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1 Introduction

In some practical applications of delayed neural networks (DNNs), one needs to estimate
the neuron states by available measurements and then employ the estimated values to
achieve a certain desired performance [28]. Thus effective algorithms capable of estimat-
ing the state of neurons are of both theoretical and practical significance. As we know,
the Kalman filtering method is one of the most efficient ways to handle state estimation
problems. However, when the external interferences do not have stationary Gaussian noise
properties, this scheme will no longer be valid, which limits its application in DNNs and
leads to the development of the passive filtering methods. A passive filter consists of
resistors, capacitors, and inductors. It has been shown that passive filters are not only
suitable for the situation of large current or voltage levels, but also can work well at very
high frequencies [14,17]. In 2010, the problem of passive filtering for DNNs was studied
in [1], and a delay-dependent passive filter was proposed for ensuring that the filtering
error system is stable as well as passive. Later, robust passive filtering for DNNs with
uncertain parameters was considered in [38], where a cone complementarity linearization
algorithm was used to calculate the desired filter gain.

Over the last two decades, switched systems, as a particular class of hybrid dy-
namical systems, have attracted enormous attention owing to their potential applications
in the vestibulo–ocular reflex [13], automotive roll dynamics control [25], image en-
cryption [30], and other fields [6, 20, 31]. Generally, switched systems are made up of
a set of continuous-time (or discrete-time) subsystems defined by differential (or dif-
ference) equations as well as a switching rule that supervises the switching among the
subsystems. The switching specifying which subsystem is activated every instant can be
either arbitrary or restricted (e.g., obeying a certain probability distribution constraint)
[40]. In recent years, by combining the theory of switched systems with DNNs, various
mathematical models of switched DNNs have been introduced and a number of theoretical
achievements have been reported; see, for instance, [22, 23, 33, 42]. Particularly, in the
context of passive filtering for switched delayed neural networks (SDNNs), an error
passivation method was put forward in [18], where it was ensured that the corresponding
filtering error system is passive and asymptotically stable; the exponential passive filtering
for SDNNs was addressed in [2], where a sufficient condition for the needed filter was
derived in the form of linear matrix inequalities (LMIs).

In traditional communications, one often assumes that data is transmitted through per-
fect communication network channels. In practice, however, as a result of the limitation
of storage and digital communication bandwidth among nodes, the original data needs to
be quantized before transmission. Quantization can be regarded as a map from continuous
signals to discrete finite sets [32]. The quantized control strategy is able to save channel
resources and cut down both the amount of transmitted data and channel blocking [36].
During the past few years, the design of quantized filters has been a hot topic and a variety
of outstanding results have been acquired. To name a few, in [8], a quantizedH∞ filter for
time-varying switched systems was designed via employing the gridding method. In [9],
based on a sector bound method, both H∞ and l2 − l∞ filtering designs for a class of
discrete switched system with quantized measurements were investigated. To the best of
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our knowledge, nevertheless, there is no relevant report on quantized passive filtering for
SDNNs in the open literature, which inspires our current research.

From the above discussions this paper addresses the quantized passive filtering for
SDNNs with noise interference. Both arbitrary switching and semi-Markov switching are
taken into account. By choosing Lyapunov functionals and applying several inequality
techniques, sufficient conditions are proposed to ensure the filtering error system to be
not only exponentially stable, but also exponentially passive from the noise interference
to the output error. The gain matrix for the proposed quantized passive filter is able to
be determined through the feasible solution of LMIs, which are computationally tractable
with the help of popular convex optimization tools. The remainder of this paper is as
follows: in Section 2, we give the SDNN model, the quantized filter, as well as two
types of switching rules under consideration. In Section 3, we propose quantized passive
filter design methods for SDNNs under arbitrary switching and semi-Markov switching,
respectively. In Section 4, we provide two numerical examples to illustrate the usefulness
of the quantized passive filter design methods. Section 5 summarizes our conclusions.

Notations. Throughout the present study, we apply Rn to represent a n-dimensional
Euclidean space with norm ‖·‖, Rn×m to represent the set of all n×m real matrices, and
Z+ (respectively, R+) to stand for the set of positive integer numbers (respectively, non-
negative real numbers). For any matrix X ∈ Rn×m, XT denotes its transpose, λmin(X)
denotes its smallest eigenvalue, and X > 0 means that it is symmetric positive definite.
In the case when n = m, let us define by ∗ the symmetric blocks in X and by S (X) the
sum of X and XT. Moreover, we denote by E{·} the expectation operator, by diag{· · · }
a diagonal matrix, and by I (respectively, 0) the identity (respectively, zero) matrix with
appropriate dimension.

2 Preliminaries

Consider a switched system composed of multiple DNNs given by

ẋ(t) = A
(
γ(t)

)
x(t) +W

(
γ(t)

)
ψ
(
x(t− θ)

)
+ J

(
γ(t)

)
(t) + G

(
γ(t)

)
ω(t),

y(t) = C
(
γ(t)

)
x(t) +D

(
γ(t)

)
x(t− θ) + F

(
γ(t)

)
ω(t),

(1)

where x(t) ∈ Rn, y(t) ∈ Rm, and ω(t) ∈ Rm represent the state, output, and noise inter-
ference, respectively; θ > 0 stands for the time-delay; A(γ(t)) = diag{−a1(γ(t)), . . . ,
−an(γ(t))} ∈ Rn×n (ak(γ(t)) > 0, k = 1, . . . , n) and W(γ(t))(t) ∈ Rn×n are the
self-feedback matrix and the delayed connection weight matrix, respectively; G(γ(t)) ∈
Rn×m, C(γ(t)) ∈ Rm×n, D(γ(t)) ∈ Rm×n, and F(γ(t)) ∈ Rm×m are known constant
matrices; J (γ(t))(t) ∈ Rn is an external input vector; γ(t) is the switching signal
which chooses its values in Γ = (1, . . . , N), N ∈ Z+; ψ(x(t)) denotes the activation
function, which is assumed to be global Lipschitz continuous with Lipschitz constant
Lψ > 0 [11, 12], i.e.,∥∥ψ(s1)− ψ(s2)

∥∥ 6 Lψ
∥∥s1 − s2∥∥ ∀s1, s2 ∈ Rn. (2)

For more general assumptions on the activation function, one may refer to [26, 27, 34].
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A quantizer q(·) : Rm → Φm is defined as q(ν) = [q1(ν1), . . . , qm(νm)]T, where
Φ = {±φl, φl = χlφ0, l = 0,±1,±2, . . . } ∪ {0} with φ0 > 0 and 0 < χ < 1 [5, 19].
For any νj ∈ R (j = 1, . . . ,m), quantizer qj(ν) is given by

qj(νj) =


φl, φl/(1 + δ) < νj 6 φl/(1− δ),
0, νj = 0,

−qj(−νj), νj < 0,

where δ=(1−χ)/(1+χ). Note that q(ν) can be expressed by the sector bound method [10]:

q(ν) = (1 +∆)ν, ∆ ∈ [−δ, δ]. (3)

Remark 1. In networked control practice, owing to the limited transmission capacity of
the network, signals need to be quantized before transmission for acquiring better control
results. The quantizer can be seen as a coder that transforms the continuous signal into
a piecewise continuous one [15].

Considering quantization effect (3), we propose the following filter

˙̆x(t) = A
(
γ(t)

)
x̆(t) +W

(
γ(t)

)
ψ
(
x̆(t− θ)

)
+ J

(
γ(t)

)
(t) + L

(
γ(t)

)
q
(
y(t)− y̆(t)

)
,

y̆(t) = C
(
γ(t)

)
x̆(t) +D

(
γ(t)

)
x̆(t− θ),

(4)

where x̆(t) ∈ Rn, y̆(t) ∈ Rm, and L(γ(t)) ∈ Rn×m are the filter state vector, the filter
output vector, and the filter gain matrix, respectively. If we define by z(t) = x(t)− x̆(t)
the filtering error and by ȳ(t) = y(t)− y̆(t) the output error, then the filtering error system
is able to be represented as follows:

ż(t) =
(
A(γ(t)

)
− L

(
γ(t)

)
(1 +∆)C

(
γ(t)

))
z(t)

− L
(
γ(t)

)
(1 +∆)D

(
γ(t)

)
z(t− θ) +W

(
γ(t)

)
ψ̄
(
z(t− θ)

)
+
(
G
(
γ(t)

)
− L

(
γ(t)

)
(1 +∆)F

(
γ(t)

))
ω(t),

ȳ(t) = C
(
γ(t)

)
z(t) +D

(
γ(t)

)
z(t− θ) + F

(
γ(t)

)
ω(t),

(5)

where ψ̄(z(t− θ)) = ψ(x(t− θ))− ψ(x̆(t− θ)).
In this paper, the following two types of switching rules are considered:
Case 1. γ(t) is a arbitrary switching signal.
Case 2. γ(t) is a semi-Markov switching signal; i.e., (γ(t), h>0)t>0 =(γn, hn)n∈Z+

represents a continuous-time and discrete-state semi-Markov process, where (γn)n∈Z+ is
the index of system mode at nth transition selecting values in Γ , and (hn)n∈Z+ is the
sojourn time of mode γn−1 between the (n−1)th transition and nth transition selecting val-
ues in R+. The entries of transition probability matrixΠ(h) = {πuv(h)} is determined by

Pr
{
γn+1 = v, hn+1 6 h+ α

∣∣ γn = u, hn+1 > h
}

= πuv(h)α+ o(α), u 6= v,

Pr
{
γn+1 = v, hn+1 > h+ α

∣∣ γn = u, hn+1 > h
}

= 1 + πuu(h)α+ o(α), u = v,

http://www.journals.vu.lt/nonlinear-analysis

http://www.journals.vu.lt/nonlinear-analysis


Quantized passive filtering for switched delayed neural networks 97

where h > 0 denotes the sojourn time, limα→0o(α)/α = 0, πuv(h) > 0 is the tran-
sition rate from mode u at time t to mode v at time t + α for u 6= v, and πuu(h) =
−
∑N
v=1,v 6=u πuv(h).

Remark 2. The semi-Markov switching is a switching process that can be applied to
describe sudden structure changes as well as abrupt component errors. Compared with
the usual Markov switching [21, 24], the semi-Markov switching is more general since
its sojourn-time can follow a nonexponential distribution that results in time-varying
transition rates.

3 Main results

In this section, we propose design methods for quantized passive filtering of SDNN (1)
under arbitrary switching and semi-Markov switching, respectively.

3.1 Quantized passive filtering under arbitrary switching

The issue of quantized passive filtering under arbitrary switching to be addressed can
be formulated explicitly as follows: for the switching rule in Case 1, design a quantized
passive filter having the form in (4) such as the filtering error system in (5):

(i) is exponentially stable when ω(t) = 0;
(ii) is exponentially passive for ω(t) 6= 0 [2]; i.e., for a given scalar β > 0,

t∫
0

ωT(s)ŷ(s) ds+ β >

t∫
0

H
(
z(s)

)
ds

holds, in which ŷ(s) = eκsȳ(s), κ > 0 is a real scalar, and H(z(s)) is a positive
semi-definite storage function.

Define the indicator function as ζ(t) = [ζ1(t), . . . , ζN (t)]T, where

ζu(t) =


1 when the switch system is described by the uth mode

(Au,Wu,Ju,Gu, Cu,Du,Fu),

0 otherwise

with u ∈ Γ . Then the filtering error system can be rewritten as

ż(t) =

N∑
u=1

ζu(t)
{(
Au − Lu(1 +∆)Cu

)
z(t)− Lu(1 +∆)Duz(t− θ)

+Wuψ̄
(
z(t− θ)

)
+
(
Gu − Lu(1 +∆)Fu

)
ω(t)

}
,

ȳ(t) =

N∑
u=1

ζu(t)
[
Cuz(t) +Duz(t− θ) + Fuω(t)

]
.

(6)

Note that
∑N
u=1 ζu(t) = 1.
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For the arbitrary switching rule, one can obtain the following result.

Theorem 1. If there exist matrices Pu>0,Ru>0, S>0,Mu, and scalar ε > 0 such that
Θ1u Θ2u Θ3u PuWu Mu

∗ L2
ψI − e−κθRu + εDT

uDu − 1
2D

T
u + εDT

uFu 0 0

∗ ∗ − 1
2S (Fu) + εFT

u Fu 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ − ε

δ2 I

 < 0 (7)

holds true for any u ∈ Γ , where

Θ1u = S (PuAu −MuCu) + κPu + S +Ru + εCTu Cu,

Θ2u = −MuDu + εCTuDu, Θ3u = PuGu −MuFu −
1

2
CTu + εCTuFu,

then the issue of quantized passive filtering under arbitrary switching is solvable, and the
needed gain matrix can be chosen as

Lu = P−1u Mu. (8)
Proof. Define

Θ̄u = S (PuAu −MuCu −Mu∆Cu) + κPu + PuWuWT
u Pu + S +Ru,

Θ̌u = S (PuAu −MuCu) + κPu + PuWuWT
u Pu + S +Ru,

Ω̄u =

Θ̄u −MuDu −Mu∆Du PuGu −MuFu −Mu∆Fu − 1
2C

T
u

∗ L2
ψI − e−κθRu − 1

2D
T
u

∗ ∗ − 1
2S (Fu)

 .
Then, in view of the well-known inequalityXY T+Y XT 6 (1/ε)XXT+εY Y T (ε > 0),
one can write

Ω̄u 6

Θ̌u −MuDu PuGu −MuFu − 1
2C

T
u

∗ L2
ψI − e−κθRu − 1

2D
T
u

∗ ∗ − 1
2S (Fu)


+

1

ε

−Mu

0
0

∆2
[
−MT

u 0 0
]

+ ε

CTuDT
u

FT
u

 [Cu Du Fu].
It follows by ∆2 6 δ2 that

Ω̄u 6 Ω̃u, (9)
where

Ω̃u =

Θ̃1u Θ2u Θ3u

∗ L2
ψI − e−κθRu + εDT

uDu − 1
2D

T
u + εDT

uFu
∗ ∗ − 1

2S (Fu) + εFT
u Fu

 ,
Θ̃1u = S (PuAu −MuCu) + κPu + PuWuWT

u Pu + S +Ru

+ εCTu Cu +
δ2

ε
MuM

T
u .
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By Schur’s complement, (7) is equivalent to Ω̃u < 0, which together with (9) ensures that

Ω̄u < 0. (10)

Now, construct multiple Lyapunov functionals as follows:

Vu
(
z(t), t

)
= eκtzT(t)Puz(t)

+

0∫
−θ

eκ(t+s)zT(t+ s)Ruz(t+ s) ds, u = 1, . . . , N. (11)

Then, along the trajectories of system (6), it can be calculated that

V̇u
(
z(t), t

)
= κeκtzT(t)Puz(t) + 2eκtzT(t)Puż(t) + eκtzT(t)Ruz(t)

− eκ(t−θ)zT(t− θ)Ruz(t− θ)

=

N∑
u=1

ζu(t)
{

eκtzT(t)
[
2Pu(Au − Lu(1 +∆)Cu) + κPu

]
z(t)

− 2eκtzT(t)PuLu(1 +∆)Duz(t− θ)
+ 2eκtzT(t)PuWuψ̄

(
z(t− θ)

)
+ 2eκtzT(t)Pu

(
Gu − Lu(1 +∆)Fu

)
ω(t)

}
+ eκtzT(t)Ruz(t)− eκ(t−θ)zT(t− θ)Ruz(t− θ).

By adding and subtracting eκtωT(t)[Cuz(t) +Duz(t− θ) + Fuω(t)], one gets

V̇u
(
z(t), t

)
=

N∑
u=1

ζu(t)

{
eκtzT(t)

[
2Pu(Au − Lu(1 +∆)Cu) + κPu

]
z(t)

− 2eκtzT(t)PuLu(1 +∆)Duz(t− θ)
+ 2eκtzT(t)PuWuψ̄

(
z(t− θ)

)
+ 2eκtzT(t)

[
Pu
(
Gu − Lu(1 +∆)Fu

)
− 1

2
CTu
]
ω(t)

− eκtωT(t)Duz(t− θ)− eκtωT(t)Fuω(t)

+ eκtωT(t)
[
Cuz(t) +Duz(t− θ) + Fuω(t)

]}
+ eκtzT(t)Ruz(t)− eκ(t−θ)zT(t− θ)Ruz(t− θ).

Using (2), one has

2zT(t)PuWuψ̄
(
z(t− θ)

)
6 ψ̄

(
z(t− θ)

)T
ψ̄
(
z(t− θ)

)
+ zT(t)PuWuWT

u Puz(t)

6 L2
ψz

T(t− θ)z(t− θ) + zT(t)PuWuWT
u Puz(t). (12)
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By Mu = PuLu and (12), one can write

V̇u
(
z(t), t

)
6

N∑
u=1

ζu(t)eκt
{
ηT(t)Ω̄uη(t)− zT(t)Sz(t) + ωT(t)

×
[
Cuz(t) +Duz(t− θ) + Fuω(t)

]}
6 −eκtzT(t)Sz(t) + ωT(t)ŷ(t), (13)

where

η(t) =
[
zT(t) zT(t− θ) ωT(t)

]T
,

and the second inequality follows from (10).
When ω(t) = 0, from (13) one can get V̇u(z(t), t) 6 −eκtzT(t)Sz(t). Owing to the

fact that S > 0, V̇u(z(t), t) < 0 for any z(t) 6= 0. Thus, for any t > 0, it can be obtained
that

Vu
(
z(t), t

)
6 Vu

(
z(0), 0

)
. (14)

In addition, (11) gives

Vu
(
z(t), t

)
> min

u∈Γ

{
λmin(Pu)

}
eκt
∥∥z(t)∥∥2. (15)

From (14) and (15) one has

∥∥z(t)∥∥ 6

√
maxu∈Γ Vu(z(0), 0)√
minu∈Γ {λmin(Pu)}

e(−κ/2)t.

Thus, the exponential stability of the filtering error system in (6) is guaranteed.
Next, one focuses on the passivity of system (6) with ω(t) 6= 0. Integrating both sides

of (13) from t to 0 gives

Vu
(
z(t), t

)
− Vu

(
z(0), 0

)
6 −

t∫
0

eκszT(s)Sz(s) ds+

t∫
0

ωT(s)ŷ(s) ds.

Let β = maxu∈Γ Vu(z(0), 0). Then one has

t∫
0

ωT(s)ŷ(s) ds+ β >

t∫
0

eκszT(s)Sz(s) ds+ Vu
(
z(t), t

)

>

t∫
0

eκszT(s)Sz(s) ds,

which implies that filtering error system (6) is ensured to be exponentially passive from
noise interference ω(t) to output error ȳ(t) under the arbitrary switching rule. This com-
pletes the proof.
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When there is no quantization, the passive filter to be applied becomes

˙̆x(t) = A
(
γ(t)

)
x̆(t) +W(γ(t))ψ(x̆(t− θ)) + J

(
γ(t)

)
(t)

+ L
(
γ(t)

)(
y(t)− y̆(t)

)
,

y̆(t) = C
(
γ(t)

)
x̆(t) +D

(
γ(t)

)
x̆(t− θ).

(16)

In the case, the filtering error system is represented by

ż(t) =
(
A
(
γ(t)

)
− L

(
γ(t)

)
C
(
γ(t)

))
z(t)− L

(
γ(t)

)
D
(
γ(t)

)
z(t− θ)

+W
(
γ(t)

)
ψ̄
(
z(t− θ)

)
+ (G

(
γ(t)

)
− L

(
γ(t)

)
F
(
γ(t)

)
)ω(t),

ȳ(t) = C
(
γ(t)

)
z(t) +D

(
γ(t)

)
z(t− θ) + F

(
γ(t)

)
ω(t),

which corresponds to (5) with ∆ = 0. Thus, one can write the following result.

Corollary 1. If there exist matrices Pu > 0, Ru > 0, S > 0, and Mu such that

Σu =


Σ1u −MuDu PuGu −MuFu − 1

2C
T
u PuWu

∗ L2
ψI − e−κθRu − 1

2D
T
u 0

∗ ∗ − 1
2S (Fu) 0

∗ ∗ ∗ −I

 < 0 (17)

holds true for any u ∈ Γ , where Σ1u = S (PuAu −MuCu) + κPu + S + Ru, then
the issue of passive filtering under arbitrary switching is solvable, and the needed gain
matrix of the passive filter can be chosen as (8).

Remark 3. Corollary 1 gives a novel existence criterion for the passive filtering of
SDNN (1) without quantization. As going to be shown in Example 1, the criterion in
Corollary 1, which is based on multiple Lyapunov functionals, is less conservative than
the main result of [2].

3.2 Quantized passive filtering under semi-Markov switching

The issue of quantized passive filtering under semi-Markov switching to be addressed can
be formulated explicitly as follows: for the switching rule in Case 2, design a quantized
passive filter having the form in (4) such as the filtering error system in (5) is both
exponentially stable and exponentially passive in the mean square sense.

Set A(γ(t)) = Au, W(γ(t)) = Wu, J (γ(t)) = Ju, G(γ(t)) = Gu, C(γ(t)) = Cu,
D(γ(t)) = Du, and F(γ(t)) = Fu. Then the filtering error system changes into

ż(t) =
(
Au − Lu(1 +∆)Cu

)
z(t)− Lu(1 +∆)Duz(t− θ)

+Wuψ̄
(
z(t− θ)

)
+
(
Gu − Lu(1 +∆)Fu

)
ω(t),

ȳ(t) = Cuz(t) +Duz(t− θ) + Fuω(t).

For the quantized passive filtering under semi-Markov switching, one can give the
following result.
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Theorem 2. Suppose that there are matrices Pu > 0, R > 0, S > 0, Mu, and scalar
ε > 0 such that

Θ1u Θ2u Θ3u PuWu Mu

∗ L2
ψI − e−κθR+ εDT

uDu − 1
2D

T
u + εDT

uFu 0 0

∗ ∗ − 1
2S (Fu) + εFT

u Fu 0 0
∗ ∗ ∗ −I 0
∗ ∗ ∗ ∗ − ε

δ2 I

 < 0 (18)

holds for any u ∈ Γ , where

Θ1u = S (PuAu −MuCu) + κPu +

N∑
v=1

π̄uvPv + S +R+ εCTu Cu,

Θ2u = −MuDu + εCTuDu, Θ3u = PuGu −MuFu −
1

2
CTu + εCTuFu,

π̄uv =

∞∫
0

πuv(h)gu(h) dh

with gu(h) being the probability density function of sojourn time h at mode u. Then the
issue of quantized passive filtering under semi-Markov switching is solvable, and the
needed gain matrix can be chosen as (8).

Proof. Define

Θ̄u = S (PuAu −MuCu −Mu∆Cu) + κPu +

N∑
v=1

π̄uvPv

+ PuWuWT
u Pu + S +R,

Ω̄u =

Θ̄u −MuDu −M∆Du PuGu −MuFu −Mu∆Fu − 1
2C

T
u

∗ L2
ψI − e−κθR − 1

2D
T
u

∗ ∗ − 1
2S (Fu)

 .
Along the same line as the proof in Theorem 1, we can write

Ω̄u 6 Ω̃u, (19)
where

Ω̃u =

Θ̃1u Θ2u Θ3u

∗ L2
ψI − e−κθR+ εDT

uDu − 1
2D

T
u + εDT

uFu
∗ ∗ − 1

2S (Fu) + εFT
u Fu

 ,
Θ̃1u = S (PuAu −MuCu) + κPu +

N∑
v=1

π̄uvPv + PuWuWT
u Pu + S +R

+ εCTu Cu +
δ2

ε
MT
uMu.
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By Schur’s complement, the LMI in (18) ensures Ω̃u < 0. Then from (19) we have

Ω̄u < 0. (20)

Now, choose a mode-dependent Lyapunov functional as

V
(
z(t), γ(t), t

)
= V1

(
z(t), γ(t), t

)
+ V2

(
z(t), t

)
, γ(t) ∈ Γ, (21)

where

V1
(
z(t), γ(t), t

)
= eκtzT(t)P

(
γ(t)

)
z(t),

V2
(
z(t), t

)
=

0∫
−θ

eκ(t+s)zT(t+ s)Rz(t+ s) ds.

Define by L the infinitesimal generator [29], i.e.,

LV
(
z(t), γ(t), t

)
= lim
α→0+

1

α

[
E
{
V
(
z(t+ α), γ(t+ α), t+ α)

∣∣ z(t), γ(t), t
}
− V

(
z(t), γ(t), t

)]
.

Then, for γ(t) = u, we can write

LV1
(
z(t), γ(t), t

)
= lim
α→0+

1

α

[
N∑

v=1, v 6=u

Pr
{
γn+1 = v, hn+1 6 h+ α

∣∣ γn = u, hn+1 > h
}

× eκ(t+α)zT(t+ α)Pvz(t+ α)

+ Pr
{
γn+1 = u, hn+1 > h+ α

∣∣ γn = u, hn+1 > h
}

× eκ(t+α)zT(t+ α)Puz(t+ α)− eκtzT(t)Puz(t)

]

= lim
α→0+

1

α

[
N∑

v=1, v 6=u

(
πuv(h)α+ o(α)

)
eκ(t+α)zT(t+ α)Pvz(t+ α)

+
(
1 + πuu(h)α+ o(α)

)
eκ(t+α)zT(t+ α)Puz(t+ α)

− eκtzT(t)Puz(t)

]

=

N∑
v=1

πuv(h)eκtzT(t)Pvz(t)

+ lim
α→0+

1

α

[
eκ(t+α)zT(t+ α)Puz(t+ α)− eκtzT(t)Puz(t)

]
.
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It follows that

E
{
LV1

(
z(t), γ(t), t

)}
=

N∑
v=1

π̄uve
κtzT(t)Pvz(t) + κeκtzT(t)Puz(t)

+ 2eκtzT(t)
[
Pu
(
Au − Lu(1 +∆)Cu

)]
z(t)

− 2eκtzT(t)PuLu(1 +∆)Duz(t− θ)
+ 2eκtzT(t)PuWuψ̄

(
z(t− θ)

)
+ 2eκtzT(t)Pu

(
Gu − Lu(1 +∆)Fu

)
ω(t). (22)

Similarly, it can be obtained that

E
{
LV2

(
z(t), t

)}
= eκtzT(t)Rz(t)− eκ(t−θ)zT(t− θ)Rz(t− θ). (23)

Thus, for γ(t) = u, by (12), (22), (23), and Mu = PuLu, we have

E
{
LV
(
z(t), γ(t), t

)}
6 eκt

{
ηT(t)Ω̄uη(t)− zT(t)Sz(t)

+ ωT(t)
[
Cuz(t) +Duz(t− θ) + Fuω(t)

]}
6 −eκtzT(t)Sz(t) + ωT(t)ŷ(t), (24)

where the inequality follows by (20).
When ω(t) = 0, noting S > 0, from (24) we get E{LV (z(t), γ(t), t)} < 0 for all

z(t) 6= 0, which, together with Dynkin’s formula, yields

E
{(
z(t), γ(t), t

)}
= E

{
V (z(0), γ(0), 0)

}
+

t∫
0

E
{
LV (z(s), γ(s), s) ds

}
6 E

{
V (z(0), γ(0), 0)

}
. (25)

On the other hand, (21) implies

min
u∈Γ

{
λmin(Pu)

}
eκt
{∥∥z(t)∥∥2} 6 V

(
z(t), γ(t), t

)
6 max

u∈Γ

{
λmax(Pu)

}{
W
(
z(t), t

)}
, (26)

where

W
(
z(t), t

)
= eκtzT(t)z(t) +

0∫
−θ

eκ(t+s)zT(t+ s)Rz(t+ s) ds.

According to (25) and (26), we have

E
{∥∥z(t)∥∥} 6

√
maxu∈Γ {λmax(Pu)}E{W (z(0), 0)}√

minu∈Γ {λmin(Pu)}
e−(κ/2)t,
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which means that the filtering error system is exponentially stable in the mean square
sense.

When ω(t) 6= 0, by (24) and Dynkin’s formula we can get that

E
{
V
(
z(t), γ(t), t

)}
6 E

{
V
(
z(0), γ(0), 0

)}
+ E

{
−

t∫
0

eκszT(s)Sz(s) ds+

t∫
0

ωT(s)ŷ(s) ds

}
.

Let β = maxu∈Γ {λmax(Pu)}E{W (z(0), 0)}. Then we can write

E

{ t∫
0

ωT(s)ŷ(s) ds

}
+ β > E

{ t∫
0

eκszT(s)Sz(s) ds

}
+ E

{
V
(
z(t), γ(t), t

)}

> E

{ t∫
0

eκszT(s)Sz(s) ds

}
.

Thus, the filtering error system is ensured to be exponentially passive in the mean square
sense from noise interference ω(t) to output error ȳ(t) under the semi-Markov switching
rule. This completes the proof.

When there is no quantization, we can write the following result:

Corollary 2. Suppose that there exist matrices Pu > 0, R > 0, S > 0, and Mu such that
Θu −MuDu PuGu −MuFu − 1

2C
T
u PuWu

∗ L2
ψI − e−κθR − 1

2D
T
u 0

∗ ∗ − 1
2S (Fu) 0

∗ ∗ ∗ −I

 < 0 (27)

holds for any u ∈ Γ , where

Θu = S (PuAu −MuCu) + κPu +

N∑
v=1

π̄uvPv + S +R,

π̄uv =

∞∫
0

πuv(h)gu(h) dh

with gu(h) being the probability density function of sojourn time h at mode u. Then the
issue of passive filtering under the semi-Markov switching is solvable, and the needed
gain matrix of the passive filter can be chosen as (8).

Remark 4. With the aid of multiple Lyapunov functionals and several inequality tech-
niques, design methods for the quantized passive filtering under arbitrary switching and
semi-Markov switching are proposed in Theorems 1 and 2, respectively. It is shown that
the needed gain matrix is able to be obtained through the feasible solution of LMIs,which
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are known to be computationally tractable using some popular convex optimization tools.
In addition, from the proofs of Theorems 1 and 2 it can be seen that −κ/2 corresponds to
the decay rate. Thus, the larger the scalar κ, the faster the filtering error system converges.

Remark 5. Over the past few decades, there has been an increasing interest in time-delay
systems and a great number of research results have been achieved; see., e.g., [16, 35, 37,
41]. To our knowledge, most of the results are based on the Lyapunov functional method.
It is worth pointing out that the choice of suitable Lyapunov functionals is of considerable
significance. By extending the Lyapunov functionals in Theorems 1 and 2 as [3, 4], it is
expected to obtain less conservative conditions. However, this may lead to increases in
the dimension of LMIs and the number of decision variables, which in turn will result in
higher computational costs.

4 Numerical examples

In this section, we give two numerical examples to show the usefulness of the proposed
quantized passive filter design methods for SDNNs under arbitrary switching and semi-
Markov switching, respectively.

Example 1. Consider SDNN (1) under arbitrary switching with

A1 =

[
−2.2 0

0 −3.5

]
, A2 =

[
−a1(2) 0

0 −2.8

]
, W1 =

[
−1 0.4
0 −0.1

]
,

W2 =

[
0.2 −0.8
0.4 0.5

]
, G1 = G2 =

[
1
−0.5

]
, F1 = F2 = 1, θ = 1,

C1 =
[
1 0
]
, C2 =

[
0 1
]
, D1 =

[
0.5 1

]
, D2 =

[
−1 0.3

]
,

J1(t) =

[
sin(1.8t)

cos(t)

]
, J2(t) =

[
3 cos2(0.1t)

cos(t)

]
, ψ(x(t)) =

[
tan(x1(t))
tan(x2(t))

]
.

Notice that the activation function satisfies (2) with Lψ = 1 [7].
First, let us consider the case that there is no quantization. When a1(2) = 3.9, it can

be verified that the LMIs in (17) are feasible for any κ 6 0.75, while the condition in
Theorem 2 of [2] fails for κ > 0.48. This means that, for κ ∈ [0.48, 0.75], Corollary 1
of this paper can be applied for designing passive filter (16) while Theorem 2 of [2] is
unavailable. When a1(2) = 3.6, it is found that the maximum allowed values of κ are 0.66
by Corollary 1 and 0.38 by Theorem 2 of [2], respectively. A more detailed comparison
of the maximum allowed κ obtained by Corollary 1 of this paper and Theorem 2 of [2]
for different choices of a1(2) is given in Table 1, it can be inferred that the present design
method is always less conservative.

Next, we consider the passive filtering with quantization. Set κ = 0.74 and χ = 0.6.
Then, by solving the LMIs in (7), the filter gains can be obtained as follows:

L1 =

[
1.0984
−0.4635

]
, L2 =

[
0.3990
−0.1297

]
.
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Table 1. Maximum allowable κ for different choices of a1(2).

a1(2) 3.9 3.6 3.3 3.0 2.7
Theorem 2 of [2] 0.47 0.38 0.29 0.18 0.06
Corollary 1 0.75 0.66 0.58 0.47 0.36
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Figure 1. Trajectories of x(t), x̆(t), ȳ(t), and q(ȳ(t)) under arbitrary switching.

Let we set γ(t) = 1 when t ∈ [1, 2] and γ(t) = 2 otherwise, the initial condition to be
x(s) = [−3 1.5]T, x̆(s) = [2 −2]T (s ∈ [−θ, 0]), and ω(t) to be a Gaussian noise subject
to mean 0 and variance 1. Then the trajectories of state x(t) and its estimate x̆(t), output
error ȳ(t) and quantized measurement q(ȳ(t)) are displayed in Fig. 1. The simulation
results show that the quantized passive filter reduces the impact of noise interference ω(t)
on the filtering error system.

Example 2. Consider SDNN (1) under semi-Markov switching with

A1 =

[
−1.5 0

0 −2.0

]
, A2 =

[
−3.0 0

0 −3.0

]
, W1 =

[
0.5 0.6
0.1 0.2

]
,

W2 =

[
0.5 0
0.2 0.2

]
, G1 = G2 =

[
1
−0.5

]
, F1 = F2 = 1, θ = 1,

C1 =
[
1 0
]
, C2 =

[
0 1
]
, D1 =

[
0.5 1

]
, D2 =

[
−1 0.3

]
,

J1(t) =

[
sin(t) cos(t)

sin(t)

]
, J2(t) =

[
3 sin2(0.1t)
− cos(t)

]
, ψ(x(t)) =

[
tan(x1(t))
tan(x2(t))

]
.
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Figure 2. Trajectories of x(t), x̆(t), ȳ(t), and q(ȳ(t)) under semi-Markov switching.

Suppose that sojourn time h obeys the Weibull distribution [39]. Specifically, assume
that h ∼ Weibull(1, 2) (i.e., g1(h) = 2h exp(−h2)) for u = 1 and h ∼ Weibull(1, 3)
(i.e., g2(h) = 3h2 exp(−h3)) for u = 2. Then the transition probability matrix is given
by

Π(h) =

[
−2h 2h
3h2 −3h2

]
.

Consequently, the mathematical expectation of Π(h) is able to be acquired as

E
{
Π(h)

}
=

[
−1.7725 1.7725
2.7082 −2.7082

]
.

Choose κ = 0.63 and χ = 0.7. Then, by solving the LMI in (18), the corresponding
gains can be obtained as follows:

L1 =

[
1.0336
−0.4278

]
, L2 =

[
0.6369
−0.1304

]
.

Let the initial condition be x(s) = [−0.5 1.5]T, x̆(s) = [1 − 2]T (s ∈ [−θ, 0]), and ω(t)
be a Gaussian noise subject to mean 0 and variance 1. Then the trajectories of state x(t)
and its estimate x̆(t), output error ȳ(t) and quantized measurement q(ȳ(t)) are shown in
Fig. 2. The simulation results show the usefulness of the proposed quantized passive filter
method in Theorem 2.
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5 Conclusion

The issue of quantized passive filtering for SDNNs with noise interference has been
addressed in this paper. Both arbitrary and semi-Markov switching rules have been dis-
cussed. By choosing Lyapunov functionals and applying several inequality techniques,
sufficient conditions have been established to ensure the filtering error systems to be not
only exponentially stable, but also exponentially passive from the noise interference to
the output error. It has been shown that the needed gain matrix for the proposed quantized
passive filter can be constructed through the feasible solution of LMIs, which are compu-
tationally tractable using some popular convex optimization tools. Finally, two numerical
examples have been given to illustrate the usefulness of the present quantized passive filter
design methods. It is worth mentioning that the quantizer under consideration is mode-
independent. Over the past decade, robust filtering under mode-dependent quantization
has received increasing attention. The robust passive filtering for SDNNs with mode-
dependent quantization will be considered in our future work.
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