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Abstract. This paper deals with the finite-time stochastic synchronization for a class of memristor-
based bidirectional associative memory neural networks (MBAMNNs) with time-varying delays
and stochastic disturbances. Firstly, based on the physical property of memristor and the circuit
of MBAMNNs, a MBAMNNs model with more reasonable switching conditions is established.
Then, based on the theory of Filippov’s solution, by using Lyapunov–Krasovskii functionals and
stochastic analysis technique, a sufficient condition is given to ensure the finite-time stochastic
synchronization of MBAMNNs with a certain controller. Next, by a further discussion, an error-
dependent switching controller is given to shorten the stochastic settling time. Finally, numerical
simulations are carried out to illustrate the effectiveness of theoretical results.

Keywords: finite-time synchronization, BAM neural networks, stochastic disturbances, switching
controller.

1 Introduction

In 1971, Chua postulated a new kind of passive circuit element called memristor, which
can connect the charge and magnetic flux [7]. In [8], he further explained that the current-
voltage characteristic of a memristor under a bipolar periodic electrical signal should be
a pinched hysteretic line, which reflects that the memristance (resistance of memristor) of
a memristor depends on how much charge has passed through the memristor in a particular
direction. This feature is nonvolatile, i.e. the memristor can keep its memristance without
excitation voltage. These two properties make memristor an attractive candidate for the
synapses in artificial neural networks.
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Bidirectional associative memory neural networks (BAMNNs) were proposed in 1988
[15]. They display a two-way associative search for stored bipolar vector pairs and
generalize the single-layer autoassociative Hebbian correlation to a two-layer pattern-
matched heteroassociative circuits [37]. This kind of neural networks have been suc-
cessfully applied in various fields, including automatic control, pattern recognition and
associative memory. Memristor-based bidirectional associative memory neural networks
(MBAMNNs) can be implemented by replacing the resistors with memristors in VLSI
circuits of conventional BAMNNs. Memristor-based neural networks can achieve many
brain-like functions. In [21], Pershin and Ventra demonstrated the formation of associa-
tive memory in a simple neural network consisting of three electronic neurons connected
by two memristor-emulator synapses by experiments. The application of memristors can
also make BAMNNs have more abundant dynamic behaviors and a broader application
prospect.

The synchronization of BAMNNs is an interesting and meaningful topic. Some results
about the synchronization of traditional BAMNNs can be found in [20,36]. Moreover, we
find scholars are more interested in the synchronization of MBAMNNs recently. In [19]
and [32], authors achieved the synchronization of MBAMNNs with impulsive control
and sampled-data control, respectively. In [5], authors studied the adaptive synchroniza-
tion of MBAMNNs with mixed delays. In [24], the anti-synchronization conditions for
MBAMNNs with different memductance functions were analysed. These results are of
infinite-time synchronization, which implies that synchronization may only be reached
in infinite time and inherently requires persistent external control. In [4, 33], Chen et al.
and Yuan et al. studied the finite-time synchronization of MBAMNNs, which means that
the MBAMNNs can achieve synchronization in a finite time called the settling time. So
comparing with infinite-time synchronization, finite-time synchronization is more prac-
tical in many real applications and is worthy of further study. Some other researches on
finite-time synchronization of BAMNNs and other kinds of neural networks can be seen
in [1, 25, 31, 35] and references therein.

When we study the synchronization of neural networks, there are some practical
factors that should not be ignored in modeling. Firstly, time delays frequently occur in
the response and communication of neurons, which may be caused by the limited transfer
speed and information processing. The delays in neural networks may result in instability
or oscillation, which has been pointed out in many articles [3, 16, 23, 28, 30]. Then, the
real systems are always in an external noisy environment, so they are inevitably disturbed
by stochastic disturbances. Therefore, in [17, 27], authors studied the synchronization
of neural networks with stochastic disturbances. So far, to our best knowledge, results
on finite-time synchronization of MBAMNNs with time-varying delays and stochastic
disturbances has not been reported in the literature.

Motivated by the discussion above, in this paper, we study the finite-time synchro-
nization of MBAMNNs with time-varying delays and stochastic disturbances. Based on
the circuit structure of the MBAMNNs and the basic principle of memristors, we come
up with a new kind of MBAMNNs models consisted of stochastic differential equations
that discontinuous on the right-hand side. To analyse this kind of models, we use the
stochastic differential inclusion theory under the framework of Filippov’s solution [10].
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By constructing suitable Lyapunov–Krasovskii functionals and using stochastic analysis
technique, a sufficient condition is given to ensure the finite-time stochastic synchroniza-
tion of MBAMNNs with a certain controller. Then, inspired by the work of Gao et al.
in [11], we design an error-dependent switching controller to achieve the synchronization
of MBAMNNs with a shorter stochastic settling time.

The rest of this paper is organized as follows. The model description, some prelim-
inaries, necessary definitions and lemmas are presented in Section 2. In Section 3, the
sufficient conditions to achieve finite-time synchronization of MBAMNNs are derived. In
Section 4 numerical examples are given to demonstrate the feasibility of the theoretical
results. Finally, we make a summary in Section 5.

Notations. R denotes the set of real numbers, Rn denotes the n-dimensional Euclidean
space. Given column vectors x = (x1, x2, . . . , xn)

T ∈ Rn, where the superscript T
represents the transpose operator. ‖x‖ = (

∑n
i=1 x

2
i )

1/2 denotes vector norm of x. For
τ > 0, C([−τ, 0],Rn) denotes the family of continuous function φ from [−τ, 0] to Rn
with the norm ‖φ‖c = sup−τ6s60 |φ(s)|. V (x, t) ∈ C2,1(Rn × R+,R+) denotes the
family of all nonnegative functions on Rn × R+, which are twice differentiable in x and
differentiable in t. co[a, b] represents closure of the convex hull generated by a and b.
E(·) stands for the mathematical expectation operator.

2 Model description and preliminaries

Considering the memristor manufactured by Hewlett–Packard laboratory [29], it is
a Pt/TiO2−x/Pt structure in which doped TiO2 and undoped TiO2 are fabricated be-
tween two Pt electrodes. The memristor model was given by

v(t) =

(
Ronw(t)

D
+Roff

(
1− w(t)

D

))
i(t),

dw(t)

dt
= µV

Ron

D
i(t),

which yields

Rmem(t) = Roff +
(
Ron −Roff

)(
w0 + µV

Ron

D2

t∫
t0

i(s) ds

)
,

dRmem(t)

dt
=
(
Ron −Roff

)
µV

Ron

D2

v(t)

Rmem(t)
,

where D is the full length of the device; w(t) is the length of doped region, w0 is
the initial length of doped region; Roff and Ron represent the maximum and minimum
memristance, respectively; Rmem(t) is the memristance of the memristor; µV is the
average ion mobility rate in the memristor. The memductance of the memristor can be
derived as

Mmem(t) =
1

Rmem(t)
,

dMmem(t)

dt
=
(
Roff −Ron

)
µV

Ron

D2
v(t)

(
Mmem(t)

)3
.

(1)
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Figure 1. Circuit diagram of MBAMNNs (2).

In this paper, based on the circuit shown in Fig. 1, we consider the following memristor-
based BAM neural networks:

dxi(t)

dt
= −di

(
xi(t)

)
xi(t) +

m∑
j=1

signij aij
(
xi(t)

)
fj
(
yj(t)

)
+

m∑
j=1

signij bij
(
xi(t)

)
fj
(
yj
(
t− τj(t)

))
,

dyj(t)

dt
= −rj

(
yj(t)

)
yj(t) +

n∑
i=1

signji pji
(
yj(t)

)
gi
(
xi(t)

)
+

n∑
i=1

signji qji
(
yj(t)

)
gi
(
xi
(
t− τi(t)

))
,

(2)

where i = 1, 2, . . . , n, j = 1, 2, . . . ,m, xi(t) and yi(t) stand for the voltages of capacitors
Ci and Ĉj , respectively; di(·) and rj(·) are the rates of neuron self-inhibition; fi(·) and
gj(·) denote the activation functions. τi(t), τj(t) denote time-varying delays satisfying
0 < τi,j(t) 6 τ , |τ ′i,j(t)| 6 λ < 1, λ is a positive constant; signji is a sign function, and
its value is given by

signji =

{
1, j 6= i,

−1, j = i,
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aij(·), pji(·) and bij(·), qji(·) are the feedback connection weights and the delayed
feedback connection weights, which are given by

di
(
xi(t)

)
=

1

Ci

[
m∑
j=1

(Mij+M
∗
ij) +

1

Ri

]
,

aij
(
xi(t)

)
=
Mij

Ci
, bij

(
xi(t)

)
=
M∗ij
Ci

,

rj
(
yj(t)

)
=

1

Ĉj

[
n∑
i=1

(M̂ji+M̂
∗
ji) +

1

R̂j

]
,

pji
(
yj(t)

)
=
M̂ji

Ĉj
, qji

(
yj(t)

)
=
M̂∗ji

Ĉj
,

in which Mij , M∗ij , M̂ji, M̂∗ji are the memductances of Rij , R∗ij , R̂ji, R̂
∗
ji, respectively.

And Rij represents the memristor between xi(t) and fj(yj(t)), R∗ij represents the mem-
ristor between xi(t) and fj(yj(t − τj(t))), R̂ji represents the memristor between yj(t)
and gi(xi(t)), R̂∗ji represents the memristor between yj(t) and gi(xi(t − τi(t))), Ri and
R̂j stand for the parallel-resistors. By the feature of the memductance derived in (1),Mij ,
M∗ij are bounded, and their derivatives satisfy

dMij

dt
=
(
Roff
ij −Ron

ij

)
µV

Ron
ij

(Dij)
2

(
signij fj

(
yj(t)

)
− xi(t)

)
(Mij)

3,

dM∗ij
dt

=
(
R∗off
ij −R∗on

ij

)
µV

R∗on
ij

(D∗ij)
2

(
signij fj

(
yj
(
t− τj(t)

))
− xi(t)

)
(M∗ij)

3,

When the length of memristor is rather short, the memristor may switch between the On
state and Off state in a very short time under usual voltage. So we can assume that the
memristor’s state depends on the sign of the potential difference between the two sides
of the device. Discussing M̂ji, M̂

∗
ji in the same way, then the state-dependent parameters

di(xi(t)), aij(xi(t)), bij(xi(t)), rj(yj(t)), pji(yj(t)), qji(yj(t)) abide by the following
conditions:

aij
(
xi(t)

)
=


a+
ij , xi(t) < signij fj(yj(t)),

unchanged, xi(t) = signij fj(yj(t)),

a−ij , xi(t) > signij fj(yj(t)),

bij
(
xi(t)

)
=


b+ij , xi(t) < signij fj(yj(t− τj(t))),
unchanged, xi(t) = signij fj(yj(t− τj(t))),
b−ij , xi(t) > signij fj(yj(t− τj(t))),

di
(
xi(t)

)
=

m∑
j=1

(
aij
(
xi(t)

)
+ bij

(
xi(t)

))
+ d∗i ,
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pji
(
yj(t)

)
=


p+
ji, yj(t) < signji gi(xi(t)),

unchanged, yj(t) = signji gi(xi(t)),

p−ji, yj(t) > signji gi(xi(t)),

qji
(
yj(t)

)
=


q+
ji, yj(t) < signji gi(xi(t− τi(t))),

unchanged, yj(t) = signji gi(xi(t− τi(t))),
q−ji, yj(t) > signji gi(xi(t− τi(t))),

rj
(
yj(t)

)
=

n∑
i=1

(
pji
(
yj(t)

)
+ qji

(
yj(t)

))
+ r∗j ,

where d∗i , a
+
ij , a

−
ij , b

+
ij , b

−
ij , r

∗
j , p

+
ji, p

−
ji, q

+
ji, q

−
ji are known constants relating to the

maximum and minimum memristance of memristors, the resistance of resistors, as well as
the capacitance of capacitors. Moreover, unchanged means that the memristance keeps the
current value. The initial values of network (2) is xi(s) = φxi(s), yj(s) = φyj(s) (i = 1,
2, . . . , n, j = 1, 2, . . . ,m), (φx1(s), φx2(s), . . . , φxn(s), φy1(s), φy2(s), . . . , φym(s))T∈
C([−τ, 0],Rn+m).

We regard network (2) as the drive network. Denote x̂i(t), ŷj(t) as the states of
response network, and exi(t), eyj(t) are the error variables, which are defined as exi(t) =
xi(t)−x̂i(t), eyj(t) = yj(t)−ŷj(t). The structure of response network should be the same
as that of the drive network, so that the modifications to x̂i(t) come from the feedback of
ŷj(t) and ŷj(t− τj(t)) (j = 1, 2, . . . ,m). Considering the combined effect of controller
and the feedback, we assume the intensity of stochastic disturbances introduced to x̂i(t) is
a function of eyj(t) and eyj(t−τj(t)) (j = 1, 2, . . . ,m). Correspondingly, the intensity of
stochastic disturbances on ŷj(t) is a function of exi(t) and exi(t−τi(t)) (i = 1, 2, . . . , n).
Then the response network with stochastic disturbances can be described as

dx̂i(t) =

[
− di

(
x̂i(t)

)
x̂i(t) +

m∑
j=1

signij aij
(
x̂i(t)

)
fj
(
ŷj(t)

)
+

m∑
j=1

signij bij
(
x̂i(t)

)
fj
(
ŷj
(
t− τj(t)

))
+ ui(t)

]
dt

+

m∑
j=1

σ
(
t, eyj(t), eyj

(
t− τj(t)

))
dΩj(t),

dŷj(t) =

[
−rj

(
ŷj(t)

)
ŷj(t) +

n∑
i=1

signji pji
(
ŷj(t)

)
gi
(
x̂i(t)

)
+

n∑
i=1

signji qji
(
ŷj(t)

)
gi
(
x̂i
(
t− τi(t)

))
+ vj(t)

]
dt

+

n∑
i=1

σ
(
t, exi(t), exi

(
t− τi(t)

))
dΩi(t),

(3)
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where ui(t) and vj(t) are the control inputs designed in the following form:

ui(t) = k1
i exi(t) + k2

i sign(exi(t)) + η

( t∫
t−τi(t)

kie
2
xi(s) ds

)(α+1)/2
exi(t)

|exi(t)|2

+ η sign
(
exi(t)

)∣∣exi(t)∣∣α,
vj(t) = w1

j eyi(t) + w2
j sign

(
eyj(t)

)
+ η

( t∫
t−τj(t)

wje
2
yj(s) ds

)(α+1)/2
eyj(t)

|eyj(t)|2

+ η sign
(
eyj(t)

)∣∣eyj(t)∣∣α
in which k1

i , k2
i , ki, w1

j , w2
j , wj , η, α are the feedback gains to be designed. Ωi(t)

and Ωj(t) are the Brownian motions defined on a complete probability space (Ω,F ,
{Ft}t>0,P). σ(·) is the density function of stochastic effects.

For the error variables exi(t), eyj(t), we have

dexi(t) =

{
−
(
di
(
xi(t)

)
xi(t)− di

(
x̂i(t)

)
x̂i(t)

)
+

m∑
j=1

[
signij

(
aij
(
xi(t)

)
fj
(
yj(t)

)
− aij

(
x̂i(t)

)
fj
(
ŷj(t)

))
+ signij

(
bij
(
xi(t)

)
fj
(
yj
(
t− τj(t)

))
− bij

(
x̂i(t)

)
fj
(
ŷj
(
t− τj(t)

)))]
− ui(t)

}
dt+

m∑
j=1

σ
(
t, eyj(t), eyj

(
t− τj(t)

))
dΩj(t),

deyj(t) =

{
−
(
rj
(
yj(t)

)
yj(t)− rj

(
ŷj(t)

)
ŷj(t)

)
+

n∑
i=1

[
signji

(
pji
(
yj(t)

)
gi
(
xi(t)

)
− pji

(
ŷj(t)

)
gi
(
x̂i(t)

))
+ signji

(
qji
(
yj(t)

)
gi
(
xi
(
t− τi(t)

))
− qji

(
ŷj(t)

)
gi
(
x̂i
(
t− τi(t)

)))]
− vj(t)

}
dt+

n∑
i=1

σ
(
t, exi(t), exi

(
t− τi(t)

))
dΩi(t).

(4)

By applying the theories of set-valued map and differential inclusions [2,10], the Filippov
solutions of error variables exi(t) and eyj(t) satisfy

dexi(t) ∈

{
−d∗i exi(t) +

m∑
j=1

[
co
[
a−ij , a

+
ij

](
signij fj

(
yj(t)

)
− xi(t)

)
− co

[
a−ij , a

+
ij

](
signij fj

(
ŷj(t)

)
− x̂i(t)

)
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+ co
[
b−ij , b

+
ij

](
signij fj

(
yj
(
t− τj(t)

))
− xi(t)

)
− co

[
b−ij , b

+
ij

](
signij fj

(
ŷj
(
t− τj(t)

))
− x̂i(t)

)]
− ui(t)

}
dt

+

m∑
j=1

σ
(
t, ejj(t), eyj

(
t− τj(t)

))
dΩj(t),

deyj(t) ∈

{
−r∗j eyj(t) +

n∑
i=1

[
co
[
p−ji, p

+
ji

](
signji gi

(
xi(t)

)
− yj(t)

)
− co

[
p−ji, p

+
ji

](
signji gi

(
x̂i(t)

)
− ŷj(t)

)
+ co

[
q−ji, q

+
ji

](
signji gi

(
xi
(
t− τi(t)

))
− yj(t)

)
− co

[
q−ji, q

+
ji

](
signji gi

(
x̂i
(
t− τi(t)

))
− ŷj(t)

)]
− vj(t)

}
dt

+

n∑
i=1

σ
(
t, exi(t), exi

(
t− τi(t)

))
dΩi(t).

Definition 1. (See [9].) For any e(0) = (ex1(0), ex2(0), . . . , exn(0), ey1(0), ey2(0), . . . ,
eym(0))T ∈ Rn+m, if

P
{
lim
t→∞

∥∥e(t, e(0))∥∥ = 0
}
= 1

holds, where e(t, e(0)) = (ex1(t), ex2(t), . . . , exn(t), ey1(t), ey2(t), . . . , eym(t))T, then
system (4) is said to be globally asymptotically stable in probability.

Definition 2. (See [6,18].) For system (4), define T0(e0, Ω) = inf{T >0: e(t, e(0))=0
∀t > T} as the stochastic settling time function. If for any e(0) ∈ Rn+m,

P
{
lim
t→T0

∥∥e(t, e(0))∥∥ = 0,
∥∥e(t, e(0))∥∥ = 0, t > T0

}
= 1

holds, then system (4) is said to be globally stochastically finite-time stable in probability,
and T0 is called the stochastic settling time.

Based on Definition 1, the finite-time stochastic synchronization of networks (2) and
(3) is equivalent to the globally finite-time stochastic stability of the error system (4) at
the origin.

In order to obtain our main theorems, we make the following assumptions.

Assumption 1. There exist constants R1 > 0 and R2 > 0 such that

σ2(t, x, y) 6 R1x
2 +R2y

2.

Assumption 2. For i = 1, 2, . . . , n, j = 1, 2, . . . ,m, and for all x, y ∈ R, there exist
constants hfj , hgi such that∣∣fj(x)∣∣ 6 hfj ,

∣∣gi(x)∣∣ 6 hgi.
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Let Ω(t) = (Ω1(t), Ω2(t), . . . , Ωm(t))T be a standard Rm-valued Brownian motion
defined on a complete probability space. For any given V (x, t) ∈ C2,1(Rn × R+,R+)
associated with stochastic system

x(t) = x(0) +

t∫
0

f
(
x(s)

)
ds+

m∑
i=1

t∫
0

σi
(
x(s)

)
dΩi(s), (5)

the infinitesimal generator L is defined as follows:

LV (x, t) =

n∑
i=1

fi(x)
∂V (x, t)

∂xi
+
∂V (x, t)

∂t
+

1

2

n∑
i,j=1

βij(x)
∂2V (x, t)

∂xi∂xj
,

where βij(x) =
∑m
k=1 σk(xi(s))σk(xj(s)).

To prove our results, the following lemmas are necessary.

Lemma 1. (See [6].) For stochastic differential system (5), if there exist a positive
definite, twice continuous differentiable and radially unbounded Lyapunov function V :
Rn × R+ → R+ and a continuous differentiable function r : R+ → R+ such that

(i) LV (x, t) 6 −r(V (x, t)),
(ii) for any 0 6 ε < +∞,

∫ ε
0
1/r(v) dv < +∞,

(iii) for v > 0, r′(v) > 0,

then the origin of system (5) is globally stochastically finite-time stable in probability.
Moreover, the stochastic settling time T0 satisfies E[T0(x0, Ω)] 6

∫ V (x0)

0
1/r(v) dv.

Lemma 2. (See [13].) If a1, a2, . . . , an are positive numbers and 0 < p < q, then
(
∑n
i=1 a

q
i )

1/q 6 (
∑n
i=1 a

p
i )

1/p.

3 Main results

In this section, the finite-time synchronization of MBAMNN (2) with stochastic distur-
bances under previously mentioned controller (4) is investigated. By a further discussion,
a sufficient condition is given to ensure the synchronization achieve in a shorter time with
an error-dependent switching controller. The main results are given as Theorems 1 and 2.

Theorem 1. Under Assumptions 1 and 2, the error system (4) is globally stochastically
finite-time stable in probability with controller (4) if the feedback gains α, η, k1

i , k2
i , ki,

w1
j , w2

j , wj satisfy

0 6 α < 1, η > 0, ki >
mR2

1− λ
, wj >

nR2

1− λ
,

k1
i >

1

2

[
−2d∗i − 2

m∑
j=1

(
a−ij+b

−
ij

)
+mR1 + ki

]
, k2

i > 2

m∑
j=1

(
a+
ij+b

+
ij

)
hfj ,

w1
j >

1

2

[
−2r∗j − 2

n∑
i=1

(
p−ji+q

−
ji

)
+ nR1 + wj

]
, w2

j > 2

n∑
i=1

(
p+
ji+q

+
ji

)
hgi,

(6)
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i = 1, 2, . . . , n, j = 1, 2, . . . ,m. And the stochastic settling time satisfies E(T0) 6
(V (0)(1−α)/2/η)(1− α).

Proof. Employ the following Lyapunov–Krasovskii functional

V (t) = V1(t) + V2(t),

where

V1(t) =

n∑
i=1

[
e2
xi(t) +

t∫
t−τi(t)

kie
2
xi(s) ds

]
,

V2(t) =

m∑
j=1

[
e2
yj(t) +

t∫
t−τj(t)

wje
2
yj(s) ds

]
.

By computing LV1(t) along the trajectories of error system (4), we can derive that

LV1(t) = 2

n∑
i=1

exi(t)

{
−d∗i exi(t) +

m∑
j=1

[
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

)
+ bij

(
xi(t)

)(
signij fj

(
yj
(
t− τj(t)

))
− xi(t)

)
− bij

(
x̂i(t)

)(
signij fj

(
ŷj
(
t− τj(t)

))
− x̂i(t)

)]
− ui(t)

}
+

n∑
i=1

ki
[
e2
xi(t)− e2

xi

(
t− τi(t)

)(
1− τ ′i(t)

)]
+ n

m∑
j=1

σ2
(
t, eyj(t), eyj

(
t− τj(t)

))
. (7)

For each t, we discuss six possible cases for the values of xi(t) and x̂i(t):

Case 1: xi(t) > signij fj(yj(t)), x̂i(t) > signij fj(ŷj(t)), then

2exi(t)
(
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

))
6 4a−ijhfj

∣∣exi(t)∣∣− 2a−ij
∣∣exi(t)∣∣2.

Case 2: xi(t) 6 signij fj(yj(t)), x̂i(t) 6 signij fj(ŷj(t)), then

2exi(t)
(
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

))
6 4a+

ijhfj
∣∣exi(t)∣∣− 2a+

ij

∣∣exi(t)∣∣2.
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Case 3: xi(t) > signij fj(yj(t)), −hfj 6 x̂i(t) 6 signij fj(ŷj(t)), then by Assump-
tion 2 we have

2exi(t)
(
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

))
= 2exi(t)

(
a−ij signij fj

(
yj(t)

)
−a+

ij signij fj
(
ŷj(t)

)
−a−ijexi(t) +

(
a+
ij−a

−
ij

)
x̂i(t)

)
6 4a+

ijhfj
∣∣exi(t)∣∣− 2a−ij

∣∣exi(t)∣∣2.
Case 4: xi(t) > signij fj(yj(t)) > −hfj , x̂i(t) 6 −hfj , then

2exi(t)
(
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

))
= 2exi(t)

(
a−ij signij fj

(
yj(t)

)
−a+

ij signij fj
(
ŷj(t)

)
−a−ijexi(t) +

(
a+
ij−a

−
ij

)
x̂i(t)

)
6 2(a+

ij + a−ij)hfj
∣∣exi(t)∣∣− 2a−ij

∣∣exi(t)∣∣2.
Case 5: −hfj 6 xi(t) 6 signij fj(yj(t)), x̂i(t) > signij fj(ŷj(t)), then

2exi(t)
(
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

))
= 2exi(t)

(
a+
ij signij fj

(
yj(t)

)
−a−ij signij fj

(
ŷj(t)

)
−a−ijexi(t) +

(
a−ij−a

+
ij

)
xi(t)

)
6 4a+

ijhfj
∣∣exi(t)∣∣− 2a−ij

∣∣exi(t)∣∣2.
Case 6: xi(t) 6 −hfj , x̂i(t) > signij fj(ŷj(t)) > −hfj , then

2exi(t)
(
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

))
= 2exi(t)

(
a+
ij signij fj

(
yj(t)

)
−a−ij signij fj

(
ŷj(t)

)
−a−ijexi(t) +

(
a−ij−a

+
ij

)
xi(t)

)
6 2(a+

ij + a−ij)hfj
∣∣exi(t)∣∣− 2a−ij

∣∣exi(t)∣∣2.
So, we can conclude that

2exi(t)
(
aij
(
xi(t)

)(
signij fj

(
yj(t)

)
− xi(t)

)
− aij

(
x̂i(t)

)(
signij fj

(
ŷj(t)

)
− x̂i(t)

))
6 4a+

ijhfj
∣∣exi(t)∣∣− 2a−ij

∣∣exi(t)∣∣2. (8)

By a similar analysis to (8), we can get

2exi(t)
(
bij
(
xi(t)

)(
signij fj

(
yj
(
t− τj(t)

))
− xi(t)

)
− bij

(
x̂i(t)

)(
signij fj

(
ŷj
(
t− τj(t)

))
− x̂i(t)

))
6 4b+ijhfj

∣∣exi(t)∣∣− 2b−ij
∣∣exi(t)∣∣2. (9)

Since |τ ′i(t)| 6 λ < 1, so that

ki
[
e2
xi(t)− e2

xi

(
t− τi(t)

)(
1− τ ′i(t)

)]
6 ki

[
e2
xi(t)− e2

xi

(
t− τi(t)

)(
1− λ

)]
. (10)
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According to Assumption 1, we can obtain that

σ2
(
t, eyj(t), eyj

(
t− τj(t)

))
6 R1eyj

2(t) +R2eyj
2
(
t− τj(t)

)
. (11)

It follows form (7)–(11) that

LV1(t) 6
n∑
i=1

[
−2d∗i − 2

m∑
j=1

(
a−ij + b−ij

)]∣∣exi(t)∣∣2
+

n∑
i=1

m∑
j=1

(
4a+
ij + 4b+ij

)
hfj
∣∣exi(t)∣∣− n∑

i=1

2exi(t)ui(t)

+

n∑
i=1

ki
[
e2
xi(t)− e2

xi

(
t− τi(t)

)(
1− λ

)]
+ n

m∑
j=1

[
R1eyj

2(t) +R2eyj
2
(
t− τj(t)

)]
. (12)

With the similar process of LV1(t), we also get

LV2(t) 6
m∑
j=1

[
−2r∗j − 2

n∑
i=1

(
p−ji + q−ji

)]∣∣eyj(t)∣∣2
+

m∑
j=1

n∑
i=1

(
4p+
ji + 4q+

ji

)
hgi
∣∣eyj(t)∣∣− m∑

j=1

2eyj(t)vj(t)

+

m∑
j=1

wj
[
e2
yj(t)− e2

yj

(
t− τj(t)

)
(1− λ)

]
+m

n∑
i=1

[
R1e

2
xi(t) +R2e

2
xi

(
t− τi(t)

)]
. (13)

Add (12) and (13) up and substitute (4) into the sum, by condition (6) and Lemma 2,
we have LV (t) 6 −2ηV (α+1)/2(t). So, it follows from Lemma 1 that the origin of
error system (4) is globally finite-time stochastically stable in probability. Accordingly,
the finite-time synchronization of networks (2) and (3) can be obtained. Moreover, the
stochastic settling time satisfies

E(T0) 6

V (0)∫
0

1

2ηv(1+α)/2
dv =

V (0)(1−α)/2

η(1− α)
.

This completes the proof.

Next, based on Theorem 1, we consider a switching controller under which the error
system (4) may achieve stable in probability with a shorter stochastic settling time.
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Define T (α) = V (0)(1−α)/2/η(1 − α), 0 6 α < 1. Computing the derivative of
T (α), we can get

dT (α)

dα
=

(α− 1) lnV (0) + 2

2η(1− α)2V (0)(α−1)/2
.

Obviously, enlarging the gain constant η and reducing V (0) can shorten the stochastic
settling time, and when η and V (0) are determined constants, there are two possible cases
to be discussed.

Case 1: If V (0) > e2 (where e is the shorthand of constant exponent), dT (α)/dα = 0
if and only if α = 1− 2/ lnV (0). Moreover,

dT (α)

dα
< 0 when 0 6 α < 1− 2

lnV (0)
,

dT (α)

dα
> 0 when 1− 2

lnV (0)
< α < 1.

So that T (α) take the minimal value at α = 1− 2/ lnV (0).

Case 2: If V (0) 6 e2, then dT (α)/dα > 0 for all α ∈ [0, 1), in this case, T (α) take
the minimal value at α = 0.

According to the discussion above, we design the following switching controller:

ui(t) = k1
i exi(t) + k2

i sign
(
exi(t)

)
+ η

( t∫
t−τi(t)

kie
2
xi(s) ds

)(α(t)+1)/2
exi(t)

|exi(t)|2

+ η sign
(
exi(t)

)∣∣exi(t)∣∣α(t)
,

vj(t) = w1
j eyi(t) + w2

j sign
(
eyj(t)

)
+ η

( t∫
t−τj(t)

wje
2
yj(s) ds

)(α(t)+1)/2
eyj(t)

|eyj(t)|2

+ η sign
(
eyj(t)

)∣∣eyj(t)∣∣α(t)
,

α(t) satisfies

α(t) =

{
1− 2

lnV (0) if V (t) > e2,

0 if V (t) 6 e2.

Based on Theorem 1, we can get the following theorem.

Theorem 2. Under Assumptions 1 and 2, the error system (4) is globally stochastically
finite-time stable in probability with controller (14) if the feedback gains η, k1

i , k2
i , ki,
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w1
j , w2

j , wj satisfy

η > 0, ki >
mR2

1− λ
, wj >

nR2

1− λ
,

k1
i >

1

2

[
−2d∗i − 2

m∑
j=1

(
a−ij+b

−
ij

)
+mR1 + ki

]
, k2

i > 2

m∑
j=1

(
a+
ij+b

+
ij

)
hfj ,

w1
j >

1

2

[
−2r∗j − 2

n∑
i=1

(
p−ji+q

−
ji

)
+ nR1 + wj

]
, w2

j > 2
n∑
i=1

(
p+
ji+q

+
ji

)
hgi.

(14)

And the stochastic settling time satisfies

E(T0) 6


V (0)1/2

η if V (0) 6 e2,

(e−e2/ lnV (0)) lnV (0)+2e
2η if V (0) > e2.

Proof. We consider the same Lyapunov–Krasovskii functional as it is in the proof of
Theorem 1:

V (t) =

n∑
i=1

[
e2
xi(t) +

t∫
t−τi(t)

kie
2
xi(s) ds

]
+

m∑
j=1

[
e2
yj(t) +

t∫
t−τj(t)

wje
2
yj(s) ds

]
.

Similar to the process of former proof, if the assumptions and condition (14) are satisfied,
one has

LV (t) 6 −2ηV (α(t)+1)/2(t).

Then it follows from Lemma 1 that the origin of error system (4) is globally stochastically
finite-time stable in probability. And the stochastic settling time can be calculated as

E(T0) 6

V (0)∫
0

1

2ηv(1+α(t))/2
dv.

If V (0) 6 e2, then

E(T0) 6

V (0)∫
0

1

2ηv1/2
dv =

V (0)1/2

η
.

If V (0) > e2 then

E(T0) 6

V (0)∫
e2

1

2ηv1−1/ lnV (0)
dv +

e2∫
0

1

2ηv1/2
dv =

(e−e2/ lnV (0)) lnV (0)+2e

2η
.

This completes the proof.
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Obviously, in controller (4) the α is a constant. In controller (14), the value of α(t)
switches between 0 and a constant. Although comparing with the controller (4) in The-
orem 1, controller (14) requires more calculations in deciding the value of α(t), we can
get a better estimation of settling time with it. We will show its advantages by numerical
simulations in the next section.

Remark 1. In some existing papers (e.g., [4, 5, 19, 24, 32, 33]), the switching of mem-
ristors in neural networks depended on the absolute value of states of neural networks.
However, based on the character of memristor, the state of memristor depends on how
much charge has passed through it in a particular direction. And this kind of switching
conditions can not reflect the character of memristors, which has been point out in [22].
The parameters’ switching conditions in our model were derived from the circuit structure
of the MBAMNNs and basic principle of memristors. The memristors’ states depended on
the sign of the potential difference between the two sides of devices. So, our assumption
on the switching conditions is more reasonable than that in some existing papers.

Remark 2. To deal with the parameters mismatch problem caused by employing mem-
ristor, in some existing papers (e.g., [11, 34]), authors assumed the activation functions
take the value 0 at switching points. This is a quite strong assumption that most activation
functions do not satisfy. Comparing with it, the activation functions in this paper are only
required to be bounded (see Assumption 2), this assumption can be satisfied by many
usual activation functions. Meanwhile, with the improvement of the switching conditions
in the model, the model turned to be more reasonable, the parameters mismatch problem
became more difficult to be settled. The switching conditions in [4, 5, 19, 24, 32, 33]
can decide both the upper and lower bound of the networks’ states while the switching
conditions in this paper can only limit the upper or the lower bound of the states. The
similar switching condition can also be found in [12]. However, in [12], the influence
of memritors to the self-inhibition of the states was neglected, the parameters mismatch
problem only existed in the activation function terms. In this paper, the parameters mis-
match problem in both activation function terms and self-inhibition terms were settled.

Remark 3. Theorems 1 and 2 are also feasible for certain MBAMNNs without stochastic
disturbances by determining R1 = R2 = 0. So, our results extended some previous
researches.

Remark 4. In [33], authors analysed the finite-time anti-synchronization of MBAMNNs
with stochastic disturbances. However, their conditions to ensure the finite-time anti-
synchronization may only be satisfied if the activation functions are monotonically de-
creasing. Comparing with the conditions in [33], our conditions can be satisfied by ad-
justing the parameters in controller, and do not rely on the parameters in neural networks.
So, our results are more practical.

4 Numerical simulations

In this section, a MBAMNN is given to demonstrate the effectiveness of the theoretical
results in Section 3.
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We firstly consider a 2-dimensional drive network taking the form of (2), where

d1 =

2∑
j=1

(a1j + b1j) + 0.82, d2 =

2∑
j=1

(a2j + b2j) + 0.11,

a11 =

{
0.78, x1(t) < −f1(y1(t)),

0.53, x1(t) > −f1(y1(t)),
b11 =

{
0.33, x1(t) < −f1(y1(t− τ1(t))),
0.29, x1(t) > −f1(y1(t− τ1(t))),

a12 =

{
0.39, x1(t) < f2(y2(t)),

0.17, x1(t) > f2(y2(t)),
b12 =

{
0.65, x1(t) < f2(y2(t− τ2(t))),
0.46, x1(t) > f2(y2(t− τ2(t))),

a21 =

{
0.13, x2(t) < f1(y1(t)),

0.03, x2(t) > f1(y1(t)),
b21 =

{
0.84, x2(t) < f1(y1(t− τ1(t))),
0.02, x2(t) > f1(y1(t− τ1(t))),

a22 =

{
0.94, x2(t) < −f2(y2(t)),

0.31, x2(t) > −f2(y2(t)),
b22 =

{
0.86, x2(t) < −f2(y2(t− τ2(t))),
0.56, x2(t) > −f2(y2(t− τ2(t))),

r1 =

2∑
i=1

(p1i + q1i) + 1.13, r2 =

2∑
i=1

(p2i + q2i) + 0.90,

p11 =

{
0.44, y1(t) < −g1(x1(t)),

0.34, y1(t) > −g1(x1(t)),
q11 =

{
0.98, y1(t) < −g1(x1(t− τ1(t))),
0.54, y1(t) > −g1(x1(t− τ1(t))),

p12 =

{
0.17, y1(t) < g2(x2(t)),

0.05, y1(t) > g2(x2(t)),
q12 =

{
0.99, y1(t) < g2(x2(t− τ2(t))),
0.70, y1(t) > g2(x2(t− τ2(t))),

p21 =

{
0.66, y2(t) < g1(x1(t)),

0.33, y2(t) > g1(x1(t)),
q21 =

{
0.41, y2(t) < g1(x1(t− τ1(t))),
0.28, y2(t) > g1(x1(t− τ1(t))),

p22 =

{
0.89, y2(t) < −g2(x2(t)),

0.12, y2(t) > −g2(x2(t)),
q22 =

{
0.76, y2(t) < −g2(x2(t− τ2(t))),
0.46, y2(t) > −g2(x2(t− τ2(t))).

Select the delays and activation functions as τi(t) = τj(t) = 0.8, fj(x) = gi(x) =
2 cos(4x) (i, j = 1, 2). Then we have λ = 0, τ = 0.5, hfj = 2, hgi = 2 (i, j = 1, 2).

We choose two initial values, φ1(t) = (−6,−6,−6,−6)T, φ2(t) = (6, 6, 6, 6)T,
t ∈ [−0.8, 0]. The state trajectories of the drive network with initial values φ1(t) and
φ2(t) are shown in Fig. 2.

Then we illustrate the finite-time synchronization of the drive network with Theo-
rem 1. The response network is given in the form of (3) in which σ(t, x, y) = 0.1x+0.1y.
Then R1 = R2 = 0.02, conditions (6) can be calculated as k1 > 0.04, k1

1 > −2.97,
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Figure 2. The state trajectories of the drive network with initial values φ1(t) and φ2(t).

k2
1 > 8.60, k2 > 0.04, k1

2 > −0.99, k2
2 > 11.08, w1 > 0.04, w1

1 > −2.72, w2
1 > 10.32,

w2 > 0.04, w1
2 > −2.05, w2

2 > 10.88. Choose α = 0.3, η = 1, and other parameters of
controller (4) take the minimum of the feasible values. Take φ1(t) and φ2(t) as the initial
values of the drive and response networks, respectively. By Theorem 1, the stochastic
settling time can be estimated as E(T0) 6 13.3610. To simulate the stochastic differential
system, we used the method approved in [14]. The sate trajectories of the drive and
response networks are shown in Fig. 3. The settling time in this simulation is 2.1151.

Next, we will demonstrate the effectiveness of Theorem 2. Still, we consider the drive
and response networks above. Take φ1(t) and φ2(t) as initial values of the drive and
response networks, respectively. By calculating the conditions (14) in Theorem 2, we
choose η = 1, k1 = 0.04, k1

1 = −2.97, k2
1 = 8.60, k2 = 0.04, k1

2 = −0.99, k2
2 = 11.08,

w1 = 0.04, w1
1 = −2.72, w2

1 = 10.32, w2 = 0.04, w1
2 = −2.05, w2

2 = 10.88, the
switching parameter α(t) can be calculated as

α(t) =

{
0.6869 if V (t) > e2,

0 if V (t) 6 e2.
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Figure 3. The state trajectories of the drive and response networks with α = 0.1, η = 1. The initial values are
φ1(t) and φ2(t), respectively.

Table 1. Average settling time of the drive and response networks with initial values
φ1(t) and φ2(t) under different α

α α(t) 0 0.2 0.4 0.6 0.6869 0.8
Average time 1.6891 2.4803 2.1717 2.1057 1.8185 1.7581 1.7904

By Theorem 2, the stochastic settling time can be estimated as E(T0) 6 7.0319. The
simulation results are as follows. Figure 4 depicts the sate trajectories of the drive and
response networks. The settling time in this simulation is 1.6521. Then we select α as
α(t), 0, 0.2, 0.4, 0.6, 0.6869, 0.8, respectively. And for each α we simulate for 10 times.
The average settling time for each α are listed in Table 1.

From the results we can see that the drive and response networks can achieve synchro-
nization in finite time with controllers (4) and (14) under Theorems 1 and 2, respectively.
The average settling time in simulation is shorter than the theoretical upper limit value.
Moreover, the networks achieve synchronization in a shorter time with the error- de-
pendent switching controller (14) in this example. However, we have to claim that the
error-dependent switching controller can only provide a smaller upper limit estimation of
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Figure 4. The state trajectories of the drive and response networks with switching controller (14). The initial
values are φ1(t) and φ2(t), respectively.

settling time. It can not guarantee the networks achieve synchronization in a shorter time
under all circumstances. We obtained the switching condition by analyzing the derivative
of the expectation of settling time, but some enlarged operations in the process that we
got the expectation of settling time make the switching point not optimal.

5 Summary

In this paper, the finite-time stochastic synchronization for a class of memristor-based
BAM neural networks with time-varying delays and stochastic disturbances was inves-
tigated. Based on the structure of BAM neural networks and the basic principle of
memristors, we came up with a new kind of switching conditions for the parameters.
Based on the theory of Filippov’s solution, by using Lyapunov–Krasovskii functionals
and stochastic analysis technique, we presented sufficient conditions to ensure the finite-
time stochastic synchronization of MBAMNNs with a certain controller and an error-
dependent switching controller, respectively. Numerical examples were given to illustrate
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the effectiveness of our theorems. The drive and response networks achieved finite-
time stochastic synchronization in simulations. Moreover, the error-dependent switching
controller showed its advantage. Still there are some interesting yet challenging open
problems for future study. For example, in some cases the signals provided by controllers
we proposed are required to be quite large, however it is difficult to deliver arbitrarily
large signals through real actuators. In [25, 26], actuator saturation was considered in the
study of control analysis, which may be used to improve our results.
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