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Abstract. A limitation of current modeling studies in waterborne diseases (one of the leading causes
of death worldwide) is that the intrinsic dynamics of the pathogens is poorly addressed, leading
to incomplete, and often, inadequate understanding of the pathogen evolution and its impact on
disease transmission and spread. To overcome these limitations, in this paper, we consider an ODEs
model with bacterial growth inducing Allee effect. We adopt an adequate functional response to
significantly express the shape of indirect transmission. The existence and stability of biologically
meaningful equilibria is investigated through a detailed discussion of both backward and Hopf
bifurcations. The sensitivity analysis of the basic reproduction number is performed. Numerical
simulations confirming the obtained results in two different scenarios are shown.

Keywords: waterborne disease, Allee effect, stability, ODEs system.

1 Introduction

Mortality from infectious diseases is still high worldwide; even if it has declined in high-
income countries, it represents a crucial issue in low-income countries. A fundamental
property of infectious diseases, including diseases caused by waterborne pathogens, is that
these complex interactions always result from an infectious individual or environmental
source transmitting the pathogen to a susceptible individual. Examples of diseases in
common waterborne infections include Cholera, Giardia, Cryptosporidium, Campylobac-
ter, Typhoid and Paratyphoid fevers, hepatitis A and E, norovirus, rotavirus and many
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others [1]; these can be caused by a variety of pathogenic microbes (bacteria, protozoa,
etc.) in contaminated water. Unfortunately, waterborne diseases remain a serious public
health concern today, resulting in more than 3.4 million deaths a year according to WHO
estimates. Severe waterborne disease outbreaks continue to occur such as Cholera in Haiti
from October 2010 to January 2014; the Zimbabwe Cholera epidemic from August 2008
to July 2009. Several different factors must be considered in attempting to understand wa-
terborne disease dynamics including different transmission pathways such as the ingestion
of contaminated water or food or consumption and use of fecally contaminated water. Due
to their huge impact on public health and social and economic development, waterborne
diseases have been the subject of extensive studies in clinical, experimental and theoretical
fields. A number of different approaches (mathematical modeling, analysis, simulation)
have been used for modeling the disease transmission, and a large number of mathematical
models have been published [10, 12, 20, 21, 24]. Such models provide challenges and
ideas in many other fields of applied mathematics such as ecology, economics in which
nonlinear mathematical models having a similar structure are considered [2–5,22,23,25].
The mathematical models allow to obtain an estimate for the behavior of epidemics
and to predict the asymptotic behavior of infection in order to take suitable actions to
control epidemics. On introducing a few number of infected in a population of susceptible
individuals, the question that arises is if the epidemic will persist or die out. To this
aim, the stability of the disease-free equilibrium (i.e. the equilibrium with no infection)
and of the endemic equilibria (i.e. equilibria with nonnull population components) are
analyzed. In particular: if the disease-free equilibrium is stable, then epidemic will decay;
if endemic equilibria exist and are stable, then epidemic will persist. A limitation of
current modeling studies in waterborne diseases, however, is that the intrinsic dynamics
of the waterborne pathogens are poorly addressed, leading to incomplete, and often, in-
adequate, understanding of the pathogen evolution and its impact on disease transmission
and spread. Most cholera models in the literature are based on the standard assumption
that the pathogens cannot sustain themselves in the absence of human contribution. The
rate of change for the bacterial density, in this case, is simply the sum of a positive
contribution from the infected human population and a negative contribution due to nat-
ural death of the bacteria, and both contributions are assumed as linear. But there have
been strong empirical evidences that the pathogens “can independently persist in the
environment and, consequently, their intrinsic growth and decay may play an essential
role in shaping cholera epidemics” (see [28] and further references therein). Studies from
a few research groups, however [14, 27], have considered that the interaction between
the pathogen and the host could be more complicated than linear. Also, the bacterial
growth outside of human hosts does not have to follow linear dynamics; all the cited
literature assumes more general (nonlinear) functional forms for the bacterial growth.
Moreover, many recent works on the impact of climate change on the pathogens growth
in relation to waterborne diseases (see the two review articles [16, 17]) suggest evidence
for such nonlinear models. Richer models could be more adequate in representing such
complex phenomena. Recently, a modified model describing the transmission dynamics
of a waterborne bacterial infection, which sheds light on the importance of the type of
intrinsic bacterial dynamics into the pathogen evolution equation, has been proposed
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in [29]. The authors incorporate both direct (human-to-human) and indirect (environment-
to-human) transmission pathways, each represented by a bilinear incidence, and examine
two types of bacterial intrinsic dynamics: a logistic growth and a cubic growth. In all
studies concerning Allee effects in microbial populations [15], a minimal density (the
“Allee threshold”) is needed to initiate positive population development. Moreover, to
better express the shape of indirect transmission, we adopt a nonlinear function (Holling
type II functional response) for the incidence [6, 10, 19]. Such a choice implies that there
must be the ingestion of a certain amount of bacteria to contract the infection. These
modeling assumptions highlight more interesting and complicated dynamics. In [28],
a general function (depicting also the Holling type II functional) has already been con-
sidered to express the indirect transmission, but that model simply excludes the logistic
growth with a threshold that we analyze in the present paper. The plan of the paper is the
following. In Section 2, the mathematical model is introduced, and the basic reproduction
number is recovered. The existence and uniqueness of biologically meaningful equilibria
is investigated in Section 3. The linear stability analysis of the disease-free equilibrium
and of the endemic equilibria (when they exist) is performed in Section 4. In Sections 5.1
and 5.2, respectively, the possible occurrence of backward/forward and Hopf bifurcations
is investigated. Section 6 deals with the sensitivity analysis, while numerical simulations
on the obtained results are shown in Section 7, and concluding remarks are given in
Section 8.

2 Mathematical model

The model governing a waterborne disease transmission with cubic growth for the bacte-
ria, assuming a Holling type II force of infection, is

Ṡ = µN0 − βλ(B)S − µS, (1)

İ = βλ(B)S − (µ+ δ)I, (2)

Ḃ = rB(B − b)
(

1− B

k

)
+ ξI − τB, (3)

Ṙ = δI − µR, (4)

where the variables S(t), I(t), R(t) denote, respectively, the susceptible, infective and
removed individuals, while B(t) denotes the concentration of bacteria in contaminated
water, and “·” denotes the time derivative. The cubic growth for the bacteria is essential
to induce an Allee effect experimentally demonstrated in many microbial populations
[15]. The probability to catch the infection [6, 28] is λ(B) = B/(KB + B), being
KB (cells/ml) the constant indicating the half saturation rate. The constants appearing
in (1)–(4) are positive, and for their biological meaning, we refer to Table 1.

We append to (1)–(4) smooth positive initial data

S(0) = S0, I(0) = I0, R(0) = R0, B(0) = B0.
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Table 1. Description of the constants appearing in (1)–(4).

Symbols Description Units
N0 total population size at time t = 0 person
µ birth/death rate t−1

δ removed rate t−1

r bacterial intrinsic growth rate ml cells−1 t−1

k carrying capacity cells ml−1

τ bacterial removal rate t−1

ξ = p/W contribution of each infected person cells/ml t−1

to the population of bacteria person−1

p rate at which bacteria are produced cells t−1

by an infected individual person−1

W volume of contaminated water in infected individual ml
β contact rate with contaminated water t−1

b (< k) Allee threshold when τ = 0 cells ml−1

Setting N(t) = S(t) + I(t) +R(t) the total host population size at time t, by adding (1),
(2) and (4), it turns out that Ṅ + µN = µN0, and hence

N(t) = N0 ∀t > 0 (5)

i.e. the total host population size is constant. From (5) it follows that each component of
the host population is bounded by N0 and R(t) = N0 − [S(t) + I(t)].

We remark that the cubic growth of bacteria induces an Allee effect on the bacteria.
In fact, setting f(B) = rB(B − b)(1 − B/k) − τB, f(B) = 0 ⇔ B = 0 and
limB→∞ f(B) = −∞. If τ > r(k − b)2/(4k), then f(B) is negative definite for
B ∈]0,∞[. Then, from (3), it turns out that B(t) goes into extinction in the absence
of infected individuals (i.e. bacteria population can not sustain itself in the absence of
infected individuals). If

τ <
r(k − b)2

4k
, (6)

then there exist two positive constants b1 = (r(k+b)−
√
r2(k−b)2−4krτ)/(2r), k1 =

(r(k+b) +
√
r2(k−b)2−4krτ)/(2r) such that, in the absence of infected individuals:

(i) if B(t) < b1, then B(t) goes into extinction; (ii) if b1 < B(t) < k1, then B(t)
exponentially increases up to k1; (iii) if B(t) > k1, then B(t) exponentially decreases
up to k1. In this sense, b1 and k1 represent the Allee threshold and the carrying capacity,
respectively. Since we are interested in the case in which bacteria can sustain themselves
even in the absence of infected individuals, in the sequel, we assume that (6) holds.

Model (1)–(4) admits the (unique) disease-free equilibrium E0 = (N0, 0, 0, 0). By
using the next generation method [26], we determine the basic reproduction number
R0 defined as “the expected number of secondary cases produced by a typical infected
individual during its entire period of infectiousness in a completely susceptible popula-
tion” [11]. I andB are the only compartments directly related to the disease. The matrices
denoting the generation of new infections and the transfer among infectious compartments
are, respectively, given by

F =

(
0 βN0/KB

ξ 0

)
, V =

(
µ+ δ 0

0 rb+ τ

)
,
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then the basic reproduction number is given by

R0 = ρ
(
FV −1

)
=

βN0ξ

KB(µ+ δ)(τ + rb)
.

3 Nontrivial equilibria

In this section, we determine the equilibria of (1)–(4) having all positive components.
A nontrivial equilibrium is a solution of the system

µN0 = βλ(B)S + µS, (7)

βλ(B)S = (µ+ δ)I, (8)

ξI = rB(b−B)

(
1− B

k

)
+ τB, (9)

δI − µR = 0 (10)
given by

S̄ = N0 −
B̄(δ + µ)[−(B̄ − b)(1− B̄

k )r + τ ]

µξ
,

Ī =
B̄[−(B̄ − b)(1− B̄

k )r + τ ]

ξ
, R̄ =

δB̄[−(B̄ − b)(1− B̄
k )r + τ ]

µξ
,

being B̄ > 0 a positive root of the equation

Q(B) := A1B
3 +A2B

2 +A3B +A4 = 0, (11)
where

A1 = r(β + µ)(δ + µ) > 0, A2 = −r(δ + µ)
(
−KBµ+ (k + b)(β + µ)

)
,

A3 = (δ + µ)
[
−kKBrµ+ br

(
−KBµ+ k(β + µ)

)
+ k(β + µ)τ

]
,

A4 = kµ
[
−N0βξ +KB(δ + µ)(br + τ)

]
= kµKB(δ + µ)(br + τ)(1−R0).

(12)

Let us investigate how many equilibria are admitted by system (7)–(10). Setting θ=µN0/
(µ+ δ), from (7) and (8) it follows that

I =
θβB

βB + µ(KB +B)
:= g(B), (13)

B =
µKBI

θβ − (β + µ)I
= p(I).

From (9) it follows that

I =
rB

ξk

[
B2 − (k + b)B +

k

r
(τ + rb)

]
:= q(B), (14)

and in view of the positiveness of I , when (6) holds, it provides the following necessary
condition for the existence of a nontrivial equilibrium:

0 < B < b1 or B > k1. (15)
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In order to find nontrivial equilibria, from (13) and (14) one has to solve

g(B) = q(B), B > 0.

The following theorem holds.

Theorem 1. If (6) holds true, then

• R0 < 1 implies that there exist 2 endemic equilibria;
• R0 = 1 implies that there exist 1 or 2 endemic equilibria;
• R0 > 1 implies that there exist 1, 2 or 3 endemic equilibria.

Proof. Let us start by remarking that g(B) > 0 for all B > 0, while q(B) > 0 if and
only if (15) holds. Furthermore,

g′(B) =
µKBθβ

[βB + µ(KB +B)]2
> 0, g′′(B) = − 2µKBθβ(µ+ β)

[βB + µ(KB +B)]3
< 0,

q′(B) =
r

ξk

[
3B2 − 2(b+ k)B +

k

r
(τ + br)

]
.

1.1. Nontrivial equilibria in the caseB > k1. Let us analyze the case τ < r(k − b)2/
(4k), B > k1. In this case, q′(B) > 0 ⇔ B < B1, B > B2, where B1,2 =

(b+ k ±
√

(b+ k)2 − 3k(τ + br)/r)/3 and q′′(B) > 0 ⇔ B > (b+ k)/3. Simple
calculation shows that B2 < k1. Hence, when B > k1, q(B) is an increasing, convex
function of B that crosses g(B) in one point. For this reason, in this case, there exists
a unique nontrivial equilibrium.

1.2. Nontrivial equilibria in the caseB < b1. Let us analyze the case τ < r(k − b)2/
(4k), B < b1. Setting T (B) = q(B) − g(B), T (B) = B{(r/ξk)[B2 − (b + k)B +
(k/r)(τ+rb)]−θβ/(βB+µ(KB+B))}, we look for the positive solutions of T (B) = 0.
Let us remark that

T (0) = 0, T (b1) = q(b1)− g(b1) = −g(b1) < 0,

T ′(B) =
r

ξk

[
3B2 − 2(b+ k)B +

k

r
(τ + rb)

]
− θµβKB

[βB + µ(KB +B)2]
.

Hence, T ′(0) = (τ + rb)(1 − R0)/ξ, T ′(b1) = [2b1 − (b + k)]rb1/(ξk) − g′(b1) < 0.
Let us distinguish three cases:

1. R0 < 1. In this case, T ′(0) > 0 and T (B) = 0 admits at least one positive root
B̄∈ (0, b1). Let us prove that this root is unique. First, T (iv)(B)=−g(iv)(B)>0,
i.e. T ′′ is a convex function of B and has at most two zeros.

• If T ′′(B) has no zeros, then T ′(B) is monotone. But, since T ′(0) > 0 and
T ′(b1) < 0, T ′(B) is monotone decreasing and admits a unique solution in
(0, b1);
• If T ′′(B) has a unique root y ∈ (0, b1), then T ′(B) is monotone in (0, y) and

in (y, b1). It follows that T ′(B) has at most one zero in (0, y) and one zero in
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(y, b1). But, since T ′(0) > 0 and T ′(b1) < 0, there cannot be two solutions of
T ′(B) = 0 in (0, b1);
• If T ′′(B) has two solutions in (0, b1), say y1 and y2. Let us assume that

0 < y1 < y2 < b1. One has that T ′′(B) > 0 in (0, y1), T ′′(B) < 0 in
(y1, y2) and T ′′(B) > 0 in (y2, b1). Then T ′(B) has only one root in (0, b1);
being T increasing, T (B) has only one root in (0, b1).

Since T ′(B) has only one root in (0, b1) and T is increasing, T (B) has only one
root in (0, b1).

2. IfR0 = 1, then T (0) = 0, T (b1) < 0, T ′(0) = 0, T ′(b1) < 0, T (iv)(B) > 0.

• If T (′′)(0) 6 0, since T ′′(B) is convex, there exists a unique y > 0 such that
T ′′(y) = 0 and T ′′(B) < 0 in (0, y), while T ′′(B) > 0 in (y,∞). If y < b1,
then T ′(B) decreases in (0, y) and increases in (y, b1). Consequently, since
T ′(0) = 0, T ′(b1) < 0, T (B) is decreasing in (T (0), T (b1)). If y > b1, T ′(B)
is decreasing in (0, b1) and, since T ′(b1) < T ′(0) = 0, T ′(B) < 0, i.e. T (B) is
negative definite in (0, b1).
• If T ′′(0) > 0, then T ′′(B) has at most two zeros in (0, b1). Let us prove that
T (B) has a unique root. In fact, if T ′′(B) has no roots in (0, b1), then T ′′(B)>0
in (0, b1), i.e. T ′(B) is strictly increasing in (0, b1), but this is in contradiction
since T ′(b1) < 0 and T ′(0) = 0. If T ′′ has one root y ∈ (0, b1), then T (B)
is convex in (0, y) and concave in (y, b1). Since T (y) > T (0) = 0, T (B) has
one zero in (0, b1). Finally, if T ′′(B) has two zeros in (0, b1), we can follow the
procedure used in the case R0 < 1 to conclude that T (B) has only one root in
(0, b1).

3. If R0 > 1, it follows that T ′(0) < 0. By fixing all the parameters, except for
the intrinsic growth rate of the bacteria, r, g(B) does not vary with r, while
∂q(B)/∂r = B{1/(ξk)[B2 − (b + k)B + kb + (k/τ)r] − (k2τ)/(ξr)}. Hence,
if B < b1, then B2 − (b + k)B + kb + kτ/r > 0, i.e. q(B) (and T (B)) can be
increasing or decreasing with r. In this case, T (B) can have 0 or 1 or 2 roots in
(0, b1).

In conclusion, if (6) holds, there exist a unique endemic equilibrium for B > k1 for all
R0, while there exist 0, 1 or 2 endemic equilibria for B < b1 according to specific values
ofR0, and the thesis is reached.

The first thesis of Theorem 1 indicates the possible existence of backward bifurcation.
We will investigate it in Section 5.

The following sufficient condition ensures the uniqueness of the endemic equilibrium.

Theorem 2. If (6) holds true and

R0 > 1, (16)

KB >
(k + b)(β + µ)

µ
, (17)

then there exists a unique endemic equilibrium.
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Proof. By considering the coefficients (12), A1 > 0. Moreover, (16)–(17) yields A4 < 0
and A2 > 0. It is then sufficient to observe that (17) along with (6) yields A3 < 0. By
applying Descartes’ rule of signs to Q(B) the thesis is reached.

4 Linear stability of the biologically meaningful equilibria

Let S̄, Ī , B̄, R̄ be a generic equilibrium. Let us introduce the perturbation fields

X = (X1, X2, X3, X4)T ≡ (S − S̄, I − Ī , B − B̄, R− R̄).

The system governing the evolution of the perturbation fields is

Ẋ = LX + F (18)

with F = (F1,−F1, F2, 0)T and

L =


a11 0 a13 0
a21 a22 a23 0
0 a32 a33 0
0 a42 0 a44

 , a11 = −
(

βB̄

KB + B̄
+ µ

)
,

a13 = − βS̄KB

(KB + B̄)2
, a21 =

βB̄

KB + B̄
, a22 = −(µ+ δ), a23 = −a13,

a32 = ξ, a33 = r

[
2B̄ − 3B̄2

k
+

2bB̄

k
− b
]
− τ, a42 = δ, a44 = −µ,

F1 =
βKB(θX1+S̄)

(KB+θX3+B̄)3
X2

3 , F2 = −r B̄−b
k

X2
3 + rX2

3

(
1−X3+B̄

k

)
− rB̄

k
X2

3 .

In order to perform the linear stability of the biologically meaningful equilibria, let us
consider the linearized version of (18). The spectral equation of L is

(λ− a44)
(
λ3 − I1λ

2 + I2λ− I3

)
= 0, (19)

where Ij (j = 1, 2, 3) are the principal invariants of

L̃ =

a11 0 a13

a21 a22 a23

0 a32 a33

 . (20)

Equation (19) admits the root λ = a44 < 0 and the roots of the equation

λ3 − I1λ
2 + I2λ− I3 = 0. (21)

The null solution of linearized system is stable if and only if all the roots of (21) have
negative real part. The necessary and sufficient conditions, guaranteeing that all the roots
of (21) have negative real part, are the Routh–Hurwitz conditions [18]

I1 < 0, I3 < 0, I1I2 − I3 < 0, (22)

which imply necessarily that I2 > 0.
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Remark 1. Let us remark that if a33 > 0, it follows that I3 > 0.

Let us start by investigating the linear stability of the disease-free equilibrium (N0, 0,
0, 0). When S̄ = N0, Ī = B̄ = R̄ = 0, invariants can be written as

I1 = −2µ− δ − τ − rb < 0, I3 = µ(µ+ δ)(τ + rb)(R0 − 1),

I2 = µ(µ+ δ + τ + rb) + (µ+ δ)(τ + rb)(1−R0).
(23)

The following theorem holds.

Theorem 3. IfR0 < 1, the disease-free equilibrium is linearly stable.

Proof. In view of (23), it turns out that I1 < 0 and I3 < 0 ⇔ R0 < 1, I2 > 0 ⇔
R0 < 1. Furthermore,R0 < 1 yields

I1I2 − I3 = −µ(2µ+ δ + τ + rb)(µ+ δ + τ + rb)

− (µ+ δ)(τ + rb)(µ+ δ + τ + rb)(1−R0) < 0.

Going on to examine now the stability of the endemic equilibrium Ē = (S̄, Ī, B̄, R̄), the
principal invariants become

I1 =
r(−bk + 2(b+ k)B̄ − 3B̄2)

k
− B̄β

KB + B̄
− δ − 2µ− τ,

I2 =

(
B̄β

(KB + B̄)
+ µ

)
(δ + µ)− KBS̄βξ

(KB + B̄)2

+
[KB(δ + 2µ) + B̄(β + δ + 2µ)][kτ + br(k − 2B̄)− r(2k − 3B̄)B̄]

k(KB + B̄)
,

I3 =
1

k(KB + B̄)2

[
kKBS̄βµξ − (KB + B̄)(δ + µ)

(
KBµ+ B̄(β + µ)

)
×
(
br(k − 2B̄) + rB̄(−2k + 3B̄) + kτ

)]
.

Finding necessary and sufficient conditions guaranteeing that (22) are verified is quite
complicated due to the presence of a lot of parameters. Sufficient conditions ensuring
linear stability of the endemic equilibrium have been found, but we prefer not to report
them so as not to weigh down the paper.

5 Bifurcation analysis

5.1 Backward bifurcation

In general, it is observed that disease will eradicate (i.e. the disease free equilibrium will
be stable) when R0 < 1, while disease persists when R0 > 1. The analysis of some
epidemic models depicts that a stable endemic equilibrium exists even when R0 < 1.
This phenomenon is known as backward bifurcation. In other words, a backward bifur-
cation at R0 = 1 may qualitatively be described as follows. In the neighboring of 1, for
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R0 < 1, an equilibrium corresponding to a smaller number of infective individuals, which
is unstable, appears, while the disease-free equilibrium and an equilibrium corresponding
to a larger number of infective individuals are locally asymptotically stable. Epidemio-
logically, a backward bifurcation means that it is not enough to simply reduce the basic
reproductive number to a value less than one to eradicate a disease. The occurrence of
either a forward or a backward bifurcation can have important consequences from the
point of view of the disease control and thus for the eradication of the disease. In order to
investigate the possibility of backward bifurcation, we choose β as bifurcation parameter,
and we obtain the value β∗ of β at R0 = 1 given by β∗ = KB(µ + δ)(τ + rb)/(N0ξ).
The Jacobian of (1)–(4) evaluated in E0 at β = β∗ is given by

JE0

β∗ =

−µ 0 −β∗N0

KB

0 −(µ+ δ) β∗N0

KB

0 ξ −(rb+ τ)

 .

The eigenvalues of JE0

β∗ are

ψ1 = −µ, ψ2 = −2(µ+ δ + rb+ τ), ψ3 = 0.

Since ψ3 = 0 is a simple zero eigenvalue of JE0

β∗ , then the disease free equilibrium E0 is
non hyperbolic equilibrium. Hence, the model at the hand is an eligible candidate to apply
the center manifold theory [8]. Let us denote by w = (w1, w2, w3)T a right eigenvector
corresponding to the zero eigenvalue ψ3 = 0. It follows

−µw1 −
β∗N0

KB
w3 = 0, −(µ+ δ)w2 +

β∗N0

KB
w3 = 0,

ξw2 − (rb+ τ)w3 = 0,

which gives

w =

(
−(rb+ τ)(µ+ δ)

ξµ
,

(rb+ τ)

ξ
, 1

)T

.

Furthermore, the left eigenvector θ = (θ1, θ2, θ3) satisfying w · θ = 1 is given by

−µθ1 = 0, −(µ+ δ)θ2 + ξθ3 = 0,

−β
∗N0

KB
θ1 +

β∗N0

KB
θ2 − (rb+ τ)θ3 = 0.

The left eigenvector is

θ =

(
0,

ξ

µ+ δ + rb+ τ
,

µ+ δ

µ+ δ + rb+ τ

)
.

We can thus compute the coefficients from Theorem 4.1 given in [8] as follows:

ā =

3∑
h,i,j=1

θhwiwj
∂2fh
∂xi∂xj

(E0, β
∗), b̄ =

3∑
h,i=1

θhwi
∂2fh
∂xi∂β

(E0, β
∗).
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Considering in ā and b̄ only the nonzero terms, it follows that

ā = 2θ2w1w3
∂2f2

∂S∂B
(E0, β

∗) + θ2w
2
3

∂2f2

∂B2
(E0, β

∗) + θ3w
2
3

∂2f3

∂B2
(E0, β

∗)

and

b̄ = θ2w3
∂2f2

∂B∂β
(E0, β

∗).

Using the values of left and right eigenvectors, we get

ā =
2

(rb+ τ + µ+ δ)

[
(µ+ δ)

(
β(rb+ τ)

KBµ
+
r(b+ k)

k

)
− ξβN0

K3
B

]
,

b̄ =
ξN0

Kb(rb+ τ + µ+ δ)
.

Observe that the coefficient b̄ is always positive and ā > 0 when

(µ+ δ)

[
β(rb+ τ)

KBµ
+
r(b+ k)

k

]
>
ξβN0

K3
B

.

If we setR∗ = (µ+ δ)K3
B/(ξβN0)[β(rb+τ)/(KBµ)+r(b+k)/k], using Theorem 4.1

in [8], we can state the following theorem.

Theorem 4. If R∗ > 1, system (1)–(4) exhibits a backward bifurcation when R0 = 1. If
R∗ < 1, system (1)–(4) exhibits a forward bifurcation whenR0 = 1.

5.2 Investigation on the onset of Hopf bifurcation

Hopf bifurcation is represented as the appearance or disappearance of a periodic orbit
through a local change in the stability properties of an equilibrium point. In this section,
we explore the possibility of occurrence of Hopf bifurcation and the direction of Hopf
bifurcation around the interior equilibrium point Ē with respect to the bifurcating param-
eter ξ. If

I1 < 0,

I3 < 0, (24)
I1I2 − I3 = 0,

in correspondence of an interior equilibrium, Eq. (21) gives the following eigenvalues:

λ1,2 = ±iω0, λ3 = I1 with ω0 =

√
I3

I1
. (25)

In view of Remark 1, let a33 < 0 and ξ∗ be the critical value of the Hopf bifurcation
parameter given by

ξ∗ =
(a11 + a22)(a11 + a33)(a22 + a33)

a23(a22 + a33 − a21)
> 0.
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When (24) holds, in order to investigate the existence of Hopf bifurcation, we first need
to check the transversality condition, which confirms that the eigenvalues cross the imag-
inary axis of the complex plane with non zero speed, i.e. dRe(λ)/dξ|ξ=ξ∗ 6= 0. When
the value of the parameter ξ changes around the Hopf bifurcation point, the two imagi-
nary eigenvalues ±iω0 will become complex eigenvalues written as λ = v(ξ) ± iω(ξ).
Substituting λ = v + iω into (21) and separating the real and imaginary parts, we obtain

v3 + (I1 − 3v)ω2 − I1v
2 + I2v − I3 = 0, (26)

−ω3 + 3v2ω − 2I1vω + I2ω = 0. (27)

From (27) we find ω, and replacing in (26), we obtain, with f(v) = 3v2 − 2I1v + I2,

v3 − I1v
2 +

(
I2 − 3f(v)

)
v +

(
f(v)

)
I1 − I3

)
= 0. (28)

Differentiating v with respect to ξ and evaluating for ξ = ξ∗, we get

dv

dξ

∣∣∣∣
ξ=ξ∗

=
−KBS̄βµ

(B̄ +KB)2(−2I2|ξ=ξ∗ − I1|ξ=ξ∗)
, (29)

so the transversality condition for Hopf bifurcation is satisfied. Thus, it appears that
a Hopf bifurcation around the interior equilibrium occurs at ξ = ξ∗.

The above results can be summarized in the following theorem.

Theorem 5. For model (1)–(4), if a33 < 0 and I3 < 0, then there exists a Hopf bifurcation
emerging from its positive interior equilibrium when the contribution of each infected
person to the population of bacteria, ξ, passes through the critical value ξ∗.

We have obtained some conditions under which system (1)–(4) undergoes Hopf bi-
furcation from an interior equilibrium at ξ = ξ∗. Now, we discuss the direction of Hopf
bifurcation and the stability of the bifurcating periodic solution. The method used is based
on the normal form theory and the center manifold reduction.

Denoting by X̄ ≡ (X1, X2, X3)T, expansion of Taylor’s series up to terms of order 3
(by neglecting the higher-order terms of degree 4 and above), omitting the bar, produces
the following system:

Ẋ = L̃X + Ã(X), (30)

where L̃ is given by (20), and

Ã(X) =

 βKB S̄
(KB+B̄)3

X2
3 − βKB

(KB+B̄)2
X1X3 − βKB S̄

(KB+B̄)4
X3

3 + βKB
(KB+B̄)3

X1X
2
3 +O(4)

− βKB S̄
(KB+B̄)3

X2
3 + βKB

(KB+B̄)2
X1X3 + βKB S̄

(KB+B̄)4
X3

3 − βKB
(KB+B̄)3

X1X
2
3 +O(4)

[r(1 − B̄
k

) − r
k

(2B̄ − b)]X2
3 − r

k
X3

3 +O(4)

 .

Let X = PY, where Y = (Y1, Y2, Y3)T and

P =

p11 0 p13

p21 p22 p23

p31 p32 p33
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with

p11 = −a13, p12 = 0, p13 = −a13,

p21 =
−a33a11 + ω2

0

ξ∗
, p22 =

(a33+a11)ω0

ξ∗
, p23 =

−(a33a11+a22I1)

ξ∗
, (31)

p31 = a11, p32 = −ω0, p33 = −(a22 + a33).

Under this transformation, system (30) becomes

Ẏ = (P−1L̃P )Y + P−1Ã(PY), (32)

where P−1 denotes the inverse

P−1 =

p
(−1)
11 p

(−1)
12 p

(−1)
13

p
(−1)
21 p

(−1)
22 p

(−1)
23

p
(−1)
31 p

(−1)
32 p

(−1)
33


with

p
(−1)
11 =

p22p33 − p23p32

detP
, p

(−1)
12 =

p13p32

detP
, p

(−1)
13 =

p22p13

detP
,

p
(−1)
21 =

−(p21p33−p31p23)

detP
, p

(−1)
22 =

p11p33−p13p31

detP
, p

(−1)
23 =

p11p23−p21p13

detP
,

p
(−1)
31 =

(p21p32−p31p22)

detP
, p

(−1)
32 = −p11p32

detP
, p

(−1)
33 =

p11p22

detP
.

Then system (32) can be written asẎ1

Ẏ2

Ẏ3

 =

 0 ω0 0
−ω0 0 0

0 0 I1

Y1

Y2

Y3

+

f̃
(−1)
1

f̃
(−1)
2

f̃
(−1)
3

 , (33)

where

f̃
(−1)
1 = (p31Y1 + p32Y2 + p33Y3)

{
1

k

[
p

(−1)
13 r(b− 3B̄ + k − p31Y1 − p32Y2 − p33Y3)

× (p31Y1 + p32Y2 + p33Y3)

]
− β

(B̄ +KB)4
KB(p

(−1)
11 − p(−1)

12 )(B̄ +KB

− p31Y1 − p32Y2 − p33Y3)
[
p11KBY1 + p13KBY3 + B̄(p11Y1 + p13Y3)

− S̄(p31Y1 + p32Y2 + p33Y3)
]}
,

f̃
(−1)
2 = (p31Y1 + p32Y2 + p33Y3)

{
1

k

[
p

(−1)
23 r(b− 3B̄ + k − p31Y1 − p32Y2 − p33Y3)

× (p31Y1 + p32Y2 + p33Y3)

]
− β

(B̄ +KB)4
KB(p

(−1)
21 − p(−1)

22 )(B̄ +KB

Nonlinear Anal. Model. Control, 25(6):1035–1058

https://doi.org/10.15388/namc.2020.25.20563


1048 F. Capone et al.

− p31Y1 − p32Y2 − p33Y3)
[
p11KBY1 + p13KBY3 + B̄(p11Y1 + p13Y3)

− S̄(p31Y1 + p32Y2 + p33Y3)
]}
,

f̃
(−1)
3 = (p31Y1 + p32Y2 + p33Y3)

{
1

k

[
p

(−1)
33 r(b− 3B̄ + k − p31Y1 − p32Y2 − p33Y3)

× (p31Y1 + p32Y2 + p33Y3)

]
− β

(B̄ +KB)4
KB(p

(−1)
31 − p(−1)

32 )(B̄ +KB

− p31Y1 − p32Y2 − p33Y3)
[
p11KBY1 + p13KBY3 + B̄(p11Y1 + p13Y3)

− S̄(p31Y1 + p32Y2 + p33Y3)
]}
.

There exists a center manifold for (33), which can be represented as

WC(0) =
{

(Y1, Y2, Y3) ∈ R3: Y3 = h∗(Y1, Y2), h∗(0, 0) = 0, Dh∗(0, 0) = 0
}
.

We assume h∗(Y1, Y2) = b1Y
2
1 +b2Y

2
2 +b3Y1Y2+· · · . Through approximate computation

for the center manifold, we obtain

b1 = −b2 +
1

I 1

[(
p

(−1)
32 − p(−1)

31

)(
f

(1)
11 + f

(1)
22

)
− p(−1)

33

(
f

(3)
11 + f

(3)
22

)]
,

b2 =
1

4ω2
0 + I2

1

{[(
p

(−1)
32 − p(−1)

31

)
f

(1)
22 − p

(−1)
33 f

(3)
22

](
I1 +

2ω2
0

I1

)
+
(
p

(−1)
32 − p(−1)

31

)(2ω2
0

I1
f

(1)
11 + ω0f

(1)
12

)
− p(−1)

33

(
2ω2

0

I1
f

(3)
11 + ω0f

(3)
12

)}
,

b3 =
1

ω0

[
I1b2 +

(
p

(−1)
31 − p(−1)

32

)
f

(1)
22 + p

(−1)
33 f

(3)
22

]
,

where

f
(1)
11 =

βKBS̄

(KB+B̄)3
a2

11+
βKB

(KB+B̄)2
a11a13, f

(1)
22 =

βKBS̄

(KB+B̄)3
ω2

0 ,

f
(3)
11 =

(
r

(
1− B̄

k

)
− r

k
(2B̄−b)

)
a2

11, f
(3)
22 =

(
r

(
1− B̄

k

)
− r

k
(2B̄−b)

)
ω2

0 ,

f
(1)
12 = 2

βKBS̄

(KB+B̄)3
a11ω0+

βKB

(kB+B̄)2
a13ω0, f

(3)
12 = −2a11ω0

(
r

(
1− B̄

k

)
− r

k
(2B̄−b)

)
.

System (33) restricted to the center manifold is given by(
Ẏ1

Ẏ2

)
=

(
0 ω0

−ω0 0

)(
Y1

Y2

)
+

(
f̃1(Y1, Y2)

f̃2(Y1, Y2)

)
, (34)

where
f̃1(Y1, Y2) = f̃

(−1)
1

(
Y1, Y2, h

∗(Y1, Y2)
)
,

f̃2(Y1, Y2) = f̃
(−1)
2

(
Y1, Y2, h

∗(Y1, Y2)
)
.
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The 1st Lyapunov coefficient based on the normal form (34), which determines the sta-
bility and direction of periodic solution, is given by

l1 =
1

16

[
f̃1
Y1Y1Y1

+ f̃1
Y1Y2Y2

+ f̃2
Y1Y1Y2

+ f̃2
Y2Y2Y2

]
+

1

16ω0

[
f̃1
Y1Y2

(
f1
Y1Y1

+ f1
Y2Y2

)
− f̃2

Y1Y2

(
f2
Y1Y1

+ f2
Y2Y2

)
− f̃1

Y1Y1
f̃2
Y1Y1

+ f̃1
Y2Y2

f̃2
Y2Y2

]
, (35)

where all the derivatives are calculated at the bifurcation point (Y1, Y2, ξ) = (0, 0, ξ∗).
Then Hopf bifurcation is supercritical if l1 < 0 or subcritical if l1 > 0.

6 Sensitivity analysis

To understand the importance of parameters, which are responsible for the transmission
of a disease, we perform a sensitivity analysis. It tells which parameters deserve the
most numerical attention: a highly sensitive parameter should be carefully estimated as
a small variation in it may lead to large changes in the quantity of interest and qualitatively
different results. An insensitive parameter does not require as much effort to be estimated.
The initial disease transmission is directly related toR0; for this reason, we calculate the
sensitivity indices of the basic reproductive number R0. Let p a generic parameter of
model (1)–(4). The normalized forward sensitivity index of R0 (which is differentiable
with respect to p) is defined as

ΠR0
p =

p

R0

∂R0

∂p
. (36)

If this index is negative (positive), then the relationship between the parameter and R0

is of inverse (direct) proportion. The index modulus is an indicator of the size of the
effect of changes in that parameter. As we have an explicit expression of R0, we derive
an analytical expression for the sensitivity of R0 to each of the different parameters of
model (1)–(4). Precisely,

ΠR0

β = ΠR0

ξ = −ΠR0

KB
= 1, ΠR0

r = ΠR0

b = − rb

rb+ τ
,

ΠR0
µ = − µ

µ+ δ
, ΠR0

δ = − δ

µ+ δ
, ΠR0

τ = − τ

τ + rb
.

(37)

From (37) we can see that the sensitivity indices of R0 with respect to β, ξ, KB do
not depend on any parameter values, while the other indices have an obvious structure
depending on some parameters. From an initial analysis, R0 is most sensitive to the
contact rate with contaminated water (β) and to the contribution of each infected person
to the population of bacteria (ξ) (as shown in (37)). This result shows that any increase
(decrease) by a given percentage in β or ξ will increase (decrease) by the same percentage
the value of R0. The other parameter with highest sensitivity index is KB with ΠR0

KB
=

−1. Increasing (decreasing)KB by a given percentage will decrease (increase)R0 by the
same percentage. The other parameters have a minor effect on R0. In fact, from (37) the
analytical expression for the sensitivity of R0 to any of the other parameters, evaluated
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Table 2. Baseline values of model parameters and sensitivity indices of R0 to such
parameters evaluated at the baseline parameter values.

β ξ KB r b δ µ τ

Baseline values 1 10 10000 0.5 10 0.25 0.02 0.15
Sensitivity index +1 +1 −1 −0.97 −0.97 −0.92 −0.07 −0.03

Table 3. Parameters values for the two examples.

N0 µ δ ξ KB τ r β b k

Example 1 1000 0.02 0.25 10 10000 0.15 0.50 1 10 100
Example 2 10000 0.02 0.25 10 10000 0.15 0.25 2.5 300 500

in absolute value, is less than 1. For all parameters, the sign of the sensitivity indices
of R0 agrees with an intuitive expectation. In order to effectively measure, the relative
change in R0 when the remaining parameters change, one has to evaluate the sensitivity
indices at the chosen baseline parameter values. However, following the procedure used
by [9], we can replace τ and r (keeping b fixed) by the parameters ζ = rb+ τ , θ̂ = r/τ ,
where ζ can be seen as the linear loss rate of bacteria. Measuring the sensitivity of R0

with respect to ζ, keeping θ̂ fixed (allowing r and τ to vary, while their ratio remains
fixed), it follows that ΠR0

ζ = ΠR0
r + ΠR0

τ = −1 so providing a good estimate of the
joint impact of r and τ . This means that the aggregate parameter ζ is one of the most
sensitive parameters. (Similarly, one can proceed replacing τ and b, keeping r fixed, with
Γ = rb + τ and θ̄ = b/τ , respectively, and obtain ΠR0

Γ = ΠR0

b + ΠR0
τ = −1.) With

a similar procedure, one can estimate the joint effect of δ and µ by the sensitivity index
of R0 with respect to η = δ + µ, i.e. ΠR0

η = ΠR0

δ + ΠR0
µ = −1. The parameter µ + δ

can be seen as the total loss rate of infective individuals. In Table 2, the values of all the
parameters displayed in the first line are taken as the baseline values and are the same of
Example 1 in Table 3. They are used to evaluate, through (36), the sensitivity indices of
the remaining parameters, which are responsible for the transmission and management
of a waterborne disease, in relation to the basic reproduction number R0. The results of
such calculation are presented in the second line of Table 2. The parameters are ordered
from the most sensitive to the least.

7 Numerical simulations and discussion

In this section, we investigate by numerical simulations some different scenarios for the
proposed model and discuss the obtained results. Throughout these experiments, we also
intend to highlight the impact of the assumption of a nonlinear pathogen growth on the
infected dynamics: by tuning the parameter r governing this growth, we will show the
higher flexibility of the present model in reproducing different epidemic outbreaks.

7.1 Disease dynamics and basic reproduction number

Specifically, we explore two situations: in the first example, we set the model parameters
to obtain a basic reproduction number R0 less than one so that the disease-free equilib-
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rium is stable; in the second example, we choose the parameters to obtainR0 greater than
one and to have two endemic equilibria in the interval (0, b1). All the parameters values
for the two examples are reported in Table 3. In the exploratory study [10], a model has
been introduced to capture Cholera transmission within a community. This model has
been a predecessor of several more recent ones. As discussed in [13], true values of the
parameters in all these models are often difficult or impossible to estimate accurately.
That work also reports the most common setting of several key parameter values across
the main published models. So we choose accordingly the parameter values for the
numerical experiments. Such simulations have the only purpose of showing the ability of
the proposed model to represent different scenarios for the waterborne disease evolution.
Of course, running such simple models against real data (as we did in a different model
setting in [7]) could just reproduce the initial outbreak of an epidemy before the planning
and execution of human interventions, like vaccination or water sanitation, that are not
yet represented in the current formulation. More realistic models, including terms rep-
resenting such interventions, could be considered in future work and undoubtedly could
benefit from these preliminary studies.

Example 1. We get R0 ≈ 0.72, b1 ≈ 10.334, k1 ≈ 99.667, and the polynomial T (B)
introduced in Section 4 has two positive roots, one in the interval (0, b1), the so-called
lower branch, and one greater than k1 (upper branch). These roots correspond to two
endemic equilibria with approximate values of the variables S, I , B given by E1≈ (986,
1, 2.795), Eup≈(659, 25, 104.777), while for the disease-free equilibrium, we find E0 =
(1000, 0, 0). Now, according to the linear stability analysis,E0 andEup are stable equilib-
ria, but E1 is unstable. The left panel of Fig. 1 shows trajectories for S(t), I(t) and B(t)
starting from the initial point (900, 0, 5) and reaching the disease-free equilibrium (left
panel). In the same parameters setting, different initial conditions with I(0)>0 lead to the
endemic equilibrium Eup. This can be clearly seen in the right panel of the same Fig. 1.

WhenR0 is greater than one, the polynomial T (B)/B, along with the always existent
root greater than k1, can have either zero or two positive roots. We decided to consider this

Figure 1. In the left panel, the trajectories of S(t) (blue line), I(t) (red line),B(t) (green line) are shown in the
parameter setting of Example 1 with S(0) = 900, I(0) = 0 and B(0) = 5; the trajectories reach the disease-
free equilibrium E0 = (1000, 0, 0). In the right panel, it is I(0) = 10, B(0) = 30, and the trajectories reach
the endemic equilibriumEup ≈ (659, 25, 105). Note that the variableR(t) is not plotted since it is completely
determined by S, I and N0.
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Figure 2. In the left panel, a plot showing the trajectories of S(t) (blue line), I(t) (red line),B(t) (green line) in
the parameter setting of Example 2 with initial conditions S(0) = 9000, I(0) = 0,B(0) = 10. In this setting,
the trajectories reach the endemic equilibrium Eup ≈ (1275, 646, 579). In the right panel, a phase-plane plot
of S(t) and B(t) is shown.

latter situation to further investigate these endemic equilibria. Then we present a second
example.

Example 2. For the parameter setting reported in the second row of Table 3, we getR0 ≈
1.23, b1 ≈ 302, k1 ≈ 498, and the polynomial T (B) introduced in Section 4 has three
positive roots, two in the interval (0, b1) and one greater than k1. These roots correspond
to the three endemic equilibria E1, E2 and Eup with approximate values of the variables
S, I , B given by E1 ≈ (5918, 302, 55), E2 ≈ (4835, 383, 86), Eup ≈ (1275, 646, 579),
while for the disease-free equilibrium, we find E0 = (10000, 0, 0). Now, according to the
linear stability analysis, E0, E1 and E2 are all unstable equilibria, while Eup is stable.
Figure 2 reports the trajectories of S(t) (blue line), I(t) (red line) and B(t) (green line)
in this parameter setting. Starting from the initial conditions S(0) = 9000, I(0) = 0,
B(0) = 10, the trajectories reach the endemic equilibrium Eup ≈ (1275, 646, 579). In
the right panel of the same figure, a phase-plane plot of S(t) and B(t) is shown.

7.2 Bifurcation scenarios

Now we intend to illustrate through numerical experiments some of the findings of Sec-
tion 5. First, let us examine in both the reported examples how the chosen parameters (and
the resulting value of the reproduction numberR0) affect the stability of the endemic equi-
libria. The bifurcation diagrams in the left and right panels of Fig. 3 refer to Examples 1
and 2, respectively; in both cases, we vary the value of the contact rate β in the range
[1, 3] and report on the horizontal axis the resulting value ofR0. It should be noted that in
both panels, the upper branch equilibrium Bup (that always exists as previously shown) is
stable and its value increases along with the value of R0. Moreover, the left panel shows
how a unique lower branch equilibrium B1 only exists for R0 < 1 (and it is always
unstable). At R0 = 1, this equilibrium crosses the DFE, and a backward bifurcation
occurs. The right panel reports a more interesting situation: while for R0 < 1, a single
and unstable lower branch equilibrium exists, at R0 = 1, a second equilibrium emerges
(forward bifurcation), that is stable until R0 = 1.0714 and then becomes unstable.
At R0 = 1.2508, both these equilibria disappear. Thus, for values of R0 higher than
1.0714, all trajectories converge to the upper branch equilibrium. To conclude, let us also
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Figure 3. In the left panel, the B component of the system equilibria in the parameter setting of Example 1
plotted as functions ofR0: the DFE B0 (black line), the lower branch equilibrium B1 (red line) and the upper
branch equilibrium Bup (blue line). In all curves, a solid line represents a stable equilibrium, and a dotted line
an unstable one. In the right panel, a similar plot for the parameter setting of Example 2. In this case, two lower
branch equilibria exist, B1 (red line) and B2 (gray line).
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Figure 4. Left panel: trajectories for the S, I , B populations in the parameter setting of Example 2 in Table 3,
apart from β = 1.76, ξ = 12.0203. With these choice, E1 ≈ (8916, 80, 14) should show a Hopf bifurcation.
However, the trajectories go towards the stable endemic equilibrium Eup ≈ (1704, 615, 587). In the right
panel, with slightly different parameter values (β = 1.757, ξ = 12.03) corresponding to linear stability of E1,
wide oscillations in the trajectories result in convergence to the other stable equilibrium Eup.

present some numerical experiments concerning Hopf bifurcation. The analysis reported
in Section 5.2 has proved how all the requirements can be met for the onset of a Hopf
bifurcation on the endemic equilibrium E1 = (S1.I1, B1) with B1 < b1. However,
numerical experiments can hardly produce plots illustrating such a situation. This is due to
the concurrent presence of a stable equilibrium Eup with Bup > k that eventually attracts
the trajectories of the process. Then the best we can show is the extremely oscillating
behaviour of the system trajectories when the parameter values are very close to the ones
determining Hopf bifurcation. In the following, we will present some simulations to better
clarify our findings. Let us fix all the parameter values as in Example 2 from Table 3, apart
from β and ξ. Then we impose for ξ the critical value ξ∗ defined in Section 5 and solve
for (β, B) both (11) and I3 < 0. With these choices, we find β = 1.76, ξ = 12.0203, and
the system admits three equilibrium points corresponding to the values B1 = 14.1534,
B2 = 86.7116 and Bup = 586.775 that are, respectively, Hopf unstable, unstable and
stable according to the linear analysis. In the left panel of Fig. 4, trajectories for the S, I ,
B populations are shown. The parameter setting is as in Example 2, Table 3, apart from
the values β = 1.76, ξ = 12.0203. With these choice, the invariants for the endemic

Nonlinear Anal. Model. Control, 25(6):1035–1058

https://doi.org/10.15388/namc.2020.25.20563


1054 F. Capone et al.

0 10 20 30 40 50
B

7500

8000

8500

9000

9500

S

0 100 200 300 400 500 600 700
B

2000

4000

6000

8000

10000

S

Figure 5. Phase plane portrait in the (B,S)-plane of the trajectories corresponding to the initial condition
(9000, 50, 15) in the parameter setting of Example 2 in Table 3, apart from β = 1.757, ξ= 12.03. With these
choice, the endemic equilibrium E1 ≈ (8916, 80, 14) is stable, but very close to the Hopf bifurcation limit.
In the left panel, the orbit up to T = 1500, in the right panel, the complete path towards the other equilibrium
value Eup ≈ (1704, 615, 587).
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Figure 6. Phase plane portraits in the (B,S)-plane of the trajectories corresponding to the initial condition
S0 = 9000,B0 = 15 in the parameter setting of Example 2 in Table 3, apart from β = 1.757, ξ = 12.03. With
these choice, the endemic equilibrium E1 ≈ (8916, 80, 14) is stable, but very close to the Hopf bifurcation
limit. In the left panel, the orbit starting from I0 = 80 and converging (very slowly, simulation is run until
T = 10000) toE1, in the right panel, the orbit starting from I0 = 30 and more rapidly converging (T = 2000)
to the other equilibrium value Eup ≈ (1704, 615, 587).

equilibrium E1 ≈ (8916, 80, 14) fulfill the conditions for the onset of a Hopf bifurcation.
We also evaluate the related first Lyapunov coefficient l1 by (35) and found a negative
value, so that the Hopf bifurcation near the critical point E1 is supercritical. However,
our simulations are only able to show that the system trajectories, even starting very close
to E1, are attracted towards the stable endemic equilibrium Eup ≈ (1704, 615, 587).
To further explore this situation, we then consider a slight perturbation of the parameter
values (β = 1.757, ξ = 12.03), so to move the equilibrium point E1 just within the limits
of its linear stability. Even in this case, reported in the right panel of the same figure, the
process trajectories, after several oscillations, are eventually attracted by the upper branch
equilibrium Eup. Figure 5 helps clarify this latter situation by showing the corresponding
phase portrait: up to T = 1500, the orbit remains quite close to E1 (left panel of the
figure), but the enlarging oscillations lead the process to converge to Eup (right panel of
the same figure). Further investigations confirm that the lower branch equilibrium, even
when it is stable, has a very small basin of attraction, and the system trajectories are
highly sensitive to the chosen initial point: in Fig. 6, we report two phase plane portraits
corresponding to the same equilibrium, in the same parameters setting, but with different
initial values for the Infected population I0. It can be clearly seen how the corresponding
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orbits are dramatically different and eventually converge to different equilibrium values:
E1 (left panel) or Eup (right panel).

7.3 Experiments on sensitive parameters

It is clear that the stable endemic equilibrium with B̄ greater than k1, present in both
scenarios, is heavily depending on the value of the carrying capacity k1 that represents
a lower bound for it. As discussed in the previous section, however, other parameters can
play a significant role in the proposed model. Specifically, we further analyze the parame-
ter setting of Example 2 and try to identify effective strategies to control the amplitude and
timing of the peaks in both the infective and bacterial populations in the event of largeR0

when the infectious disease spreads out and the only stable equilibrium in the considered
model is the endemic one. In Fig. 7, we show trajectories of the Infected population
obtained in the parameters setting of Example 2 when only one of the parameters values
(β in the left panel, δ in the right one) is modified (increased or decreased) by 10%. These
parameters characterize the main contributions to the infected population dynamics. As
shown in the figure and as expected by the opposite sign of their contribution in the model,
their fluctuations affect the timing of the Infected peak in opposite ways and cause a shift
in the peak location without sensibly modifying the equilibrium value. However, changes
in β values seem to have a greater impact moving further the peak location. A similar
behavior can be observed in the bacterial dynamics (not shown).

To conclude this section, let us present, in the same experiment setting, the impact
of different growth parameters r on the infected population. In Fig. 8, we represented
the infected-population curves corresponding to several values of r ranging from 0 to
0.25. It is clear that the linear assumption for the pathogen growth (r = 0) corresponds
to an abrupt growth of the infected population, while the nonlinear assumption allows to
reproduce different scenarios, where the peak in the infected population could be lowered
and shifted to the right to better fit experimental data. This could be the case for an
epidemic spreading at different rates in different regions of the same country as reported
in several experimental studies (see, i.e. [19]).

Figure 7. Model predictions for the Infected population with parameter values as in Example 2 of Table 3 (blue
trajectory) and with an increase or decrease of 10% (green and red lines, respectively) of the parameters β (left
panel) and δ (right panel).
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Figure 8. Model predictions for the infected populations with all parameter values as in Example 2 of Table 3
and different values of the r parameter ranging from 0 (dark green line) to 0.25 (blue line).

8 Conclusions

An ODEs model for the transmission of a waterborne disease has been formulated and
investigated, both theoretically and numerically. Its main features are the cubic growth
of the bacterial population, that implies an Allee effect, and a Holling type II functional
response to better express the shape of the indirect transmission. For this model, the num-
ber of biologically meaning equilibria has been obtained along with their linear stability
according to the basic reproduction number. The occurrence of a backward bifurcation
has been investigated. Precisely, restrictions on the parameters guaranteeing the onset of
a backward or a forward bifurcation, that can have consequences for the disease control,
have been obtained. Hopf bifurcation has been analyzed by using methods from bifur-
cation theory and the center manifold theorem. Numerical simulations have confirmed
the theoretical analysis and shown the rich dynamics in case of coexistence of two stable
equilibria. A sensitivity analysis on R0 has been also performed to assess the incidence
of the different parameters on the initial disease transmission. The obtained results could
be a useful contribution to better understand and more realistically describe the dynamics
of waterborne diseases. They could also be the starting point for giving insight to future
studies aimed at planning intervention strategies.
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