotes an arbitrary nonempty set. Let us consider
the following problem:

f0(x, u)→ inf; (1)
F (x, u) = 0, (2)
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f1(x, u) 6 0, . . . , fn(x, u) 6 0, (3)
u ∈ U , (4)

where f0, . . . , fn : X × U → R and F : X × U → Y .
If the functions f0, . . . , fn and the mappingF satisfy certain conditions of smoothness

in x and “convexity” in u (cf. assumptions (a), (b) in Theorem 2), then the above problem
is called the smooth-convex problem.

The Lagrange function for problem (1)–(4) is given by

L(x, u, λ0, . . . , λn, y
∗) =

n∑
i=0

λifi(x, u) +
〈
y∗F (x, u)

〉
,

where λ0, . . . , λn are real numbers, and y∗ ∈ Y ∗ (Y ∗ is the dual space to Y ).
We say that a pair (x∗, u∗) ∈ X×U , satisfying constraints (2)–(4), is a local minimum

point of problem (1)–(4) if there exists a neighborhood V of x∗ such that

f0(x∗, u∗) 6 f0(x, u)

for any pair (x, u) ∈ V × U satisfying constraints (2)–(4).

Theorem 2 [Smooth-convex extremum principle]. Let the pair (x∗, u∗) satisfies con-
ditions (2)–(4), and assume that there exists a neighborhood V ⊂ X of x∗ such that

(a) for every u ∈ U , the mapping x → F (x, u) and the functions x → fi(x, u),
i = 0, . . . , n, are continuously differentiable at the point x∗;

(b) for every x ∈ V , the mapping u → F (x, u) and the functions u → fi(x, u),
i = 0, . . . , n, satisfy the following convexity condition: for every u1, u2 ∈ U and
β ∈ [0, 1], there exists an element u ∈ U such that

F (x, u) = βF (x, u1) + (1− β)F (x, u2),

fi(x, u) 6 βfi(x, u1) + (1− β)fi(x, u2), i = 0, . . . , n;

(c) the range ImFx(x∗, u∗) of the linear operator Fx(x∗, u∗) : X → Y is closed and
has a finite codimension in Y (i.e. a complementary subspace to ImFx(x∗, u∗) has
a finite dimension in Y ).

If (x∗, u∗) is a local minimum point of problem (1)–(4), then there exist the Lagrange
multipliers λ0 > 0, . . . , λn > 0, y∗ ∈ Y ∗ (not all zero) such that

Lx(x∗, u∗, λ0, . . . , λn, y
∗) =

n∑
i=0

λi(fi)x(x∗, u∗) + F ∗x (x∗, u∗)y
∗ = 0,

L(x∗, u∗, λ0, . . . , λn, y
∗) = min

u∈U
L(x∗, u, λ0, . . . , λn, y

∗),

λifi(x∗, u∗) = 0 for i = 1, . . . , n.

If, additionally,

(iv) the image of the set X × U under the mapping

(x, u)→ Fx(x∗, u∗)x+ F (x∗, u)
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contains a neighborhood of the origin of Y and if there exists a point (x, u) such
that

Fx(x∗, u∗)x+ F (x∗, u) = 0,〈
(fi)x(x∗, u∗), x

〉
+ fi(x∗, u) < 0

for all i = 1, . . . , n for which fi(x∗, u∗) = 0, then λ0 6= 0 and it can be assumed
that λ0 = 1.

2.2 One-dimensional Dirichlet and Dirichlet–Neumann Laplace operators of frac-
tional order

Let −∆ be the one-dimensional Laplace operator on the interval (0, π) given by

−∆u = −u′′. (5)

Let us define the following spaces of functions:

HD := H1
0 ∩H2 and HDN :=

{
z ∈ H2: z(0) = z′(π) = 0

}
(here H1

0 = H1
0 ((0, π),Rn) and H2 = H2((0, π),Rn) are classical Sobolev spaces).

Conditions z(0) = z(π) = 0 (hidden in the definition of HD) and z(0) = z′(π) = 0
are called Dirichlet and Dirichlet–Neumann boundary conditions, respectively. Of course,
HD and HDN are dense subspaces of L2 = L2((0, π),Rn).

By the one-dimensional Dirichlet Laplace operator−∆D : HD ⊂ L2 → L2 we mean
the operator −∆ given by (5) under Dirichlet boundary conditions. Similarly, by the one-
dimensional Dirichlet–Neumann Laplace operator −∆DN : HDN ⊂ L2 → L2 we mean
the operator −∆ under Dirichlet–Neumann boundary conditions.

In an elementary way, one can show that operators−∆D and−∆DN are self-adjoint.
Moreover, their spectra are given by

σ(−∆D) = σp(−∆D) =
{
j2, j = 1, 2, . . .

}
,

σ(−∆DN ) = σp(−∆DN ) =

{(
j − 1

2

)2

, j = 1, 2, . . .

}
,

respectively, and the eigenspaces Eigj(−∆D) (associated with the eigenvalues λj = j2),
Eigj(−∆DN ) (associated with the eigenvalues λj = (j − 1/2)2) are sets

Eigj(−∆D) =
{
c sin jt, c ∈ Rn

}
,

Eigj(−∆DN ) =

{
d sin

(
j − 1

2

)
t, d ∈ Rn

}
.

In what follows, we shall use the fact that systems of functions

ci,j =

(
0, . . . , 0,

√
2

π
sin jt︸ ︷︷ ︸
i

, 0, . . . , 0

)
, i = 1, . . . , n, j = 1, 2, . . . ,

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Necessary optimality conditions for Lagrange problems involving ordinary control systems 889

di,j =

(
0, . . . , 0,

√
2

π
sin

(
j − 1

2

)
t︸ ︷︷ ︸

i

, 0, . . . , 0

)
, i = 1, . . . , n, j = 1, 2, . . . ,

are complete orthonormal systems in L2.
Now, assume β > 0 and consider the operator

(−∆D)β : D
(
(−∆D)β

)
⊂ L2 → L2

given by (cf. Appendix A)

(−∆D)βx(t) =

( ∫
σ(−∆D)

λβE(dλ)x

)
(t) =

∞∑
j=1

j2βaj

√
2

π
sin jt

for x ∈ D((−∆D)β), where

D
(
(−∆D)β

)
=

{
x(t) =

( ∫
σ(−∆D)

1E(dλ)x

)
(t) =

∞∑
j=1

aj

√
2

π
sin jt ∈ L2;

∫
σ(−∆D)

∣∣λβ∣∣2 ∥∥E(dλ)x
∥∥2

L2 =

∞∑
j=1

j4β |aj |2 <∞

}

(hereE is the spectral measure (cf. Appendix A.2) for the operator−∆D, and aj
√

2/π×
sin jt is the projection of x on the n-dimensional eigenspace Eigj(−∆D)).

The operator (−∆D)β is called the fractional Dirichlet Laplace operator of order β,
and the function (−∆D)βx – the fractional Dirichlet Laplacian of order β of x.

Similarly, we define the fractional Dirichlet–Neumann Laplace operator of order β.
This is the operator

(−∆DN )β : D
(
(−∆DN

)β) ⊂ L2 → L2

given by

(−∆DN )βx(t) =

( ∫
σ(−∆DN )

λβF (dλ)x

)
(t) =

∞∑
j=1

(
j − 1

2

)2β

bj

√
2

π
sin

(
j − 1

2

)
t

for x ∈ D((−∆DN )β), where

D
(
(−∆DN )β

)
=

{
x(t) =

( ∫
σ(−∆DN )

1F (dλ)x

)
(t) =

∞∑
j=1

bj

√
2

π
sin

(
j − 1

2

)
t ∈ L2;

∫
σ(−∆DN )

∣∣λβ∣∣2 ∥∥F (dλ)x
∥∥2

L2 =

∞∑
j=1

(
j − 1

2

)4β

|bj |2 <∞

}

(here F is the spectral measure for the operator−∆DN , and bj
√

2/π sin(j− 1/2)t is the
projection of x on the n-dimensional eigenspace Eigj(−∆DN )).
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Remark 1. To shorten the notation, in the next sections, the fractional Dirichlet Laplace
operator of order β is denoted by (−∆1)β . Similarly, by (−∆2)β we mean the fractional
Dirichlet–Neumann Laplace operator.

We have (cf. [21, 22])

Lemma 1. D((−∆D)β) is complete with the scalar products

〈x, y〉Dβ = 〈x, y〉L2 +
〈
(−∆D)βx, (−∆D)βy

〉
L2

and
〈x, y〉D∼β =

〈
(−∆D)βx, (−∆D)βy

〉
L2 . (6)

Moreover, norms generated by these products are equivalent.

Remark 2. Completeness of the domain D((−∆D)β) follows from the fact that the
operator (−∆D)β is self-adjoint (cf. Appendix A), so it is closed. Equivalence of norms
‖·‖Dβ and ‖·‖D∼β guarantees the following Poincaré inequality on D((−∆D)β) (cf.
[21]):

‖x‖2L2 6 ‖x‖2D∼β , x ∈ D
(
(−∆D)β

)
.

Using the similar argumentation (cf. Remark 2), we also obtain

Lemma 2. D((−∆DN )β) is complete with the scalar products

〈x, y〉DNβ = 〈x, y〉L2 +
〈
(−∆DN )βx, (−∆DN )βy

〉
L2

and
〈x, y〉DN∼β =

〈
(−∆DN )βx, (−∆DN )βy

〉
L2 . (7)

Moreover, norms generated by these products are equivalent.

In particular, equivalence of norms ‖·‖DNβ and ‖·‖DN∼β is provided due to the
following Poincaré inequality on D((−∆DN )β):

‖x‖2L2 =

∞∑
j=1

b2j 6
∞∑
j=1

(2j − 1)4βb2j = 16β
∞∑
j=1

(
j − 1

2

)4β

b2j = 16β‖x‖2DN∼β

for x ∈ D((−∆DN )β).
In the proof of the main result of this paper, we shall use the following

Lemma 3. If β > 1/4, then

‖x‖L∞ 6

√
2

π
ζ(4β)‖x‖D∼β , x ∈ D

(
(−∆D)β

)
, (8)

‖x‖L∞ 6 4β
√

2

π
ζ(4β)‖x‖DN∼β , x ∈ D

(
(−∆DN )β

)
, (9)

and therefore embeddings

D
(
(−∆D)β

)
⊂ L∞, D

(
(−∆DN )β

)
⊂ L∞

are continuous (here ζ is the Riemann zeta function given by ζ(γ) =
∑∞
k=1 1/kγ).
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Proof. The proof of (8) can be found in [21].
Now, let x ∈ D((−∆DN )β). Then

|x(t)|2 =

∣∣∣∣∣
∞∑
j=1

bj

√
2

π
sin

(
j − 1

2

)
t

∣∣∣∣∣
2

6
2

π

( ∞∑
j=1

|bj |

)2

=
2

π

( ∞∑
j=1

(j − 1
2 )2β |bj |

(j − 1
2 )2β

)2

6
2

π

( ∞∑
j=1

(
j − 1

2

)4β

b2j

) ∞∑
j=1

1

(j − 1
2 )4β

6
2

π
‖x‖2DN∼β

∞∑
j=1

1

(j − 1
2 )4β

=
2

π
‖x‖2DN∼β

∞∑
j=1

1

( 1
2j)

4β
= 16β

2

π
‖x‖2DN∼βζ(4β) <∞, t ∈ (0, π) a.e.

Hence, we obtain inequality (9).
The proof is completed.

3 Necessary optimality conditions

In this part of the paper, we derive the necessary optimality conditions for optimal control
problems (OCPk), k = 1, 2.

We define the set of controls

UM :=
{
u ∈ L1((0, π),Rm): u(t) ∈M ⊂ Rm, t ∈ (0, π)

}
.

Let us fix k = 1, 2. We say that a pair (x∗, u∗) ∈ D((−∆k)β)× UM is a locally optimal
solution of the problem (OCPk) if x∗ is a solution of (Ek) corresponding to the control u∗
and there exists a neighborhood Wk of the point x∗ in D((−∆k)β) such that

J(x∗, u∗) 6 J(x, u)

for all pairs (x, u) ∈Wk × UM satisfying (Ek).
In the proof of the main result, we shall use the following two lemmas.

Lemma 4. Assume that

(i) M ⊂ Rm is compact;
(ii) h(·, x, u) is measurable on [a, b] for all x ∈ Rn, u ∈M ;

(iii) h(t, ·, u) is continuous on Rn for a.e. t ∈ [a, b] and all u ∈M ;
(iv) h(t, x, ·) is continuous on M for a.e. t ∈ [a, b] and all x ∈ Rn;
(v) for a.e. t ∈ [a, b] and all x ∈ Rn, the set

h(t, x,M) :=
{
h(t, x, u) ∈ Rn, u ∈M

}
is convex.

Then for all u1, u2 ∈ UM , x ∈ D((−∆k)β), k = 1, 2, and γ ∈ [0, 1], there exists ũ ∈ UM
such that

h
(
t, x(t), ũ(t)

)
= γh

(
t, x(t), u1(t)

)
+ (1− γ)h

(
t, x(t), u2(t)

)
, t ∈ [a, b] a.e.
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Lemma 5. Let u∗ ∈ UM and ϕ : [a, b]×M → R be such that ϕ(·, u) is measurable on
[a, b] for all u ∈M , and let ϕ(t, ·) is continuous on M for a.e. t ∈ [a, b]. If

−∞ <

b∫
a

ϕ
(
t, u∗(t)

)
dt 6

b∫
a

ϕ
(
t, u(t)

)
dt < +∞, u ∈ UM ,

then
ϕ
(
t, u∗(t)

)
6 ϕ(t, u)

for a.e. t ∈ [a, b] and all u ∈M .

Remark 3. Lemma 4 can be proved just as Lemma 5 in [20]. Lemma 5 differs from
the appropriate result proved in [20, Lemma 6] in the “control domain” – we replace
Rr by M . It can be proved in the same way as in [20] with the aid of the theorem on
the measurability of the superposition [a, b] 3 t → g(t, u(t)) ∈ Rn of a Carathéodory
function g : [a, b]×M → Rn with a measurable one u : [a, b]→M (cf. [23, p. 330]).

Now, we derive the maximum principle for problems (OCP1) and (OCP2). We have

Theorem 3. Let us fix k = 1, 2. We assume that M is compact, β > 1/4 and

(A) f0(·, x, u) is measurable on (0, π) for all x ∈ Rn, u ∈ M , f0(t, x, ·) is contin-
uous on M for a.e. t ∈ (0, π) and all x ∈ Rn, f0 ∈ C1 with respect to x ∈ Rn
and ∣∣f0(t, x, u)

∣∣, ∣∣(f0)x(t, x, u)
∣∣ 6 a(t)η

(
|x|
)

for a.e. t ∈ (0, π) and all (x, u) ∈ Rn ×M , where a ∈ L2((0, π),R+
0 ), η ∈

C(R+
0 ,R

+
0 );

(B) f(·, x, u) is measurable on (0, π) for all x ∈ Rn, u ∈M , f(t, x, ·) is continuous
on M for a.e. t ∈ (0, π) and all x ∈ Rn, f ∈ C1 with respect to x ∈ Rn and∣∣f(t, x, u)

∣∣ 6 b(t)δ
(
|x|
)

for a.e. t ∈ (0, π) and all (x, u) ∈ Rn ×M , where b ∈ L2((0, π),R+
0 ), δ ∈

C(R+
0 ,R

+
0 );

(C) for any (x, u) ∈ D((−∆k)β)× UM , fx(·, x(·), u(·)) ∈ L∞((0, π),Rn×n) and∥∥fx(·, x(·), u(·)
)∥∥
L∞

< 1 if k = 1, (10)∥∥fx(·, x(·), u(·)
)∥∥
L∞

<
1

4β
if k = 2; (11)

(D) for a.e. t ∈ (0, π) and all x ∈ Rn, the set{(
f0(t, x, u), f(t, x, u)

)
∈ Rn+1, u ∈M

}
is convex.
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If the pair (x∗, u∗) ∈ D((−∆k)β)×UM is a locally optimal solution of problem (OCPk),
then there exists a function λ ∈ D((−∆k)β) such that

(−∆k)βλ(t)

= fT
x

(
t, x∗(t), u∗(t)

)
λ(t)− (f0)x

(
t, x∗(t), u∗(t)

)
, t ∈ (0, π) a.e., (12)

and

f0

(
t, x∗(t), u∗(t)

)
− λ(t)f

(
t, x∗(t), u∗(t)

)
= min
u∈M

{
f0

(
t, x∗(t), u

)
− λ(t)f

(
t, x∗(t), u

)}
t ∈ (0, π) a.e. (13)

Proof. Let us fix k = 1, 2 and define the operators:

Fk : D
(
(−∆k)β

)
× UM → L2: Fk

(
x(·), u(·)

)
= (−∆k)βx(·)− f

(
·, x(·), u(·)

)
,

F 0
k : D

(
(−∆k)β

)
× UM → R: F 0

k

(
x(·), u(·)

)
=

π∫
0

f0

(
t, x(t), u(t)

)
dt.

Then problem (OCPk) can be formulated as

F 0
k

(
x(·), u(·)

)
→ min,

Fk
(
x(·), u(·)

)
= 0,

u(·) ∈ UM .

We shall show that Fk and F 0
k satisfy all assumptions of Theorem 2.

First, let us note that from Lemma 4 applied to the function h = (f0, f) it follows that
for any x ∈ D((−∆k)β), u1, u2 ∈ UM and γ ∈ [0, 1], there exists a function ũ ∈ UM
such that

F 0
k (x, ũ) = γF 0

k (x, u1) + (1− γ)F 0
k (x, u2),

Fk(x, ũ) = γFk(x, u1) + (1− γ)Fk(x, u2).

This means that assumption (b) of Theorem 2 is satisfied.
Using assumptions (B), (C) and analogous arguments as in [21, Prop. 5.1], we check

that the mapping Fk is continuously differentiable with respect to x ∈ D((−∆k)β) and
the differential (Fk)x(x, u) : D((−∆k)β)→ L2 of Fk at the point (x, u) is given by

(Fk)x(x, u)h = (−∆k)βh(t)− fx
(
t, x(t), u(t)

)
h(t)

for any fixed u ∈ UM .
Similarly (using assumption (A) and analogous arguments as in [22, Prop. 3.2]),

we obtain a differentiability property of the mapping F 0
k

1, whereby the differential

1In order to prove a differentiability property of mappings F2 and F 0
2 (then (−∆2)β = (−∆DN )β denotes

the Dirichlet–Neumann Laplace operator of order β), we use the norm generated by the scalar product (7) and
the estimation (9) instead of (6) and (8), respectively.
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(F 0
k )x(x, u) : D((−∆k)β)→ R of F 0

k at the point (x, u) is given by

(Fk)x(x, u)h =

π∫
0

(f0)x
(
t, x(t), u(t)

)
h(t) dt

for any fixed u ∈ UM .
The fact that the range Im(Fk)x(x∗, u∗) of the mapping (Fk)x(x∗, u∗) satisfies as-

sumption (c) of Theorem 2 follows from

• condition (10) and [21, Prop. 5.2] in the case of k = 1;
• condition (11) and the bijectivity of (F2)x(x∗, u∗)

2 in the case of k = 2

(more precisely, in both cases, the range Im(Fk)x(x∗, u∗) is a whole space L2, so it is
closed and its codimension is equal to zero).

So, all assumptions of the smooth-convex extremum principle are satisfied. Conse-
quently, there exist (not all equal to zero) λ0 > 0 and λ ∈ L2 such that

λ0

π∫
0

(f0)x
(
t, x∗(t), u∗(t)

)
h(t) dt

+

π∫
0

λ(t)
(
(−∆k)βh(t)− fx

(
t, x∗(t), u∗(t)

)
h(t)

)
dt = 0 (14)

for any h ∈ D((−∆k)β) and

λ0

π∫
0

f0

(
t, x∗(t), u∗(t)

)
dt+

π∫
0

λ(t)
(
(−∆k)βx∗(t)− f

(
t, x∗(t), u∗(t)

))
dt

= min
u∈UM

{
λ0

π∫
0

f0

(
t, x∗(t), u(t)

)
dt

+

π∫
0

λ(t)
(
(−∆k)βx∗(t)− f

(
t, x∗(t), u(t)

))
dt

}
. (15)

Since Im(Fk)x(x∗, u∗) = L2, therefore λ0 6= 0 and, without loss of generality, we can
put λ0 = 1. Then equality (14) can be rewritten as

π∫
0

λ(t)(−∆k)βh(t) dt =

π∫
0

−V (t)h(t) dt, h ∈ D
(
(−∆k)β

)
,

2Using analogous arguments as in the proof of Proposition 5.2(c) (cf. [21]) one can obtain the bijectivity of
the mapping (F2)x(x∗, u∗).
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where
V (t) = (f0)x

(
t, x∗(t), u∗(t)

)
− λ(t)fx

(
t, x∗(t), u∗(t)

)
, t ∈ (0, π) a.e.

From assumption (C) it follows that V ∈ L2. Hence and from the fact that the operator
(−∆k)β is self-adjoint it follows that λ ∈ D((−∆k)β) and

(−∆k)βλ(t) = −V (t), t ∈ (0, π) a.e.

Consequently, condition (12) holds.
In order to prove condition (13), let us observe that condition (15) is equivalent to the

following one:
π∫

0

(
f0

(
t, x∗(t), u∗(t)

)
− λ(t)f

(
t, x∗(t), u∗(t)

))
dt

= min
u∈UM

{ π∫
0

(
f0

(
t, x∗(t), u(t)

)
− λ(t)f

(
t, x∗(t), u(t)

))
dt

}
.

So, (13) follows from Lemma 5.
The proof is completed.

4 Examples

In this section, we present two theoretical examples, which illustrate obtained maximum
principle.

Example 1. Let us consider the following optimal control problem:

(−∆1)βx(t) =
1

2
sin2 x(t) +

∣∣u(t)
∣∣, t ∈ (0, π) a.e., (16)

J(x, u) =

π∫
0

(
cosx(t) + 2

∣∣u(t)
∣∣)dt→ min, (17)

whereby β > 1/4, m = n = 1, u ∈ U[−1,1] and

f(t, x, u) =
1

2
sin2 x+ |u|, f0(t, x, u) = cosx+ 2|u|.

It is easy to check that all assumptions of Theorem 3 are satisfied. Consequently, if the
pair (x∗, u∗) ∈ D((−∆1)β)×U[−1,1] is a locally optimal solution of problem (16)–(17),
then there exists a function λ ∈ D((−∆1)β) such that

(−∆1)βλ(t) =
1

2
sin
(
2x∗(t)

)
λ(t) + sin

(
x∗(t)

)
, t ∈ (0, π) a.e., (18)

and
2
∣∣u∗(t)∣∣− λ(t)

∣∣u∗(t)∣∣ = min
u∈[−1,1]

{
2|u| − λ(t)|u|

}
, t ∈ (0, π) a.e. (19)
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It is clear that the pair (x∗, u∗) = (0, 0) can be an optimal solution of (16)–(17) (it
satisfies (16), (18) and (19) with λ(t) ≡ 0). Furthermore, we see that Theorem 1 cannot
be applied in this problem (the functions f and f0 are not differentiable at u = 0).

Example 2. Let us consider the following optimal control problem:

(−∆2)1/2x(t) =
1

4
x(t) + u(t), t ∈ (0, π) a.e., (20)

J(x, u) =

π∫
0

(
− sin

(
t

2

)
x(t) + 4u(t)

)
dt→ min, (21)

whereby m = n = 1 and u ∈ U[−1,1]. It is easy to check that all assumptions of
Theorem 3 are satisfied. Consequently, if the pair (x∗, u∗) ∈ D((−∆2)1/2) × U[−1,1]

is a locally optimal solution of problem (20)–(21), then there exists a function λ ∈
D((−∆2)1/2) such that

(−∆2)1/2λ(t) =
1

4
λ(t) + sin

t

2
, t ∈ (0, π) a.e., (22)

and
4u∗(t)− λ(t)u∗(t) = min

u∈[−1,1]

{
4u− λ(t)u

}
, t ∈ (0, π) a.e. (23)

Let λ(t) =
∑∞
j=1 bj

√
2/π sin(j − 1/2)t. Then (22) can be written as follows:

∞∑
j=1

(
j − 1

2

)
bj

√
2

π
sin

(
j − 1

2

)
t

=
1

4

∞∑
j=1

bj

√
2

π
sin

(
j − 1

2

)
t+

∞∑
j=1

cj

√
2

π
sin

(
j − 1

2

)
t, t ∈ (0, π) a.e.,

whereby cj =
∫ π

0
sin(t/2)

√
2/π sin(j − 1/2)tdt, j ∈ N.

Consequently,

bj =
cj

j − 3
4

=

{
4
√

π
2 , j = 1,

0, j > 1.

This means that

λ(t) = 4 sin
t

2
, t ∈ (0, π) a.e.

is a solution of (22). Hence and from (23) we conclude that

u∗(t) = −1, t ∈ (0, π) a.e., (24)

and

(−∆2)1/2x∗(t) =
1

4
x∗(t)− 1, t ∈ (0, π) a.e. (25)
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Let x∗(t) =
∑∞
j=1 dj

√
2/π sin(j − 1/2)t. Then (25) can be written as follows:

∞∑
j=1

(
j − 1

2

)
dj

√
2

π
sin

(
j − 1

2

)
t

=
1

4

∞∑
j=1

dj

√
2

π
sin

(
j − 1

2

)
t−

∞∑
j=1

ej

√
2

π
sin

(
j − 1

2

)
t, t ∈ (0, π), a.e.,

whereby ej =
∫ π

0

√
2/π sin(j − 1/2)tdt, j ∈ N. Consequently,

dj =
−ej
j − 3

4

= −
√

2

π

1

(j − 1
2 )(j − 3

4 )
, j ∈ N,

and therefore

x∗(t) = − 2

π

∞∑
j=1

sin(j − 1
2 )t

(j − 1
2 )(j − 3

4 )
, t ∈ (0, π) a.e. (26)

It means that the pair (x∗, u∗) given by (26) and (24) is the only pair, which can be a
locally optimal solution of problem (20)–(21). Moreover, the minimal value of the cost
functional J is equal to

J(x∗, u∗) =

π∫
0

(
− sin

(
t

2

)
x∗(t) + 4u∗(t)

)
dt

=
2

π

π∫
0

sin

(
t

2

) ∞∑
j=1

sin(j − 1
2 )t

(j − 1
2 )(j − 3

4 )
dt− 4π = 8− 4π.

5 Conclusions

In the paper, we investigated the Lagrange problems containing nonlinear control systems
with Dirichlet and Dirichlet–Neumann Laplace operators of fractional orders. The main
result, obtained in this work, is the Pontryagin maximum principle for such problems
(Theorem 3). Obtained optimality conditions consist of the adjoint system (12) with
Dirichlet and Dirichlet–Neumann boundary conditions, respectively, and the minimum
condition (13). We derived our result using the smooth-convex extremum principle due to
Ioffe and Tikchomirov. The result of such a type for the problem with Dirichlet boundary
conditions was proved in [22, Thm. 4] via Dubovitskii–Milyutin method. Two illustrative
examples were presented. In particular, we observed that [22, Thm. 4] cannot be used to
problem (16)–(17).

The aim of a forthcoming work is studying of the sufficient optimality conditions for
problems (OCP1) and (OCP2).
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Appendix: Basics of self-adjoint operators in a Hilbert space

In this section, we give the necessary notions and facts from the theory of unbounded self-
adjoint operators in a real Hilbert space (cf. [21,22]). More details can be found in [2,27],
where all results are obtained in the case of a complex Hilbert space. Nevertheless, their
proofs can be reproduced (if required, with small changes) in the case of a real Hilbert
space.

So, in this section, we shall assume thatH is a real Hilbert space with a scalar product
〈·, ·〉H .

A.1 Self-adjoint operator

Let T : D(T ) ⊂ H → H be a densely defined linear operator (D(T ) = H) with the
domain D(T ). We define

D(T ∗) :=
{
x ∈ H: ∃z∈H 〈x, Ty〉H = 〈z, y〉H for all y ∈ D(T )

}
.

For x ∈ D(T ∗), we denote T ∗x = z (this element is uniquely determined due to the
density of D(T )). The operator T ∗ : D(T ∗) ⊂ H → H is called the adjoint operator
to T . If T = T ∗, then T is called self-adjoint. We note that whenever T is self-adjoint
operator one has

〈Tx, y〉H = 〈x, Ty〉H , x, y ∈ D(T ).

A.2 Spectral integral and decomposition theorem

Let B be a σ-algebra of Borel subsets of R, and P(H) denotes the set of all orthogonal
projection operators onto closed linear subspaces of H . A set function E : B → P(H) is
called a spectral measure (or a decomposition of the identity) if

(i) for any x ∈ H , the set function B 3 P → E(P )x is σ-additive;
(ii) E(R) = I (here I denotes the identity operator on H);

(iii) E(P ∩Q) = E(P ) ◦ E(Q) for P,Q ∈ B.

Let W be the union of all open sets V ⊂ R such that E(V ) = 0. Then the complement
R \W is called a support of a spectral measure E and denoted by supp(E).

Let us assume that u : R→ R definedE-a.e. is a bounded Borel measurable function.
Then, in the usual way (via a sequence of simple functions), one can show that for any
x ∈ H , there exists the integral (with respect to the vector measure E(·)x)

∫ +∞
−∞ u(λ) ×

E(dλ)x. We define the integral with respect to the spectral measureE
∫ +∞
−∞ u(λ)E(dλ) :

H → H in the following way:( +∞∫
−∞

u(λ)E(dλ)

)
x =

+∞∫
−∞

u(λ)E(dλ)x.

One proves that the above operator is linear, continuous and symmetric.
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Now, let u : R→ R defined E-a.e. be an unbounded Borel measurable function. Let
us define the sequence of functions un:

un(λ) =

{
u(λ) if |u(λ)| 6 n,

0 if |u(λ)| > n.

Functions un are Borel measurable and bounded. Consequently, there exist integrals∫ +∞
−∞ fn(λ)E(dλ), n ∈ N. Let us consider the set

D =

{
x ∈ H:

+∞∫
−∞

∣∣u(λ)
∣∣2 ∥∥E(dλ)x

∥∥2

H
<∞

}
. (A.1)

One can show that D is a dense linear subspace of H and for x ∈ D, there exists the
limit limn→∞

∫ +∞
−∞ un(λ)E(dλ)x. So, we can define the operator

∫ +∞
−∞ u(λ)E(dλ) :

D ⊂ H → H in the following way:( +∞∫
−∞

u(λ)E(dλ)

)
x = lim

n→∞

+∞∫
−∞

un(λ)E(dλ)x.

One can prove that∥∥∥∥∥
+∞∫
−∞

u(λ)E(dλ)x

∥∥∥∥∥
2

H

=

+∞∫
−∞

∣∣u(λ)
∣∣2 ∥∥E(dλ)x

∥∥2

H
(A.2)

and the operator
∫ +∞
−∞ u(λ)E(dλ) is self-adjoint.

If u : R→ R is a Borel measurable function and ω ∈ B, then∫
ω

u(λ)E(dλ) :=

+∞∫
−∞

χω(λ)u(λ)E(dλ),

where χω is a characteristic function of the set ω.
In order to define the spectral integral in the case of a Borel measurable function

u : P → R, where P ∈ B contains the support supp(E), it is sufficient to extend u on R
to any Borel measurable function.

Now, we formulate a spectral decomposition theorem, which plays a crucial role in
the spectral theory of self-adjoint operators.

Theorem A1 [Spectral decomposition theorem for self-adjoint operators]. Let T :
D(T ) ⊂ H → H be a self-adjoint operator such that the resolvent set ρ(T ) is nonempty.
Then there exists a unique spectral measure E with the closed support supp(E) = σ(T )
such that

T =

+∞∫
−∞

λE(dλ) =

∫
σ(T )

λE(dλ). (A.3)

Nonlinear Anal. Model. Control, 25(5):884–901

https://doi.org/10.15388/namc.2020.25.19279


900 R. Kamocki

In conclusion of this section, we shall define a function of a self-adjoint operator. Let
T : D(T ) ⊂ H → H be a self-adjoint operator with ρ(T ) 6= ∅. From Theorem A1
it follows that T has the integral representation given by (A.3). For a Borel measurable
function u : R→ R defined E-a.e., we define the operator u(T ) as follows:

u(T ) =

+∞∫
−∞

u(λ)E(dλ) =

∫
σ(T )

u(λ)E(dλ).

According to general properties of the spectral integrals presented above, the domain
D(u(T )) is given by (A.1), equality (A.2) holds and u(T ) is self-adjoint. Moreover, its
spectrum is given by

σ
(
u(T )

)
= u

(
σ(T )

)
,

provided that u is continuous on σ(T ).
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