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Abstract. We compare the newly defined bv(s)-metric spaces with several other abstract spaces
like metric spaces, b-metric spaces and show that some well-known results, which hold in the
latter class of spaces, may not hold in bv(s)-metric spaces. Besides, we introduce the notions of
sequential compactness and bounded compactness in the framework of bv(s)-metric spaces. Using
these notions, we prove some fixed point results involving Nemytzki–Edelstein type mappings in
this setting, from which several comparable fixed point results can be deduced. In addition to these,
we find some existence and uniqueness criteria for the solution to a certain type of mixed Fredholm–
Volterra integral equations.

Keywords: bv(s)-metric space, boundedly compact space, sequentially compact space, contractive
mapping.

1 Introduction

There are many interesting extensions of the notion of metric spaces available in the liter-
ature where several classical fixed point results have been studied. One of such extensions
is the concept of b-metric spaces, which was introduced by Bakhtin [3] in 1989, and later
on, in 1993, it had been further investigated by Czerwik [5]. Afterward, in the year of
2000, Branciari [4] coined the notion of rectangular metric spaces or generalized metric
spaces by modifying the triangle inequality of the usual metric spaces. As a generalization
of b-metric spaces and rectangular metric spaces, George et al. [11] introduced the concept
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of rectangular b-metric spaces. Following this direction, in [4], Branciari introduced the
concept of v-generalized metric spaces. Taking into account all these concepts, many
mathematicians have elaborated several fixed point results in these settings, some of which
meliorated and improved the original fixed point theories in usual metric spaces and some
others give new results in the literature. In the literature, there is a huge amount of relevant
texts available for intent readers (see [2, 7, 11, 13, 18] and the references therein).

In an attempt to extend all kinds of above mentioned generalizations of metric spaces,
Mitrović and Radenović [16] introduced the concept of bv(s)-metric spaces. Before going
further, we recall the definition of such abstract spaces.

Definition 1. (See [16, Def. 1.8].) Let X be a nonempty set, v ∈ N and s > 1 a real
number. A function d : X×X → R is said to be a bv(s)-metric if for all x, y ∈ X and for
all distinct points u1, u2, . . . , uv ∈ X , each of them different from x and y, the following
conditions hold:

(i) d(x, y) > 0 and d(x, y) = 0 if and only if x = y;
(ii) d(x, y) = d(y, x);

(iii) d(x, y) 6 s[d(x, u1) + d(u1, u2) + · · ·+ d(uv, y)].

If d is a bv(s)-metric on X , then the pair (X, d) is said to be a bv(s)-metric space.
It is easy to observe that the class of bv(s)-metric spaces is larger than that of all other

metric spaces. Thus, it is a natural question to ask whether all properties of the above
mentioned metric spaces remain invariant in case of bv(s)-metric spaces or not. So in
this paper, one of our main motivations is to compare some properties of sequences, the
metric function d in bv(s)-metric spaces with that of usual metric spaces, b-metric spaces.
To be specific, we show that in a bv(s)-metric space (X, d), a convergent sequence may
not be Cauchy, the metric function d need not be continuous. Moreover, we show that
a sufficient condition for a sequence to be Cauchy in the standard metric space, as well as
in a b-metric space, may not work in this structure.

On the other hand, many mathematicians have achieved some interesting fixed point
results in the setting of bv(s)-metric spaces, such as the authors of [16] proved fixed point
results associated to Banach and Reich contractions, the authors of [1] obtained a common
fixed point theorem due to Jungck, the authors of [15] achieved fixed point result due
to Sehgal–Guseman. It may be observed that the existing results in this structure are
concerned with a different type of contraction mappings only. But at the same time, there
are some important results regarding contractive type mappings in the standard metric
spaces; see [8–10, 12]. So it is a natural question to ask whether the fixed point results
related to different contractive conditions can be proved in the setting of bv(s)-metric
spaces or not. In fact, we are able to find some fixed point results concerning contractive
type maps in this setting. We first recall the definition of a contractive mapping in
metric spaces and then highlight some salient points regarding the existence of fixed
points. A self-mapping T on a metric space (X, d) is said to be a contractive mapping
if d(Tx, Ty) < d(x, y) holds for all x, y ∈ X with x 6= y. It may be noted that
completeness of the underlying space X does not give the guaranty of the existence of
a fixed point of this map, but if X is compact, it is guaranteed; see [8]. In this article,
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we also try to find a (mild) additional criteria on the underlying bv(s)-metric space X ,
which confirms the existence of a fixed point for a contractive mapping. To proceed in
this direction, we introduce the notions of sequential compactness and bounded com-
pactness of bv(s)-metric spaces and establish correlations between them. In such spaces,
we establish some fixed point theorems related to contractive mapping, which improve
and generalize some standard fixed point results due to Nemytzki [17], Edelstein [8] and
Suzuki [19].

Another importance of the (metric) fixed point theory is that it is an invaluable tool for
finding existence and/or uniqueness criteria of solution(s) of several types of differential
equations, integral equations, fractional integral equations, matrix equations, etc. In most
of the cases, the fixed point results of usual metric spaces are applied to find the criteria as
mentioned above. But the fixed point results of bv(s)-metric spaces are yet to be employed
to investigate for such tools. So at the end of this paper, we utilize one of our obtained
results to find some criteria for the existence and uniqueness of solution of a special type
of integral equation.

2 Preliminaries

It is well known that Nemytzki’s result in [17], regarding contractive mappings, was first
in the literature. Later on, Edelstein proved in [8] that a contractive self-mapping on
a compact metric space has a unique fixed point. One can easily verify that, in this result,
the compactness of X cannot be replaced by completeness. Therefore, some additional
conditions have to be imposed on X or on T together with the completeness of X to
ensure the existence of fixed point of T . Many researchers tried to find such additional
conditions. One of such conditions is given by the next theorem, which was proved by
Ćirić.

Theorem 1. (See [6].) Let (X, d) be a complete metric space, and let T : X → X be
a mapping such that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y, and let for any
ε > 0, there exists δ > 0 such that

ε < d(x, y) < ε+ δ =⇒ d(Tx, Ty) 6 ε

for any x, y ∈ X . Then T has a unique fixed point z, and for any x ∈ X , the sequence of
iterates (Tnx) converges to z.

Suzuki introduced another additional weaker assumption with the completeness of
(X, d) to assure fixed point of T in the following theorem.

Theorem 2. (See [19, Thm. 5].) Let (X, d) be a complete metric space, T : X → X
be a mapping such that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y, and let the
following hold: For any x ∈ X and for any ε > 0, there exists δ > 0 such that

d
(
T ix, T jx

)
< ε+ δ =⇒ d

(
T i+1x, T j+1x

)
6 ε

for any i, j ∈ N ∪ {0}. Then T has a unique fixed point z, and for any x ∈ X , the
sequence of iterates (Tnx) converges to z.
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On the other hand, Mitrović and Radenović introduced the notions of Cauchy se-
quences and completeness in bv(s)-metric space.

Definition 2. (See [16, Def. 1.9].) Let (X, d) be a bv(s)-metric space, (xn) be a sequence
in X and x ∈ X .

(i) The sequence (xn) is said to be a Cauchy sequence if for any ε > 0, there exists
N ∈ N such that d(xn, xn+p) < ε for all n > N and for all p ∈ N.

(ii) The sequence (xn) is said to be convergent to x if for any ε > 0, there exists
N ∈ N such that d(xn, x) < ε for all n > N , and this fact is represented by
limn→∞ xn = x or xn → x as n→∞.

(iii) (X, d) is said to be a complete bv(s)-metric space if every Cauchy sequence in
X converges to some x ∈ X .

In this manuscript, we now introduce the concepts of sequential compactness and
bounded compactness of a bv(s)-metric space.

Definition 3. Let (X, d) be a bv(s)-metric space, and let (xn) be a sequence in X . Then
the sequence (xn) is said to be a bounded sequence if there exists a real number M > 0
such that d(xn, xm) 6 M for all n,m ∈ N or, equivalently, d(xn, xn+k) 6 M for all
n, k ∈ N.

Definition 4. Let (X, d) be a bv(s)-metric space. Then X is said to be sequentially
compact if every sequence (xn) in X has a subsequence, which converges to some point
of X . Again, a subset A of X is said to be sequentially compact if every sequence (xn)
in A has a subsequence, which converges to some point of A.

Definition 5. Let (X, d) be a bv(s)-metric space. ThenX is said to be boundedly compact
if every bounded sequence (xn) in X has a subsequence, which converges to some point
of X . Again, a subset A of X is said to be boundedly compact if every bounded sequence
(xn) in A has a subsequence, which converges to some point of A.

Clearly, it follows from the definition that every sequentially compact bv(s)-metric
space is boundedly compact but not conversely. To investigate this, we frame the follow-
ing example.

Example 1. Consider the set X = X1 ∪X2, where X1 = {1/n: n ∈ N and n > 2} and
X2 = {0, 1, 2}. We define a function d : X ×X → R by

d(x, y) =



|n−m| if x, y ∈ X1, x 6= y, x = 1
n , y = 1

m and |n−m| 6= 1, 3;
1
2 if x, y ∈ X1, x 6= y, x = 1

n , y = 1
m and |n−m| = 1, 3;

n if x ∈ X1, y ∈ X2 and x = 1
n or y ∈ X1, x ∈ X2 and y = 1

n ;

5 if x, y ∈ X2 and x 6= y;

0 if x, y ∈ X and x = y.

Then it is an easy task to verify that (X, d) is a b3(2)-metric space.
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Note that the sequence (1/(n+2)) has no subsequence, which converges to some point
of X . So, (X, d) is not sequentially compact. But one can easily check that a sequence
(xn) in X is bounded if and only if the range of the sequence (xn) is finite. Thus every
bounded sequence in X has a subsequence, which converges to some point of X , i.e,
(X, d) is boundedly compact.

3 Comparison of bv(s)-metric space with other spaces

In this section, we point out some properties of usual metric spaces and b-metric spaces,
which are not true in case of bv(s)-metric spaces. The first one is given in the following
remark.

Remark 1. We know that a convergent sequence in usual metric spaces is always a Cauchy
sequence. But this fact is not true in case of bv(s)-metric spaces. To show this, we illustrate
the following example in the line of [7, Ex. 1].

Example 2. Let us take X = {0, 1/n: n ∈ N}. We define a function d : X ×X → R by

d(x, y) =


0 if x = y;
1
n if x = 1

n , y = 0 or y = 1
n , y = 0;

1 + 1
n + 1

m if x = 1
n , y = 1

m and n 6= m.

Then it is easy to check that (X, d) is a b2(1)-metric space. Now we consider the sequence
(xn) in X where xn = 1/n for all n ∈ N. Then we have

d

(
1

n
, 0

)
=

1

n
→ 0 as n→∞,

but

d

(
1

n
,
1

m

)
= 1 +

1

n
+

1

m
→ 1 as n,m→∞.

Therefore, (xn) is convergent in X but not a Cauchy sequence.

In the next part of this section, we state a lemma in bv(s)-metric space, which also
occurs in usual metric spaces.

Lemma 1. Let (X, d1) and (Y, d2) be two bv(s)-metric spaces. Then (X ×Y, d3) is also
a bv(s)-metric space, where d3 is the product metric on (X × Y ), i.e., d3 : (X × Y ) ×
(X × Y )→ R is defined by

d3
(
(x1, y1), (x2, y2)

)
= max

{
d1(x1, x2), d2(y1, y2)

}
for all (x1, y1), (x2, y2) ∈ X × Y .

Proof. The proof of this lemma is similar to that of usual metric spaces.
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Remark 2. If (X, d) is a metric space, then we know that the function d is continuous
on X × X with respect to the product metric on X × X , but this is not true in case of
bv(s)-metric spaces. This fact can be substantiated from [7, Ex. 1] in case of rectangular
metric spaces of Branciari, i.e., in b2(1)-metric spaces.

Remark 3. We know that in a metric space (X, d) for a sequence (xn), if there exists
a real number µ such that 0 6 µ < 1 and d(xn, xn+1) 6 µ · d(xn−1, xn) holds for all
n ∈ N, then (xn) is a Cauchy sequence in X . This result also holds in b-metric spaces,
i.e., in b1(s)-metric spaces, which is proved in [14] by Miculescu and Mihail. Now in the
next example, we show that this result may not hold in arbitrary bv(s)-metric spaces.

Example 3. We consider the set X = N. Define a function d : X ×X → R by

d(n,m) =


0 if n = m;

1
2max{n,m} if n 6= m and exactly one of n,m is even;

1 if n 6= m and n,m both are even or both are odd.

Then, clearly, (X, d) is not a b-metric space, i.e., b1(s)-metric space, but (X, d) is a b2(1)-
metric space. Now we consider the sequence (xn) in X where xn = n for all natural
numbers n. Note that for any natural number n,

d(xn, xn+1) =
1

2n
, d(xn−1, xn) =

1

2n−1
.

Therefore,
d(xn, xn+1) 6 µd(xn−1, xn).

holds for µ = 1/2. But (xn) is not a Cauchy sequence, since d(xn, xn+2) = 1 for all
natural numbers n.

4 Fixed point results

To begin with, we prove a fixed point theorem related to contractive mappings in the
structure of sequentially compact bv(s)-metric spaces.

Theorem 3. Let (X, d) be a sequentially compact bv(s)-metric space, and T : X → X
a mapping such that

d(Tx, Ty) < d(x, y)

for all x, y ∈ X with x 6= y. Assume that the function d is continuous on X ×X . Then T
possesses a unique fixed point, and for any x ∈ X , the Picard’s iterative sequence (Tnx)
converges to that fixed point.

Proof. At first, we fixed an element x0 inX and then we consider a sequence (xn), which
is defined by xn = Tnx0 for every natural number n. Now we show that the sequence
of real numbers (sn), defined by sn = d(xn, xn+1), converges to 0. If xn = xn+1 for
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some n ∈ N, then clearly (sn) converges to 0. So we now assume that xn 6= xn+1 for all
n ∈ N. Then we have

sn+1 = d(xn+1, xn+2) < d(xn, xn+1) = sn.

This proves that (sn) is a decreasing sequence of nonnegative real numbers and hence
convergent to some a > 0. Again, by the sequential compactness of (X, d), there exists
a convergent subsequence of (xn), say, (xnk

). Further, let this subsequence converges
to z ∈ X . From the contractivity condition of T , it is continuous on X , and hence the
subsequences (xnk+1) and (xnk+2) converge to Tz and T 2z respectively. Then we have

a = lim
n→∞

d(xn, xn+1) = lim
k→∞

d(xnk
, xnk+1) = d(z, Tz).

Again, we have

a = lim
n→∞

d(xn, xn+1) = lim
k→∞

d(xnk+1, xnk+2) = d(Tz, T 2z).

Now if a > 0, then z 6= Tz and so we have d(Tz, T 2z) < d(z, Tz), i.e., a < a, which is
a contradiction. So we must have a = 0, i.e., (sn) converges to 0. Further, since a = 0,
we have Tz = z. So z is a fixed point of T .

Now we examine the uniqueness of this fixed point. To do this, let z1 be another fixed
point of T . Then we have

d(z, z1) = d(Tz, Tz1) < d(z, z1),

which is a contradiction. Hence, z is the only fixed point of T .
Finally, we prove that (xn) converges to z. If xn = z for some n ∈ N, then clearly

(xn) converges to z. Let us now, assume that xn 6= z for all n ∈ N. Since, (xn) contains
a subsequence (xnk

), which converges to z, z is a cluster point of the sequence (xn). Let
z1 be another cluster point of (xn), then (xn) contains a subsequence, which converges to
z1. Then by similar arguments as above we can prove that z1 is a fixed point of T and this
will again lead to a contradiction. Henceforth, z is the only cluster point of (xn). Next,
we consider the sequence (tn) of real numbers given by tn = d(xn, z) for all n ∈ N.
Therefore,

tnk
= d(xnk

, z)→ 0 as n→∞.

This shows that the sequence (tn) contains the subsequence (tnk
), which converges to 0

and so 0 is a cluster point of {tn}.
Again,

tn+1 = d(xn+1, z) = d(Txn, T z) < d(xn, z) = tn.

Consequently, (tn) is a decreasing sequence of nonnegative real numbers and hence
convergent. But 0 is a cluster point of the convergent sequence (tn), so (tn) must converge
to 0. Therefore, tn → 0 as n→∞, i.e., d(xn, z)→ 0 as n→∞. Thus, (xn) converges
to z, i.e., (Tnx0) converges to z. Since x0 ∈ X was arbitrary, it follows that (Tnx)
converges to the fixed point z for any x ∈ X .

Nonlinear Anal. Model. Control, 25(6):1015–1034
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From Theorem 3, we can deduce the following corollary by taking s = 1 and v = 1.

Corollary 1. Let (X, d) be a compact metric space and T : X → X a mapping such
that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Then T has a unique fixed point
z, and for any x ∈ X , the sequence (Tnx) converges to z.

Remark 4. Corollary 1 extends Remark 3.1 of [8].

In the above theorem sequential compactness condition cannot be replaced by bounded
compactness of the space, which follows from the following example.

Example 4. Let X = N and define a function d : X ×X → R by

d(n,m) =

{
0 if n = m;

|n−m|+ 1 + 1
n + 1

m if n 6= m.

Then it is clear that (X, d) is a b1(1)-metric space and d is continuous onX×X . Also one
can easily verify that (X, d) is boundedly compact but not sequentially compact. Next,
we define a mapping T : X → X by

T (n) = n+ 1

for all n ∈ N. Then for any n,m ∈ N with n 6= m, we have

d(Tn, Tm) = d(n+ 1,m+ 1) = |n−m|+ 1 +
1

n+ 1
+

1

m+ 1

< |n−m|+ 1 +
1

n
+

1

m
= d(n,m).

Thus all the conditions of Theorem 3 are satisfied but T is fixed point free.

Therefore, we are in search of an additional condition either on X or on T with the
bounded compactness of X to get a unique fixed point of T. Here in the next theorem we
deal with one such additional condition.

Theorem 4. Let (X, d) be a boundedly compact bv(s)-metric space, and let T : X → X
be a mapping such that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Assume
that the function d is continuous on X × X . Further, assume that, for any x ∈ X and
for any k ∈ N with k > v, there exists a real number M > 0 (depending on x) such
that d(x, T k−vx) 6 M . Then T possesses a unique fixed point, and for any x ∈ X , the
Picard’s iterative sequence (Tnx) converges to that fixed point.

Proof. We choose an element x0 from X and then we consider the sequence of iterates
(xn) where xn = Txn−1 for all n > 1. If xn = xn+1 for some natural number n, then
it is easy to notice that T has a fixed point, the fixed point is unique and the sequence
(xn) converges to that fixed point. So now we assume that xn 6= xn+1 for all natural
numbers n. Then we claim that all terms of (xn) are distinct. To prove our claim, we
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presume that xn = xm for some natural numbers n,m with m > n. Then Txn = Txm
i.e. xn+1 = xm+1. Therefore,

d(xn+1, xn) = d(xm+1, xm) < d(xm, xm−1) < · · · < d(xn+1, xn),

which is a contradiction. So our claim is correct.
Now for any n ∈ N, we have

d(xn, xn+1) < d(xn−1, xn) < d(xn−2, xn−1) < · · · < d(x0, x1).

Let k, n ∈ N be arbitrary but fixed. First suppose that k > v. Then by hypothesis we get
a real number M > 0 such that d(x0, xk−v) 6M . Therefore,

d(xn, xn+k) 6 s
{
d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+v, xn+k)

}
< s
{
d(x0, x1) + d(x0, x1) + · · ·+ d(xn+v−1, xn+k−1)

}
< · · · < s

{
vd(x0, x1) + d(x0, xk−v)

}
< s
{
vd(x0, x1) +M

}
=M1, say.

Now suppose that k < v. Then we have

d(xn, xn+k)

6 s
{
d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+v−1, xn+v) + d(xn+v, xn+k)

}
< s
{
d(x0, x1) + d(x0, x1) + · · ·+ d(x0, x1) + d(xn+v−1, xn+k−1)

}
< · · · < s

{
d(x0, x1) + d(x0, x1) + · · ·+ d(x0, x1) + d(xv, xk)

}
. (1)

Let M2 = maxk<v{d(xv, xk)}. Then, clearly, M2 is finite. Thus by using equation (1),
we get

d(xn, xn+k) < s
{
vd(x0, x1) +M2

}
=M3, say.

Therefore, from our above discussions, we see that

d(xn, xn+k) < max{M1,M3}

for all n, k ∈ N, which shows that the sequence (xn) is bounded. So by bounded
compactness of X , there exists a convergent subsequence of (xn), let it be (xnk

). Let
limk→∞ xnk

= z. Then proceeding as Theorem 3, we can show that z is the unique fixed
point of T and the sequence of iterates (xn) converges to z.

As a consequence of Theorem 4, we obtain the following corollary.

Corollary 2. Let (X, d) be a boundedly compact bv(s)-metric space such that d is con-
tinuous on X ×X , and let T : X → X be a bounded mapping such that d(Tx, Ty) <
d(x, y) for all x, y ∈ X with x 6= y. Then T has a unique fixed point, and for any x ∈ X ,
the sequence (Tnx) converges to that fixed point.

Taking s = 1 and v = 1 in Theorem 4, we get the following corollary.

Nonlinear Anal. Model. Control, 25(6):1015–1034
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Corollary 3. Let (X, d) be a boundedly compact metric space, and let T : X → X be
a mapping such that d(Tx, Ty) < d(x, y) for all x, y ∈ X . Further, assume that, for any
x ∈ X and for any k ∈ N with k > 1 there exists a real number M > 0 (depending on x)
such that d(x, T k−1x) 6M . Then T possesses a unique fixed point, and for any x ∈ X ,
the Picard’s iterative sequence (Tnx) converges to that fixed point.

Now we cite the following example, which supports the above theorem.

Example 5. Consider the set X = {1/n: n ∈ N, n > 2}. We define a mapping d :
X ×X → R by

d(x, y) =

{
|n−m| if |n−m| 6= 1;
1
2 if |n−m| = 1.

Then it is an easy task to verify that (X, d) is a b3(3)-metric space. Also, it is simply
noticeable that (X, d) is boundedly compact but not sequentially compact.

Now we define a mapping T : X → X by

Tx =
1

4
for all x ∈ X.

Then, clearly, d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y.
Further, for any x ∈ X and for any k ∈ N with k > 3, there exists a real number

M > 0 (depending on x) such that d(x, T k−3x) < M (here M = 1/x + 4). Then by
Theorem 4, T has a unique fixed point. Note that x = 1/4 is the unique fixed point of T .

From the definitions of bounded compactness and completeness of bv(s) metric spaces
we see that every boundedly compact bv(s)-metric space is complete. Thus Example 4
also shows that if (X, d) is a complete bv(s)-complete metric space and T : X → X is
a mapping such that d(Tx, Ty) < d(x, y) for all x, y ∈ with x 6= y, then T may not have
a fixed point. So we again need some additional assumption with the completeness of X
to warrant the fixed point of T .

Next, we consider the following example.

Example 6. Let (xin) be a sequence whose ith term is 1 and all other terms are 0. Consider
the set X = {(xin): i ∈ N}. Now we define a function d : X ×X → R by

d
((
xin
)
,
(
xjn
))

=


0, if i = j;

1 + 100∑∞
n=1 |ixi

n−jx
j
n|

if i, j 6 10;

1 + 10∑∞
n=1 |ixi

n−jx
j
n|

elsewhere.

Then it is trivial to check that (X, d) is a b2(10)-metric space. Further, (X, d) is complete
but not boundedly compact. We now define T : X → X by

T
((
xin
))

= xi+11
n

for all (xin) ∈ X . Let (xin), (x
j
n) ∈ X be arbitrary with i 6= j. Then the following three

cases may arise.
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Case 1. Let i, j 6 10. Then

d
(
T
(
xin
)
, T
(
xjn
))

= d
((
xi+11
n

)
,
(
xj+11
n

))
=

10

i+ j + 22
+ 1 <

100

i+ j
+ 1

= d
((
xin
)
,
(
xjn
))
.

Case 2. Let i, j > 10. Then

d
(
T
(
xin
)
, T
(
xjn
))

= d
((
xi+11
n

)
,
(
xj+11
n

))
=

10

i+ j + 22
+ 1 <

10

i+ j
+ 1

= d
((
xin
)
,
(
xjn
))
.

Case 3. Let exactly any one of i and j is greater than 10. Then

d
(
T
(
xin
)
, T
(
xjn
))

= d
((
xi+11
n

)
,
(
xj+11
n

))
=

10

i+ j + 22
+ 1 <

10

i+ j
+ 1

= d
((
xin
)
,
(
xjn
))
.

Thus, d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y.
Note that for any x ∈ X and for any k ∈ N with k > v (here v = 2), there exists a

real number M > 0 (here we may take M = 200) such that d(x, T k−vx) 6 M but still
T has no fixed point.

Thus we see that the additional condition, which is considered in Theorem 4 together
with the completeness of X , does not deliver fixed point of T . It means that we have to
find out some different additional condition with the completeness of X so as to ensure
the existence of fixed point of T . In the following theorem, we consider such an additional
condition in case of bv(1)-metric spaces, which was firstly given by Suzuki [19].

Theorem 5. Let (X, d) be a complete bv(1)-metric space, and let T : X → X be a map-
ping such that d(Tx, Ty) < d(x, y) holds for all x, y ∈ X with x 6= y. Further, assume
that for any x ∈ X and for any ε > 0, there exists δ > 0 such that

d
(
T ix, T jx

)
< ε+ δ =⇒ d

(
T i+1x, T j+1x

)
6 ε

for any i, j ∈ N ∪ {0}. Then T possesses a unique fixed point, and for any x ∈ X , the
Picard’s iterative sequence (Tnx) converges to that fixed point.

Proof. First, we choose an arbitrary but fixed element x0 in X , and then we consider a
sequence (xn), which is defined by xn = Tnx0 for every natural number n. If xn = xn+1

for some natural number n, then xn is the unique fixed point of T . So, now we assume that
xn 6= xn+1 for every natural numbers n. Under this assumption, following Theorem 4,
we can show that all terms of (xn) are distinct.

Next, we consider the sequence of real numbers (sn), where sn = d(xn, xn+1) for
all n ∈ N. Then

sn+1 = d(xn+1, xn+2) < d(xn, xn+1) = sn
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for all n ∈ N. Therefore, (sn) is a decreasing sequence of nonnegative real numbers and
hence convergent to some a > 0. If a > 0, then by given condition there exists δ > 0
such that

d(xn, xn+1) < a+ δ =⇒ d(xn+1, xn+2) 6 a

for all n ∈ N. Again, by definition of a, for the above δ > 0, there exists n ∈ N such that
d(xn, xn+1) < a+ δ.

Therefore, d(xn+1, xn+2) 6 a, and this leads to a contradiction. So we must have
a = 0, i.e.,

lim
n→∞

d(xn, xn+1) = 0. (2)

In a similar manner, we can show that

lim
n→∞

d(xn, xn+2) = 0. (3)

Now let ε > 0 be arbitrary. Then by given condition we get a δ > 0 such that

d(xn, xn+1) <
ε

2
+ δ =⇒ d(xn+1, xn+2) 6

ε

2

for all n ∈ N.
On the other hand, by equations (2) and (3), for the above δ > 0, there exists a natural

number N such that

d(xn, xn+1) <
δ

2v
, d(xn, xn+2) <

δ

2v
(4)

for all n > N .
Now for each n > N , we show by mathematical induction on j that

d(xn+2v+1, xn+2v+j) 6
ε

2

holds for all j ∈ N. The result is obviously true for j = 1. Assume that the result is true
for some j ∈ N. So, d(xn+2v+1, xn+2v+j) 6 ε/2, which implies

d(xn+3v+1, xn+3v+j) 6
ε

2
. (5)

Then

d(xn+2v, xn+2v+j)

6
{
d(xn+2v, xn+2v+2) + d(xn+2v+2, xn+2v+3) + d(xn+2v+3, xn+2v+4)

+ · · ·+ d(xn+2v+v, xn+2v+v+1) + d(xn+2v+v+1, xn+2v+j)
}

=
{
d(xn+2v, xn+2v+2) + d(xn+2v+2, xn+2v+3) + d(xn+2v+3, xn+2v+4)

+ · · ·+ d(xn+3v, xn+3v+1)
}
+ d(xn+2v+j , xn+3v+1)

6
{
d(xn+2v, xn+2v+2) + d(xn+2v+2, xn+2v+3) + d(xn+2v+3, xn+2v+4)

+ · · ·+ d(xn+3v, xn+3v+1)
}

+
{
d(xn+2v+j , xn+2v+j+1) + (xn+2v+j+1, xn+2v+j+2)

+ · · ·+ d(xn+2v+j+v−1, xn+2v+j+v) + d(xn+2v+j+v, xn+3v+1)
}
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=
{
d(xn+2v, xn+2v+2) + d(xn+2v+2, xn+2v+3)

+ d(xn+2v+3, xn+2v+4) + · · ·+ d(xn+3v, xn+3v+1)
}

+
{
d(xn+2v+j , xn+2v+j+1) + d(xn+2v+j+1, xn+2v+j+2)

+ · · ·+ d(xn+3v+j−1, xn+3v+j)
}
+ d(xn+3v+j , xn+3v+1). (6)

Using equations (4) and (5) in equation (6), we get

d(xn+2v, xn+2v+j) <

(
δ

2v
+

δ

2v
+ · · ·+ δ

2v

)
+

(
δ

2v
+

δ

2v
+ · · ·+ δ

2v

)
+
ε

2

=⇒ d(xn+2v, xn+2v+j) <
ε

2
+ δ

for all n > N . This implies that

d(xn+2v+1, xn+2v+j+1) 6
ε

2

for all n > N . Thus by induction it follows that

d(xn+2v+1, xn+2v+j) 6
ε

2
< ε

for all n > N and for all j ∈ N, which proves that (xn) is a Cauchy sequence. So, by
the completeness of X , (xn) converges to some z ∈ X . Again, since T is contractive,
the sequence (xn) converges to Tz also. So z is a fixed point of T . The uniqueness of the
fixed point can be analogously proved from Theorem 3.

Since we choose x0 ∈ X arbitrarily, it follows that (Tnx) converges to the unique
fixed point z for all x ∈ X .

It is very interesting to verify whether the additional criteria, used in the above the-
orem, will work for s > 1 or not. If not, then it is also necessary to find an additional
assumption, which will ensure the existence of a fixed point in the complete bv(s)-metric
structure. In this respect, we pose the following open problem.

Open question. Let (X, d) be a complete bv(s)-metric space, and let T be a self-mapping
on X such that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. If s > 1, then find out
a weaker additional assumption on T , which will ensure that T has a fixed point.

From Theorem 5 we can derive several important corollaries. We present a number of
selected ones, which extend several well-known results in the literature.

Corollary 4. (See [19, Thm. 5].) Let (X, d) be a complete metric space, and let T : X →
X be a mapping such that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Further,
assume that for any x ∈ X and for any ε > 0, there exists δ > 0 such that

d(T ix, T jx) < ε+ δ =⇒ d(T i+1x, T j+1x) 6 ε

for any i, j ∈ N ∪ {0}. Then T possesses a unique fixed point, and for any x ∈ X , the
Picard’s iterative sequence (Tnx) converges to that fixed point.
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Corollary 5. Let (X, d) be a complete rectangular metric space, and let T : X → X be
a mapping such that d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Further, assume
that for any x ∈ X and for any ε > 0, there exists δ > 0 such that

d
(
T ix, T jx

)
< ε+ δ =⇒ d

(
T i+1x, T j+1x

)
6 ε

for any i, j ∈ N ∪ {0}. Then T possesses a unique fixed point, and for any x ∈ X , the
Picard’s iterative sequence (Tnx) converges to that fixed point.

Now we present an example in order to endorse Theorem 5.

Example 7. Consider the setX=C[0, 1] and letX1={x∈C[0, 1]: sup06t61 |x(t)|61}.
Let us define a function d : X ×X → R by

d(x, y) =



sup06t61 |x(t)− y(t)| if x, y ∈ X1;
2
3 if x, y ∈ X \X1 and x 6= y;

3 if any one of x and y lies in X
and the other in X \X1;

0 elsewhere.

Then it is easy to check that (X, d) is a b2(1)-metric space. Next, we define a mapping
T : X → X by

(Tx)(t) =

{
t
2x(t) if x ∈ X1;

0 if x ∈ X \X1.

Let x, y ∈ X be arbitrary with x 6= y. Then the following three cases may arise.
Case 1. Let x, y ∈ X1. Then

d(Tx, Ty) = sup
06t61

∣∣∣∣ t2x(t)− t

2
y(t)

∣∣∣∣ 6 1

2
sup

06t61

∣∣x(t)− y(t)∣∣
< d(x, y).

Case 2. Let x, y ∈ X \X1. Then

d(Tx, Ty) = 0 < d(x, y).

Case 3. Let x ∈ X1 and y ∈ X \X1. Then

d(Tx, Ty) = sup
06t61

∣∣∣∣ t2x(t)
∣∣∣∣ < 3 = d(x, y).

Thus d(Tx, Ty) < d(x, y) for all x, y ∈ X with x 6= y. Next, assume that x ∈ X and
ε > 0 be arbitrary. Here we choose δ = ε. Therefore, if x ∈ X \X1, then, clearly,

d
(
T ix, T jx

)
< ε+ δ =⇒ d

(
T i+1x, T j+1x

)
6 ε
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for any i, j ∈ N ∪ {0}. Now we assume that x ∈ X1 and d(T ix, T jx) < ε+ δ for some
i, j ∈ N ∪ {0}. Therefore,

sup
06t61

∣∣∣∣( t2
)i

x(t)−
(
t

2

)j

x(t)

∣∣∣∣ < ε+ ε

=⇒ sup
06t61

∣∣∣∣( t2
)i+1

x(t)−
(
t

2

)j+1

x(t)

∣∣∣∣ < ε

=⇒ d
(
T i+1x, T j+1x

)
< ε.

Thus we see that all conditions of Theorem 5 hold good. So by this theorem, T has
a unique fixed point in X . Indeed, x : [0, 1] → R, defined by x(t) = 0 for all t ∈ [0, 1],
is the fixed point of T in X .

5 Application to an integral equation

In this section, we will apply our results, established in previous section, to a mixed
Fredholm–Volterra type integral equation of the following form:

y(t) = f(t) +

t∫
0

G1(x, t)f1
(
x, y(x)

)
dx+

1∫
0

G2(x, t)f2
(
x, y(x)

)
dx, 0 6 t 6 1, (7)

where f : [0, 1] → R+, G1, G2 : [0, 1] × [0, 1] → R+ and f1, f2 : [0, 1] × R → R+ are
continuous functions with f(0) = G1(t, 0) = G2(t, 0) = f1(t, 0) = f2(t, 0) = 0.

We utilize Theorem 3 to develop some conditions on the functions f , f1, f2, G1

and G2, which will ensure the existence and uniqueness of solution of equation (7). We
present these conditions in the following theorem.

Theorem 6. Let us consider the integral equation given by equation (7), and assume that
the following conditions hold:

(i) There exists five positive constants α1, α2, β1, β2 and β such that |f(t1−f(t2)| 6
β|t1−t2|, |f1(x, y1)−f1(x, y2)| 6 β1|y1−y2|, |f2(x, y1)−f2(x, y2)| 6 β2|y1−
y2|, |G1(x, t1)−G1(x, t2)| 6 α1|t1−t2| and |G2(x, t1)−G2(x, t2)| 6 α2|t1−t2|
hold for all x, t1, t2 ∈ [0, 1] and y1, y2 ∈ R;

(ii) β + (7/2)α1β1 + α2β2 6 1.

Then the integral equation acquires a unique nonnegative solution y(t) with |
∫ 1

0
y(t)dt|61.

Proof. Let C[0, 1] be the set of all real-valued continuous functions, which are defined on
[0, 1], and consider a function d : C[0, 1]× C[0, 1]→ R defined by

d(x, y) = sup
06t61

∣∣x(t)− y(t)∣∣2
for all x, y ∈ C[0, 1]. Then one can comfortably certify that d is a b1(2)-metric on
C[0, 1] and d is continuous on X × X . Let us take A = {y ∈ C[0, 1]: |y(t1) − y(t2)|
6 |t1 − t2| for all t1, t2 ∈ [0, 1], y(t) > 0 for all t ∈ [0, 1] and |

∫ 1

0
y(t) dt| 6 1}. Then
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by utilizing Arzela–Ascoli theorem, we can easily verify that A is a sequentially compact
subset of the b1(2)-metric space (C[0, 1], d).

Now we define a mapping T on A as follows:

Ty(t) = f(t) +

t∫
0

G1(x, t)f1
(
x, y(x)

)
dx+

1∫
0

G2(x, t)f2
(
x, y(x)

)
dx

for all y(t) ∈ A. Let t1, t2 ∈ [0, 1] be arbitrary. Without loss of generality, we assume
that t2 > t1. Then we have∣∣Ty(t1)− Ty(t2)∣∣

=

∣∣∣∣∣f(t1) +
t1∫
0

G1(x, t1)f1
(
x, y(x)

)
dx+

1∫
0

G2(x, t1)f2
(
x, y(x)

)
dx

− f(t2)−
t2∫
0

G1(x, t2)f1
(
x, y(x)

)
dx−

1∫
0

G2(x, t2)f2
(
x, y(x)

)
dx

∣∣∣∣∣
6
∣∣f(t1)− f(t2)∣∣+

∣∣∣∣∣
t1∫
0

G1(x, t1)f1
(
x, y(x)

)
dx−

t2∫
0

G1(x, t2)f1
(
x, y(x)

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
1∫

0

G2(x, t1)f2
(
x, y(x)

)
dx−

1∫
0

G2(x, t2)f2
(
x, y(x)

)
dx

∣∣∣∣∣
6 β|t1 − t2|+

∣∣∣∣∣
t1∫
0

G1(x, t1)f1
(
x, y(x)

)
dx−

t1∫
0

G1(x, t2)f1
(
x, y(x)

)
dx

∣∣∣∣∣
+

∣∣∣∣∣
t2∫

t1

vG1(x, t2)f1
(
x, y(x)

)
dx

∣∣∣∣∣+
∣∣∣∣∣

1∫
0

f2
(
x, y(x)

){
G2(x, t1)−G2(x, t2)

}
dx

∣∣∣∣∣. (8)

Now∣∣∣∣∣
t1∫
0

G1(x, t1)f1
(
x, y(x)

)
dx−

t1∫
0

G1(x, t2)f1
(
x, y(x)

)
dx

∣∣∣∣∣
6

t1∫
0

∣∣G1(x, t1)−G1(x, t2)
∣∣∣∣f1(x, y(x))∣∣ dx 6

t1∫
0

α1β1|t1 − t2|
∣∣y(x)∣∣dx

= α1β1|t1 − t2|

∣∣∣∣∣
t1∫
0

y(x) dx

∣∣∣∣∣ 6 α1β1|t1 − t2|.
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Similarly, we can show that∣∣∣∣∣
1∫

0

f2
(
x, y(x)

){
G2(x, t1)−G2(x, t2)

}
dx

∣∣∣∣∣ 6 α2β2|t1 − t2|.

Again,∣∣∣∣∣
t2∫

t1

G1(x, t2)f1
(
x, y(x)

)
dx

∣∣∣∣∣
6

t2∫
t1

∣∣G1(x, t2)
∣∣∣∣f1(x, y(x))∣∣ dx 6 α1β1

t2∫
t1

∣∣y(x)∣∣dx
6 α1β1

t2∫
t1

∣∣y(x)∣∣dx 6
5

2
α1β1|t1 − t2|

(
since y ∈ A, so

∣∣y(x)∣∣ 6 5

2

)
.

Employing the above three facts in equation (8), we get∣∣Ty(t1)− Ty(t2)∣∣ 6 (β +
7

2
α1β1 + α2β2

)
|t1 − t2| 6 |t1 − t2|. (9)

Next, |
∫ 1

0
f(t) dt| 6

∫ 1

0
βtdt = β/2,∣∣∣∣∣

1∫
0

{ t∫
0

G1(x, t)f1
(
x, y(x)

)
dx

}
dt

∣∣∣∣∣
6

1∫
0

t∫
0

∣∣G1(x, t)f1
(
x, y(x)

)∣∣ dx dt 6 1∫
0

t∫
0

∣∣α1β1ty(x)
∣∣dxdt 6 α1β1

2
.

Similarly, we can show that∣∣∣∣∣
1∫

0

{ 1∫
0

G2(x, t)f2
(
x, y(x)

)
dx

}
dt

∣∣∣∣∣ 6 α2β2
2

.

Therefore, we have∣∣∣∣∣
1∫

0

f(t) dt

∣∣∣∣∣+
∣∣∣∣∣

1∫
0

{ t∫
0

G1(x, t)f1
(
x, y(x)

)
dx

}
dt

∣∣∣∣∣
+

∣∣∣∣∣
1∫

0

{ 1∫
0

G2(x, t)f2
(
x, y(x)

)
dx

}
dt

∣∣∣∣∣ 6 1

2
(β + α1β1 + α2β2)
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=⇒

∣∣∣∣∣
1∫

0

Ty(t)

∣∣∣∣∣ 6 1

2
(β + α1β1 + α2β2) 6 1

(
using assumption (ii)

)
.

Also, it can be easily verified that Ty(t) > 0 for all t ∈ [0, 1]. Therefore, Ty ∈ A, and
hence T is a self-map on A.

Next, let y1, y2 ∈ A be arbitrary with y1 6= y2. Then for any t ∈ [0, 1], we have∣∣Ty1(t)− Ty2(t)∣∣
=

∣∣∣∣∣f(t) +
t∫

0

G1(x, t)f1
(
x, y1(x)

)
dx+

1∫
0

G2(x, t)f2
(
x, y1(x)

)
dx

− f(t)−
t∫

0

G1(x, t)f1
(
x, y2(x)

)
dx−

1∫
0

G2(x, t)f2
(
x, y2(x)

)
dx

∣∣∣∣∣
6

t∫
0

∣∣G1(x, t)
∣∣∣∣f1(x, y1(x))− f1(x, y2(x))∣∣ dx

+

1∫
0

∣∣G2(x, t)
∣∣∣∣f2(x, y1(x))− f2(x, y2(x))∣∣dx

6

1∫
0

α1β1t
∣∣y1(x)− y2(x)∣∣ dx+

1∫
0

α2β2t
∣∣y1(x)− y2(x)∣∣dx

6

1∫
0

(α1β1 + α2β2)
∣∣y1(x)− y2(x)∣∣ dx.

Hence, ∣∣Ty1(t)− Ty2(t)∣∣2
6

{ 1∫
0

(α1β1 + α2β2)
∣∣y1(x)− y2(x)∣∣ dx}2

6

1∫
0

(α1β1 + α2β2)
2
∣∣y1(x)− y2(x)∣∣2 dx 6 (α1β1 + α2β2)d(y1, y2).

The above relation is true for all t ∈ [0, 1], and hence we have

d(Ty1, T y2) 6 (α1β1 + α2β2)d(y1, y2)

=⇒ d(Ty1, T y2) < d(y1, y2).

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Some remarks on bv(s)-metric spaces and fixed point results 1033

Thus we see that all the conditions of Theorem 3 hold good here, and so we can assure
that T has a unique fixed point in A, say, y. By the formulation T and A we see that y is
the unique solution of equation (7), and the solution y is nonnegative and satisfies the
condition |

∫ 1

0
y(t) dt| 6 1.

It is well known that the mixed Fredholm–Volterra integral equations arise from the
mathematical model of the spatio-temporal developments of an epidemic model and also
from several parabolic boundary value problems. It may be noted that these are all associ-
ated to some physical problems. Here we demonstrate a specific example, which validates
the aforementioned result.

Example 8. Let us consider the integral equation

y(t) = f(t)+

t∫
0

G1(x, t)f1
(
x, y(x)

)
dx+

1∫
0

G2(x, t)f2
(
x, y(x)

)
dx, 0 6 t 6 1, (10)

where we take f(t) = t/25 − t7/3000, G1(x, t) = (x2t2)/30, G2(x, t) = (12/35)xt,
f1(x, y) = x|y| and f2(x, y) = (x+ 1)|y|.

If we choose β = 127/3000, α1 = 1/15, α2 = 12/35, β1 = 1 and β2 = 2,
then one can easily verify that all the assumptions of Theorem 6 are satisfied. So by the
same theorem, the integral equation (10) has a unique nonnegative solution y(t) satisfying
|
∫ 1

0
y(t) dt| 6 1. Further, note that y(t) = t/20 is the unique solution of equation (10).
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