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Abstract. In this paper, we find fractional Riemann–Liouville derivatives for the Takagi–Lands-
berg functions. Moreover, we introduce their generalizations called weighted Takagi–Landsberg
functions, which have arbitrary bounded coefficients in the expansion under Schauder basis. The
class of weighted Takagi–Landsberg functions of order H > 0 on [0, 1] coincides with the class
of H-Hölder continuous functions on [0, 1]. Based on computed fractional integrals and derivatives
of the Haar and Schauder functions, we get a new series representation of the fractional derivatives
of a Hölder continuous function. This result allows us to get a new formula of a Riemann–Stieltjes
integral. The application of such series representation is a new method of numerical solution of the
Volterra and linear integral equations driven by a Hölder continuous function.
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1 Introduction

Our aim is to get a broad class of continuous functions on [0, 1], which are nowhere differ-
entiable but have fractional derivatives. The prominent example is the Takagi–Landsberg
function with Hurst parameter H > 0 introduced in [10], given by

xH(t) =

∞∑
m=0

2m(1/2−H)
2m−1∑
k=0

em,k(t), t ∈ [0, 1],

where {em,k, m ∈ N0, k = 0, . . . , 2m − 1} are the Faber–Schauder functions on [0, 1].
In the present paper, we find the fractional derivatives of the Takagi–Landsberg functions,
and for other properties, we refer to the surveys [2] and [9]. In the case H = 1/2, the
function xH is known as the Takagi function.
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There are several generalizations of the function xH . In the paper of Mishura and
Schied [13], the signed Takagi–Landsberg functions of the form

∞∑
m=0

2m(1/2−H)
2m−1∑
k=0

θm,kem,k(t), t ∈ [0, 1] with θm,k ∈ {−1,+1}

are considered. Their results concern the maximum, the maximizers, and the modulus
of continuity. Particularly, it was shown that maxt∈[0,1] x

H(t) = 1/(3(1 − 2−H)). The
case of H = 1/2 is considered in [16], where the connections to the Fölmer’s pathwise
Itô calculus (e.g. [5]) is also described. The signed Takagi–Landsberg functions form the
wide class of continuous nondifferentiable functions with finite pth variations.

We want to extend this class further and introduce so-called weighted Takagi–
Landsberg functions for which we let θm,k be arbitrary bounded coefficients. We study
the continuity properties of such functions and show that they are H-Hölder continu-
ous on [0, 1]. Moreover, we prove that every Hölder continuous function is a weighted
Takagi–Landsberg function, which immediately gives a new series representation for the
Hölder continuous functions, which we call a Takagi–Landsberg representation. Then
we compute the fractional Riemann–Liouville derivatives and integrals of the Faber–
Schauder functions, and therefore we obtain the fractional derivatives of the (weighted)
Takagi–Landsberg functions. Such a new series representation of the fractional derivative
for Hölder continuous functions is very promising for further development of the con-
tinuous functions without derivatives. Particularly, the Takagi–Landsberg representation
gives a new method for numerical solution of the integral equations involving Hölder
continuous functions.

As an example, we consider the Volterra integral equation with fractional noise, called
also fractional Langevin equation, e.g. [4,12]. This equation is of interest for modelling of
anomalous diffusion in physics (e.g. [8,11]) and financial markets (e.g. [17]). Our method
of its numerical solution allows us to reduce it to the system of linear algebraic equations,
which is computationally effective. We prove that the numerical solution of the fractional
Langevin equation, due to our method, approaches the theoretical solution, and illustrate
this by numerical examples.

We also obtain the series expansion of the Riemann–Stieltjes integral applying method-
ology based on fractional Rieman–Liouville integrals introduced in [18] and developed
in [14]. As an illustration, we consider the linear differential equation driven by Hölder
continuous function and prove that its numerical solution, due to our method, tends to the
exact solution in the specific norm. Moreover, the method gives directly the coefficients
in the Takagi–Landsberg expansion of the solution in contrast to other procedures. This
result is also supported by numerical examples. Nonlinear equations can also be solved
by the application of the Takagi–Landsberg representation and will be covered by further
research.

The paper is organized as follows. In Section 2, we recall some basic definitions from
fractional calculus and Schauder basis. In Section 3, we compute fractional Riemann–
Liouville integrals and derivatives of the Haar functions (Section 3.1) and the Faber–
Schauder functions (Section 3.2).
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In Section 4, we introduce the weighted Takagi–Landsberg functions and obtain the
series representations of their Riemann–Liouville derivatives. The series expansion of the
Riemann–Stieltjes integral is given in Section 5. In Section 6, we consider the application
of the Takagi–Landsberg representation for the solution of the Volterra integral (Section
6.1) and linear differential (Section 6.2) equations. The numerical results are presented in
Sections 6.3 and 6.4.

2 Preliminaries

First, we recall the definitions of fractional Riemann–Liouville integrals and derivatives
and their basic properties. Let f ∈ L1([0, T ]). We define left- and right-sided fractional
integrals of order α > 0 on (0, T ) by

[
Iα0+f

]
(t) :=

1

Γ(α)

t∫
0

(t− u)α−1f(u) du,

[
IαT−f

]
(t) :=

1

Γ(α)

T∫
t

(u− t)α−1f(u) du,

respectively (cf. [15, Def. 2.1]).
Define the spaces of functions that can be represented as fractional integrals:

Iα+
(
Lp
(
[0, T ]

))
:=
{
f ∈ L1

(
[0, T ]

)
: ∃ϕ ∈ Lp

(
[0, T ]

)
such that f = Iα0+ϕ

}
,

Iα−
(
Lp
(
[0, T ]

))
:=
{
f ∈ L1

(
[0, T ]

)
: ∃ϕ ∈ Lp

(
[0, T ]

)
such that f = IαT−ϕ

}
.

From [15, formula (2.19)] it follows that Iα+(Lp([0, T ])) = Iα−(Lp([0, T ])) for 1 < p <
1/α.

For the functions from Iα+(L1([0, T ])) = Iα−(L1([0, T ])), we define the left- and right-
sided fractional Riemann–Liouville derivatives on (0, T ) of order α by

[
Dα

0+f
]
(t) =

1

Γ(1−α)

d

dt

t∫
0

(t− u)−αf(u) du,

[
Dα
T−f

]
(t) = − 1

Γ(1−α)

d

dt

T∫
t

(u− t)−αf(u) du.

Recall that the Faber–Schauder functions are defined as

e∅(t) := t, e0,0(t) :=
(
min{t, 1− t}

)+
, em,k(t) := 2−m/2e0,0

(
2mt− k

)
for t ∈ R, m ∈ N, k ∈ N0. They can be expressed in terms of Haar functions Hm,k as

em,k(t) =

t∫
0

Hm,k(s) ds =
[
I10+Hm,k

]
(t),
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whereHm,k(s) = 2m/21Jm,k
(s)−2m/21Jm, k+0.5

(s), and Jm,t := (t/2m, (t+0.5)/2m],
m ∈ N0, k = 0, . . . , 2m − 1, t ∈ [0, 1].

The Faber–Schauder functions form a Schauder basis in C([0, 1]) and produce the
following expansion of a function f ∈ C([0, 1]) (e.g. [7]):

f(t) = f(0) +
(
f(1)− f(0)

)
t+

∞∑
m=0

2m−1∑
k=0

2m/2am,kem,k(t), t ∈ [0, 1], (1)

with coefficients

am,k = 2f

(
k+0.5

2m

)
− f

(
k+1

2m

)
− f

(
k

2m

)
.

3 Fractional derivatives of the Takagi–Landsberg function

3.1 Haar functions

In this section, we calculate the fractional integrals and derivatives of the Haar functions.

Lemma 1. Let α > 0, T > 0, k,m ∈ N0 and 0 6 k < 2m. Then for t ∈ (0, 1), we have

Iα0+Hm,k(t) =
2m/2

Γ(1+α)

((
t− k

2m

)α
+

−
(
t− k+0.5

2m

)α
+

+

(
t− k+1

2m

)α
+

)
, (2)

and for t ∈ (0, T ),

IαT−Hm,k(t) =
2m/2

Γ(1+α)

(
2

(
T ∧ k+0.5

2m
− t
)α

+

−
(
T ∧ k

2m
− t
)α

+

−
(
T ∧ k+1

2m
− t
)α

+

)
. (3)

Proof. If t < k/2m, then Iα0+Hm,k(t) = 0. Let t ∈ Jm,k, then

Iα0+Hm,k(t) =
2m/2

Γ(α)

t∫
k/2m

(t− u)α−1 du =
2m/2

Γ(1+α)

(
t− k

2m

)α
. (4)

Let t ∈ Jm, k+0.5, then

Iα0+Hm,k(t) =
2m/2

Γ(α)

( (k+0.5)/2m∫
k/2m

(t− u)α−1 du−
t∫

(k+0.5)/2m

(t− u)α−1 du

)

=
2m/2

Γ(1+α)

((
t− k

2m

)α
− 2

(
t− k+0.5

2m

)α)
. (5)
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If t > (k + 1)/2m, then

Iα0+Hm,k(t) =
2m/2

Γ(α)

( (k+0.5)/2m∫
k/2m

(t− u)α−1 du−
(k+1)/2m∫

(k+0.5)/2m

(t− u)α−1 du

)

=
2m/2

Γ(1+α)

((
t− k

2m

)α
− 2

(
t− k+0.5

2m

)α
+

(
t− k+1

2m

)α)
. (6)

Summarizing (4)–(6), we get statement (2).
Now prove relation (3). Obviously, if T < k/2m or t > (k + 1)/2m, then

IαT−Hm,k(t) = 0. Let t ∈ Jm, k+0.5, then

IαT−Hm,k(t) = −2m/2

Γ(α)

T∧(k+1)/2m∫
t

(u− t)α−1 du = − 2m/2

Γ(1+α)

(
T ∧ k+1

2m
− t
)α

. (7)

Let t ∈ Jm,k, then

IαT−Hm,k(t) =
2m/2

Γ(α)

( T∧(k+0.5)/2m∫
t

(u− t)α−1 du−
T∧(k+1)/2m∫

T∧(k+0.5)/2m

(u− t)α−1 du

)

=
2m/2

Γ(1+α)

(
2

(
T ∧ k+0.5

2m
− t
)α
−
(
T ∧ k+1

2m
− t
)α)

. (8)

If t < k/2m, then

IαT−Hm,k(t)

=
2m/2

Γ(α)

( T∧(k+0.5)/2m∫
T∧k/2m

(u− t)α−1 du−
T∧(k+1)/2m∫

T∧(k+0.5)/2m

(u− t)α−1 du

)

=
2m/2

Γ(1+α)

(
−
(
T ∧ k

2m
−t
)α

+2

(
T ∧ k+0.5

2m
−t
)α
−
(
T ∧ k+1

2m
−t
)α)

. (9)

Summarizing (7)–(9), we get statement (3).

For m ∈ N0, k = 0, . . . , 2m − 1, H > 0, denote by

τα1,2m+k(t) =
(t− k

2m )α+ − 2(t− k+0.5
2m )α+ + (t− k+1

2m )α+
Γ(1+α)

, t ∈ [0, 1], α > 0, (10)

τα2,2m+k(t, T )

=
2(T ∧ k+0.5

2m − t)α+ − (T ∧ k
2m − t)

α
+ − (T ∧ k+1

2m − t)
α
+

Γ(1+α)
, t ∈ [0, 1], α > 0.

Then Iα0+Hm,k(t) = 2m/2τα1,2m+k(t) and IαT−Hm,k(t) = 2m/2τα2,2m+k(t, T ).
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Remark 1. We give immediate bounds for τα1,2m+k and τα2,2m+k. For instance, for any
m ∈ N0 and k = 0, . . . , 2m−1, we have∣∣τα1,2m+k(t)

∣∣ =
∣∣Iα0+2−m/2Hm,k(t)

∣∣ 6 Iα0+
[
1Jm,k

+ 1Jm, k+0.5

]
(t)

6 Iα0+
[
1Jm,k

+ 1Jm, k+0.5

]
(1) =

1

Γ(α)

(k+1)/2m∫
k/2m

(1− u)α−1 du

=
1

Γ(1+α)

((
1− k+1

2m

)α
−
(

1− k

2m

)α)
6

2−mα

Γ(1+α)
.

Similarly, we get that |τα1,2m+k(t)| 6 IαT−1Jm,k∪Jm, k+0.5
(t) 6 Iα1−1Jm,k∪Jm, k+0.5

(0) 6
2−mα/Γ(1+α).

Remark 2. One can observe that functions τα1,2m+k and τα2,2m+k can be written in terms
of a fractional Gaussian noise with Hurst index H ∈ (0, 1), that is a centered Gaussian
process with the covariance function

E
[
Y H(t)Y H(0)

]
= CH(t) =

1

2

(
|t+ 1|2H − 2|t|2H + |t− 1|2H

)
, t ∈ R.

Indeed,

τα1,2m+k(t) =
21−α

2mαΓ(1+α)
Cα/2

(
2m+1t− 2k − 1

)
if t > (k + 1)/2m, and

τα2,2m+k(t, T ) = − 21−α

2mαΓ(1+α)
Cα/2

(
2k + 1− 2m+1t

)
if t 6 k/(2m) and T > (k + 1)/(2m).

Since α/2 ∈ (0, 1/2), if α ∈ (0, 1), we can study properties of the integrals Iα0+Hm,k

and IαT−Hm,k using the known results about CH withH < 1/2. For instance, it is known
that CH(t) < 0 if t > 1 and H ∈ (0, 1/2). Further, we use the fact that function CH
in the case H < 1/2 is absolutely integrable and monotonically increasing on [1,+∞),
e.g. [3, Sect. 3.2]

Remark 3. We provide some auxiliary bounds for functions τα1, 2m+k and τα2, 2m+k. Let
α ∈ (0, 1), then Cα/2(x) is negative and monotonically increasing for x > 1, which
gives that |Cα/2(x)| 6 |Cα/2(bxc)|, x > 1. Therefore, τα1, 2m+k(t) is negative for k 6
b2mtc − 1, and

2mαΓ(1+α)

21−α
∣∣τα1,2m+k(t)

∣∣ =
∣∣Cα/2(2m+1t−2k−1

)∣∣ 6 ∣∣Cα/2(2⌊2mt⌋−2k−1
)∣∣.

Similarly, if b2mtc+ 1 6 k 6 b2mT c − 1, then

2mαΓ(1+α)

21−α
∣∣τα2,2m+k(t, T )

∣∣ =
∣∣Cα/2(1+2k−2m+1t

)∣∣ 6 ∣∣Cα/2(2k−⌊2mt⌋−1
)∣∣.
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3.2 The Faber–Schauder functions

Here, we find the fractional integrals and derivatives of the Faber–Schauder functions.

Lemma 2. Let α ∈ (0, 1), T > 0, k,m ∈ N0 and 0 6 k < 2m. Then for t ∈
(0, 1), we have Iα0+em,k(t) = I1+α0+ Hm,k(t) and IαT−em,k(t) = em,k(T )IαT−1[0,1](t) −
I1+αT− Hm,k(t), t ∈ (0, T ).

Proof. It follows from [15, formula (2.65)] that Iα0+em,k = Iα0+I
1
0+em,k = I1+α0+ Hm,k.

Consider IαT−em,k = IαT−I
1
0+Hm,k. It equals

1

Γ(α)

T∫
t

( s∫
0

Hm,k(z) dz

)
(s− t)α−1 ds

=
1

Γ(α)

T∫
0

Hm,k(z)

( T∫
z∨t

(s− t)α−1 ds

)
dz

=
1

Γ(1+α)

T∫
0

Hm,k(z)
(
(T − t)α − (z − t)α+ ds

)
dz

=
em,k(T )

Γ(1+α)
(T − t)α − I1+αT− Hm,k(t).

Finally, we note that (1/Γ(1+α))(T − t)α = IαT−1[0,1](t)

Proposition 1. Let α ∈ (0, 1), T > 0, k,m ∈ N0 and 0 6 k < 2m. Then for t ∈ (0, 1),
we have

Dα
0+em,k(t) =

2m(α−1/2)

Γ(2−α)

((
2mt− k

)1−α
+
− 2
(
2mt− k − 0.5

)1−α
+

+
(
2mt− k − 1

)1−α
+

)
, (11)

and

Dα
T−em,k(t) = em,k(T )Dα

T−1[0,1](t)− I1−αT− Hm,k(t), t ∈ (0, T ). (12)

Proof. Formula (11) follows directly from Lemma 2 and formula (2) since Dα
0+em,k =

Dα
0+I

1
0+Hm,k = I1−α0+ Hm,k, e.g. [15, formula 2.65].

We obtain the derivativeDα
T− from the relationDα

T−em,k(t)=−(d/dt)[I1−αT− em,k](t).
Thus, we have from Lemma 2 and formula (3) that

Dα
T−em,k(t) = − d

dt

(
em,k(T )I1−αT− 1[0,1](t)− I2−αT− Hm,k(t)

)
=
em,k(T )

Γ(1−α)
(T − t)−α +

d

dt
I1−αT− I1T−Hm,k(t)

=
em,k(T )

Γ(1−α)
(T − t)−α −Dα

T−I
1
T−Hm,k(t)

= em,k(T )Dα
T−1[0,1](t)− I1−αT− Hm,k(t).
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Remark 4. We can write the fractional derivatives Dα
0+em,k and Dα

T−em,k as

Dα
0+em,k(t) = 2m/2τ1−α1,2m+k(t), (13)

Dα
T−em,k(t) =

em,k(T )

Γ(1−α)
(T − t)−α − 2m/2τ1−α2,2m+k(t, T ). (14)

Lemma 3.

(i) Let a series
∑∞
n=0 an(t), t ∈ [0, T ], be uniformly bounded by a nonnegative

function A ∈ L1[0, T ], then

Iα0+

( ∞∑
n=0

an

)
(t) =

∞∑
n=0

(
Iα0+an

)
(t), t ∈ [0, T ].

(ii) Let
∑∞
n=0 an(t), t ∈ [0, T ], be a convergent in L1[0, T ] series, an ∈ Iα+(L1[0, T ]),

n > 0. If the exists a summable sequence bn > 0, n > 0, such that |(Dα
0+an)(t)| 6

bn for all t ∈ [0, T ], then

Dα
0+

( ∞∑
n=0

an

)
(t) =

∞∑
n=0

(
Dα

0+an
)
(t), t ∈ [0, T ].

Proof. (i) The first statement follows from the Lebesgue dominated convergence theo-
rem, that is

t∫
0

(t− z)α−1
∞∑
n=0

∣∣an(z)
∣∣dz 6 t∫

0

(t− z)α−1A(z) dz = Γ(α)
(
Iα0+A

)
(t),

where Iα0+A(t) is finite for almost all t ∈ (0, T ) due to ‖Iα0+A‖L1[0,T ] < ∞, e.g [15,
Thm. 2.6].

(ii) Note that (Dα
0+an)(t) = (d/dt)(I1−α0+ an)(t). Since

∑∞
n=0 an ∈ L1[0, T ], we

have from the first part that I1−α0+ (
∑∞
n=0 an)(t) =

∑∞
n=0(I1−α0+ an)(t). Then

Dα
0+

( ∞∑
n=0

an

)
(t) =

d

dt

(
I1−α0+

( ∞∑
n=0

an

))
(t) =

d

dt

( ∞∑
n=0

(
I1−α0+ an

))
(t).

Since
∑∞
n=0 |(d/dt)(I

1−α
0+ an)(t)| 6

∑∞
n=0 bn <∞, we have

d

dt

( ∞∑
n=0

(
I1−α0+ an

))
(t) =

∞∑
n=0

d

dt

(
I1−α0+ an

)
(t) =

∞∑
n=0

(
Dα

0+an
)
(t), t ∈ [0, T ].
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Consider the partial sums of the fractional derivatives of the Faber–Schauder functions
Dα

0+[
∑2m−1
k=0 em,k](t) and Dα

T−[
∑2m−1
k=0 em,k](t). Due to (12)–(14), we have

Dα
0+

[
2m−1∑
k=0

em,k

]
(t) = 2m/2

b2mtc−1∑
k=0

τ1−α1,2m+k(t) + 2m/2τ1−α1,2m+b2mtc(t)

and

Dα
T−

[
2m−1∑
k=0

em,k

]
(t)−

(
2m−1∑
k=0

em,k(T )

)
Dα
T−1[0,1](t) = −2m/2

b2mTc∑
k=b2mtc

τ1−α2,2m+k(t, T ).

Proposition 2. If m > 1, then∣∣∣∣∣
2m−1∑
k=0

τ1−α1,2m+k(t)

∣∣∣∣∣ 6 c1(α)2m(α−1) uniformly on [0, 1], (15)∣∣∣∣∣
2m−1∑
k=0

τ1−α2,2m+k(t, T )

∣∣∣∣∣ 6 c1(α)2m(α−1) uniformly on [0, T ], (16)

where c1(α) = (2α/Γ(2−α))(
∑
k>1 |C(1−α)/2(k)|+ 2).

Proof. From Remarks 1 and 3, it follows that∣∣∣∣∣
2m−1∑
k=0

τ1−α1,2m+k(t)

∣∣∣∣∣ 6 2m(α−1)+α

Γ(2−α)

b2mtc−1∑
k=0

∣∣C(1−α)/2
(
2
⌊
2mt

⌋
− 2k − 1

)∣∣+
2m(α−1)

Γ(2−α)

6
2m(α−1)+α

Γ(2−α)

(∑
k>1

∣∣C(1−α)/2(k)
∣∣+ 2−α

)
6 c1(α)2m(α−1),

where the series
∑
k>1 |C(1−α)/2(k)| converges due to integrability of C(1−α)/2, e.g. [3,

Sect. 3.2].
Consider the case of Dα

T−. Let b2mtc + 1 6 b2mT c − 1, then it follows from
Remarks 1 and 3 that∣∣∣∣∣
2m−1∑
k=0

τ1−α2,2m+k(t, T )

∣∣∣∣∣ 6
b2mTc−1∑
k=b2mtc+1

∣∣τ1−α2,2m+k(t, T )
∣∣+ 2

2m(α−1)

Γ(2−α)

6
2m(α−1)+α

Γ(2−α)

b2mTc−1∑
k=b2mtc+1

∣∣C(1−α)/2
(
2k−2

⌊
2mt

⌋
−1
)∣∣+2

2m(α−1)

Γ(2−α)

6
2m(α−1)+α

Γ(2−α)

(∑
k>1

∣∣C(1−α)/2(k)
∣∣+ 21−α

)
.

Let b2mtc + 1 > b2mT c. Then there are at most two nonzero τ1−α2,2m+k(t, T ). Thus, we

get the upper bound |
∑2m−1
k=0 τ1−α2,2m+k(t, T )| 6 2(2m(α−1)/Γ(2−α)).
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It follows from Proposition 2 that the series
∑
m>0 2m(1/2−H)|Dα

0+[
∑2m−1
k=0 em,k](t)|

converges uniformly on [0, 1] for α < H . This ensures that Lemma 3 holds for the
Takagi–Landsberg function xH and yields

Dα
0+x

H(t) =

∞∑
m=0

2m(1−H)
2m−1∑
k=0

τ1−α1,2m+k(t).

Take the expansion xH(t)−xH(T ) =
∑
m>0 2m(1/2−H)

∑2m−1
k=0 (em,k(t)−em,k(T )).

Since the series
∑
m>0 2m(1/2−H)|Dα

T−[
∑2m−1
k=0 (em,k − em,k(T )](t)| converges uni-

formly on [0, T ] for α < H , then it holds by Lemma 3 that

Dα
T−x

H(t) = xH(T )Dα
T−1[0,1](t)−

∞∑
m=0

2m(1−H)
2m−1∑
k=0

τ1−α2,2m+k(t, T ).

Now consider the special case α = H and the values of Dα
0+x

H(t) at points of the
m0th dyadic partition of [0, 1], that is the set Tm0 := {k2−m0 |k = 0, . . . , 2m0}.
Proposition 3. Let k0,m0 ∈ N0 and k0 6 2m0 − 1. Then

∞∑
m=0

2m(1/2−H)
2m−1∑
k=0

DH
0+em,k

(
k0

2m0

)
= −∞.

Proof. In the case α = H , m > m0, it follows from Remark 2 that

dm : = 2m(1/2−H)
2m−1∑
k=0

DH
0+em,k

(
k0

2m0

)

=
2H

Γ(2−H)

2m−m0k0−1∑
k=0

C(1−H)/2

(
2m+1k0

2m0
− 2k − 1

)
. (17)

For all k 6 2m−m0k0 − 1, we have 2m−m0+1k0 − 2k − 1 > 1 and

C(1−H)/2

(
2m−m0+1k0 − 2k − 1

)
< 0, (18)

which gives that the right-hand side of (17) is negative.
Now we show that the sequence dm is monotonically decreasing ifm > m0. Consider

the difference dm+1 − dm, which equals

2H

Γ(2−H)

[
2m+1k0/2

m0−1∑
k=0

C(1−H)/2

(
2m+1+1k0

2m0
− 2k − 1

)

−
2mk0/2

m0−1∑
k=0

C(1−H)/2

(
2m+1k0

2m0
− 2k − 1

)]

=
2H

Γ(2−H)

2m−m0k0−1∑
k=0

C(1−H)/2

(
2m−m0+2k0 − 2k − 1

)
.
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We get from the last relation and (18) that dm+1 − dm < 0, so dm+1 < dm < dm0
< 0

for all m > m0. This means that
∑∞
m=m0

dm <
∑∞
m=m0

dm0
= −∞.

4 A weighted Takagi–Landsberg function

In this section, we consider the extension of the class of the Takagi–Landsberg functions.
Namely, for constants cm,k ∈ [−L,L], k,m ∈ N0, we define a weighted Takagi–
Landsberg function as yc,H : [0, 1]→ R via

yc,H(t) =

∞∑
m=0

2m(1/2−H)
2m−1∑
k=0

cm,kem,k(t), t ∈ [0, 1]. (19)

Since |yc,H(t)| 6 LxH(t), t ∈ [0, 1], the series in (19) converges uniformly and yc,H ∈
L1([0, 1]).

Lemma 4. LetH > 0. AnyH-Hölder continuous function f on [0, 1] can be expanded as

f(t) = f(0)(1− t) + f(1)t+

∞∑
m=0

2m(1/2−H)
2m−1∑
k=0

cm,kem,k(t), t ∈ [0, 1]. (20)

We call formula (20) the Takagi–Landsberg representation of function f .

Proof. To show this, we first provide the relation between coefficients am,k in expan-
sion (1) and cm,k in (19), that is

cm,k = am,k2mH = 2mH
[
2f

(
k+0.5

2m

)
− f

(
k+1

2m

)
− f

(
k

2m

)]
. (21)

Theorem 3 on p. 191 in [7] states that f is H-Hölder continuous if and only if
coefficients am,k in expansion (1) satisfy |am,k| 6 C(2m + k)−H, m > 0, for a constant
C > 0. Thus, if f is H-Hölder continuous, then |cm,k| = |am,k|2mH 6 C := L
and f is a weighed Takagi–Landsberg function. If yc,H admits representation (19), i.e.
cm,k ∈ [−L,L], then am,k = cm,k2−mH from (21) satisfy |am,k| 6 L2−mH 6 2L ×
(2m + k)−H, m > 0. Hence, yc,H is H-Hölder continuous.

Now let us establish that yc,H admit fractional derivatives of order α < H .

Theorem 1. Let 0 < α < H then

Dα
0+yc,H(t) =

∞∑
m=0

2m(1−H)
2m−1∑
k=0

cm,kτ
1−α
1,2m+k(t), (22)

Dα
T−
[
yc,H − yc,H(T )

]
(t) = −

∞∑
m=0

2m(1−H)
2m−1∑
k=0

cm,kτ
1−α
2,2m+k(t, T ). (23)
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Proof. Due to (11), the fractional derivatives of summands in (19) equal

Dα
0+

[
2m(1/2−H)

2m−1∑
k=0

cm,kem,k

]
(t) = 2m(1−H)

2m−1∑
k=0

cm,kτ
1−α
1,2m+k(t).

From (15) we have the following uniform bound∣∣∣∣∣Dα
0+

[
2m(1/2−H)

2m−1∑
k=0

cm,kem,k

]
(t)

∣∣∣∣∣ 6 L2m(1−H)
2m−1∑
k=0

∣∣τ1−α1,2m+k(t)
∣∣

6 Lc1(α)2m(α−H).

Analogously,∣∣∣∣∣Dα
T−

[
2m(1/2−H)

2m−1∑
k=0

cm,k
(
em,k − em,k(T )

)]
(t)

∣∣∣∣∣ 6 L2m(1−H)
2m−1∑
k=0

∣∣τ1−α2,2m+k(t)
∣∣

6 Lc1(α)2m(α−H).

Thus, from Lemma 3 we get the existence of Dα
0+yc,H and Dα

T−yc,H . Consequently, the
statement of the theorem holds.

5 The Riemann–Stieltjes integral in terms of weighted Takagi–
Landsberg functions

Let α ∈ (0, 1). Denote by Hα[0, 1] the space of α-Hölder continuous function on [0, 1].
In this section, we consider the Riemann–Stieltjes integral of f ∈ HH1 [0, 1] with respect
to g ∈ HH2 [0, 1] if H1 +H2 > 1, which can be defined as

t∫
0

f dg = −
t∫

0

Dα
0+f(s)D1−α

t−
[
g(·)− g(t)

]
(s) ds

for any α ∈ (0, 1) such that α < H1, 1− α < H2, see, e.g. [18].
We use the Takagi–Landsberg representation of functions f and g (19) to give the

series expansion of integral
∫ t
0
f dg. Denote by

∆α
2m+k,2n+l(t) = τα1,2m+k

(
t ∧ l

2n

)
− 2τα1,2m+k

(
t ∧ l+0.5

2n

)
+ τα1,2m+k

(
t ∧ l+1

2n

)
, t ∈ [0, 1], (24)

for α > 0, n,m ∈ N0, l = 0, . . . , 2n − 1, k = 0, . . . , 2m − 1.
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Theorem 2. Let f ∈ HH1 [0, 1] and g ∈ HH2 [0, 1] with H1 + H2 > 1 possess the
following Takagi–Landsberg representations:

f(t) =

∞∑
m=0

2m(1/2−H1)
2m−1∑
k=0

c
(1)
m,kem,k(t), t ∈ [0, 1],

g(t) =

∞∑
m=0

2m(1/2−H2)
2m−1∑
k=0

c
(2)
m,kem,k(t), t ∈ [0, 1],

where |c(1)m,k|, |c
(2)
m,k| 6 L for some L > 0. If 1−H2 < α < H1, then

t∫
0

f(s) dg(s) = −
t∫

0

Dα
0+f(s)D1−α

t−
[
g(·)− g(t)

]
(s) ds

= −
∞∑
n=0

∞∑
m=0

2m−1∑
k=0

2n−1∑
l=0

2m(1−H1)+n(1−H2)c
(1)
m,kc

(2)
n,l∆

2
2m+k,2n+l(t). (25)

Proof. Due to Theorem 1, we have that Dα
0+f and D1−α

t− (g(·)− g(t)) exist and converge
uniformly as series (22) and (23). Therefore, Dα

0+f(s)D1−α
t− [g(·) − g(t)](s) converges

uniformly on s ∈ (0, t) as well with the following bound∣∣Dα
0+f(s)D1−α

t−
[
g(·)− g(t)

]
(s)
∣∣ 6 ∞∑

n=0

∞∑
m=0

2m(α−H1)+n(1−α−H2)L2c1(α)c1(1− α)

for all s ∈ (0, t). So, we apply the Lebesgue dominated convergence theorem to the
integral

∫ t
0
Dα

0+f(s)D1−α
t− [g(·)− g(t)] ds, which equals now

∞∑
n=0

∞∑
m=0

2m−1∑
k=0

2n−1∑
l=0

2m(1/2−H1)+n(1/2−H2)c
(1)
m,kc

(2)
n,l

×
t∫

0

Dα
0+em,k(s)D1−α

t−
[
en,l − en,l(t)

]
(s) ds. (26)

Compute the integral in (26) using Proposition 1:

t∫
0

Dα
0+em,k(s)D1−α

t−
[
en,l(·)− en,l(t)

]
(s) ds

= −
t∫

0

I1−α0+ Hm,k(s)Iαt−Hn,l(s) ds

= − 1

Γ(1−α)

1

Γ(α)

t∫
0

s∫
0

t∫
s

(s− u1)−αHm,k(u1)(u2 − s)α−1Hn,l(u2) du2 du1 ds
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= − 1

B(1− α, α)

t∫
0

Hn,l(u2)

u2∫
0

Hm,k(u1)

u2∫
u1

(s− u1)−α(u2 − s)α−1 dsdu1 du2

= −
t∫

0

Hn,l(u2)

u2∫
0

Hm,k(u1) du1 du2 = −
t∫

0

Hn,l(u)em,k(u) du.

Obviously, if t < k/2m ∨ l/2m, the last integral equals zero.
Let t ∈ Jn,l, then

t∫
0

Hn,l(u)em,k(u) du = 2n/2
t∫

l/2n

ek,m(u) du = 2n/2
(
I20+Hm,k(t)−I20+Hm,k

(
l

2n

))
.

If t ∈ Jn, l+0.5, then

t∫
0

Hn,l(u)em,k(u) du = 2n/2
(l+0.5)/2n∫
l/2n

em,k(u) du−
t∫

(l+0.5)/2n

em,k(u) du

= 2n/2
(

2I20+Hm,k

(
l+0.5

2n

)
−I20+Hm,k

(
l

2n

)
−I20+Hm,k(t)

)
.

The case t > (l + 1)/2n is similar. Thus, we have

t∫
0

Hn,l(u)em,k(u) du

= 2n/2
(

2I20+Hm,k

(
t ∧ l+0.5

2n

)
−I20+Hm,k

(
t ∧ l

2n

)
−I20+Hm,k

(
t ∧ l+1

2n

))
.

Note that

t∫
0

Hn,l(u)em,k(u) du

=

t∫
0

Hn,l(u2)

u2∫
0

Hm,k(u1) du1 du2 =

t∫
0

Hm,k(u1)

t∫
u1

Hn,l(u2) du2 du1

=

t∫
0

Hm,k(u)
[
en,l(t)− en,l(u)

]
du.

Then the statement follows from Lemma 1, relations (10) and (24).
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Remark 5. The Riemann–Stieltjes integral in Theorem 2 can be written as

t∫
0

f(s) dg(s) = −
t∫

0

Dα
0+f(s)D1−α

t−
[
g(·)− g(t)

]
(s) ds

=

∞∑
n=0

2n−1∑
l=0

2n(1/2−H2)c
(2)
n,l

t∫
0

Hn,l(u)f(u) du

=

∞∑
m=0

2m−1∑
k=0

2m(1/2−H1)c
(1)
m,k

t∫
0

Hm,k(u)
[
g(t)− g(u)

]
du

=

∞∑
n=0

∞∑
m=0

2n1−1∑
l1=0

2n2−1∑
l2=0

2n1(1/2−H1)+n2(1/2−H2)c
(1)
n1,l1

c
(2)
n2,l2

×
t∫

0

Hn2,l2(u)en1,l1(u) du. (27)

Remark 6. Particularly, we have

t∫
0

f(s) ds = −
t∫

0

Dα
0+f(s)D1−α

t−
[
(·)− t

]
(s) ds = I10+f(t),

t∫
0

dg(s) = −
t∫

0

Dα
0+1[0,t](s)D

1−α
t−

[
g(·)− g(t)

]
(s) ds = g(t)− g(0),

t∫
0

sdg(s) = −
t∫

0

Dα
0+[(·)](s)D1−α

t−
[
g(·)− g(t)

]
(s) ds = tg(t)− I10+g(t).

From [18, Prop. 4.4.1] it follows that
∫ ·
0
f dg ∈ HH2 [0, 1].

Corollary 1. The coefficients xR0 , xR1 , cR in Takagi–Landsberg representation of the
Riemann–Stieltjes integral in Theorem 2 equal xR0 = 0,

xR1 = −
∞∑

n1=0

∞∑
n2=0

2n1−1∑
l1=0

2n2−1∑
l2=0

2n1(1−H1)+n2(1−H2)c
(1)
n1,l1

c
(2)
n2,l2

∆2
2n1+l1,2n2+l2(1),

cRm,k =

∞∑
n1=0

2n1−1∑
l1=0

c
(1)
n1,l1

∞∑
n2=0

2n1(1/2−H1)+(n2−m)(1/2−H2)

×
2n2−1∑
l2=0

c
(2)
n2,l2

1∫
0

en1,l1(u)Hn2,l2(u)Hm,k(u) du
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= 2mH2

∞∑
n1=0

2n1−1∑
l1=0

cn1,l1

∞∑
n2=0

2n1(1/2−H1)

2(m−n2)(1/2−H2)

×
2n2−1∑
l2=0

c
(2)
n2,l2

(
∆2

2n1+l1,2n2+l2

(
k

2m

)
− 2∆2

2n1+l1,2n2+l2

(
k+0.5

2m

)
+∆2

2n1+l1,2n2+l2

(
k+1

2m

))
.

Proof. The value of xR1 follows from (25). Denote by R(t) the value of the integral∫ t
0
f dg. The function R ∈ HH2 [0, 1] possesses the representation as a weighted Takagi–

Landsberg function with coefficients cR given by cRm,k = 2mH2 [2R((k + 0.5)/2m) −
R((k + 1)/2m) − R(k/2m)]. Then for m ∈ N0 and k = 0, . . . , 2m − 1, we have from
(27) that

cRm,k = 2mH2

∞∑
n1=0

2n1−1∑
l1=0

c
(1)
n1,l1

∞∑
n2=0

2n1(1/2−H1)+n2(1/2−H2)

×
2n2−1∑
l2=0

c
(2)
n2,l2

(
2

(k+0.5)/2m∫
0

en1,l1(u)Hn2,l2(u) du

−
k/2m∫
0

en1,l1(u)Hn2,l2(u) du−
(k+1)/2m∫

0

en1,l1(u)Hn2,l2(u) du

)

=

∞∑
n1=0

2n1−1∑
l1=0

cn1,l1

∞∑
n2=0

2n1(1/2−H1)

2(m−n2)(1/2−H2)

×
2n2−1∑
l2=0

cgn2,l2

1∫
0

en1,l1(u)Hn2,l2(u)Hm,k(u) du.

We can rewrite the last integral as

2(k+0.5)/2m
(
∆2

2n1+l1,2n2+l2

(
k

2m

)
− 2∆2

2n1+l1,2n2+l2

(
k+0.5

2m

)
+∆2

2n1+l1,2n2+l2

(
k+1

2m

))
.

Remark 7. Let g(0) = g(1) = 0. The integral
∫ t
0
sdg(s) possesses the following Takagi–

Landsberg representation:

t∫
0

sdg(s) = tg(t)− I10+g(t),
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t∫
0

sdg(s) = −t
∞∑
n=0

2n−1∑
l=0

2−n(1+H2)−2c
(2)
n,l +

∞∑
m=0

2m−1∑
k=0

2m(1/2−H2)em,k(t)

×

[
kc

(2)
m,k

2m
+ 2mH2

∞∑
n=0

2n−1∑
l=0

2n(1/2−H2)c
(2)
n,lD2n+l,2m+k

]
,

where D2n+l,2m+k := (1/2m)en,l((k + 0.5)/2m)− (1/2m)en,l((k + 1)/2m) + 2n/2 ×
∆2

2n+l,2m+k(1).

6 Applications to fractional integral equations

In this section, we solve integral equations, involving fractional integrals and derivatives,
with the help of the Takagi–Landsberg representations of the Hölder continuous functions.
To do so, we use the uniqueness of the Schauder expansion.

LetH ∈ (0, 1) and g ∈ HH [0, 1] have the Takagi–Landsberg representation (20) with
coefficients g0, g1, cg = {cgm,k}. Denote by Sm the operator that gives the partial sums of
the Takagi–Landsberg expansion of g by

[Smg](t) := g0(1− t) + g1t+

m∑
n=0

2n−1∑
l=0

2n(1/2−H)cgn,len,l(t), t ∈ [0, 1].

From the properties of the Schauder system we get that g(k/2m) = [Sm−1g](k/2m),
0 6 k 6 2m − 1. In this section, it is also convenient to make the new indexation of cg .
We write cgn for cgm,k if n = 2m + k, m > 0, k = 0, . . . , 2m − 1.

Remark 8. Let X : [0, 1]→ R be a H1-Hölder continuous function. Consider a function
f : R → R such that f(X) ∈ HH2 . If X admits representation (19) with coefficients
cxm,k, then f(X) has representation with coefficients cfm,k, where

cxm,k = 2mH1

[
2X

(
k+0.5

2m

)
−X

(
k+1

2m

)
−X

(
k

2m

)]
(28)

and

cfm,k = 2mH2

[
2f

(
X

(
k+0.5

2m

))
− f

(
X

(
k+1

2m

))
− f

(
X

(
k

2m

))]
= 2mH2

[
2f

(
SmX

(
k+0.5

2m

))
− f

(
Sm−1X

(
k+1

2m

))
− f

(
Sm−1X

(
k

2m

))]
.

Thus, coefficients cfm are determined by coefficients {cxn, n 6 m}.
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6.1 Volterra integral equation

Let H < α ∈ (0, 1), θ 6= 0 and g ∈ HH [0, 1], that is g has the Takagi–Landsberg
representation with bounded coefficients cg = {cgm,k}. Consider the Volterra integral
equation given by

X(t) = x0 + θ
[
IαX

]
(t) + g(t), t ∈ [0, 1]. (29)

Equation (29) is called also as the fractional Langevin equation, e.g. [4].
It follows from the general theory of integral equations that (29) has a unique solution

in C[0, 1], e.g. [6, Sect. XII.6.2]. Indeed, the operator Iα0+ has the norm ‖Iα0+‖∞ =
(1/Γ(α)) maxt∈[0,1](

∫ t
0
(t− s)α−1 ds) = 1/Γ(1+α). Moreover, by [15, formula (2.21)]

its powers equal [Iα0+]n = Iαn0+ with ‖[Iα0+]n‖∞ = 1/Γ(αn+ 1). Denote by g̃ = x0 + g.
A solution X of equation (29) can be expanded as a power series X = g̃+ θIα0+g̃+ · · ·+
θnInα0+ g̃ + · · · , which converges for all θ with

|θ| < lim
n→∞

∥∥[Iα0+]n∥∥−1/n∞ = lim
n→∞

(
Γ(αn+ 1)

)1/n
= lim
n→∞

(2π)1/(2n)e−α(nα)α−1/(2n) =∞,

where the asymptotic behavior of the Gamma function is given by [1, formula 6.1.39].
Since operator Iα0+ maps C[0, 1] into Hα[0, 1] (e.g. [15, p. 58, Cor. 2]), the solution
of (29) belongs to HH [0, 1].

Thus, X posses the Takagi–Landsberg representation (20) with x1 ∈ R and bounded
coefficients cx = {cxm, m > 0}

X(t) = x0 + (x1 − x0)t+

∞∑
n=0

2n−1∑
l=0

2n(1/2−H)cx2n+len,l(t), t ∈ [0, 1].

Then we apply Lemma 3 and formula (22) to get that [IαX](t) has the following series
representation:

[
IαX

]
(t) =

x0
Γ(1+α)

tα+
x1−x0
Γ(α+2)

t1+α+

∞∑
n=0

2n−1∑
l=0

2n(1−H)cx2n+lτ
1+α
1,2n+l(t), t∈ [0, 1].

We introduce a truncated fractional integral Iα0+Sp : Hα[0, 1] → Hα[0, 1] of order
p ∈ N as [

Iα0+SpX
]
(t) =

x0
Γ(1+α)

tα +
x1 − x0
Γ(α+2)

t1+α

+

p∑
n=0

2n−1∑
l=0

cx2n+l2
n(1−H)τ1+α1,2n+l(t), t ∈ [0, 1].

Denote by Xp the solution of the following truncated equation:

Xp(t) = x0 + θ
[
Iα0+SpXp

]
(t) + g(t), t ∈ [0, 1]. (30)

Obviously, ‖Iα0+Sp‖∞ 6 ‖Iα0+‖∞, thus (30) has a unique solution in C[0, 1]. By con-
struction Iα0+SpXp ∈ Hα[0, 1], so Xp is H-Hölder continuous on [0, 1] as well.
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Here we give the solution of (30) by finding the coefficients cp and xp1 in the Takagi–
Landsberg expansion (20) of Xp.

Denote by

a2m+k,2n+l = −θ2mH+n(1−H)∆1+α
2n+l,2m+k(1), (31)

a2m+k,0 = 2mHθτ1+α2,2m+k(0, 1), (32)

b2m+k = cg2m+k + 2mHθx0τ
α
2,2m+k(0, 1)− 2mHθx0τ

1+α
2,2m+k(0, 1), (33)

b0 = x0 + g1 +
θx0

Γ(1+α)
− θx0

Γ(α+2)
, (34)

a0,0 =
θ

Γ(α+2)
, ap0,2n+l = θ2n(1−H)τ1+α1,2n+l(1). (35)

Lemma 5. Let p > 1, P = 2p+1− 1 and denote by Ap = (ak,l)
P
k,l=0, Cp = (xp1, c

p
1, . . . ,

cpP )T, and bp = (b0, . . . , bP )T, where ak,l and bk are given by (31)–(35). Let Cp be
a solution of

Cp = ApCp + bp,

and let cpm = bm + xp1am,0 +
∑P
n=1 c

p
nam,n, m > P . Then the function

Xp = x0(1− t) + xp1t+

∞∑
m=0

2m−1∑
k=0

2m(1/2−H)cp2m+kem,k(t), t ∈ [0, 1],

is the solution of equation (30).

Proof. Since the Takagi–Landsberg expansion is unique and its coefficients are deter-
mined by (28), we have the following relation:

cp2m+k = cg2m+k + 2mHθx0τ
α
2,2m+k(0, 1) + 2mHθ(xp1 − x0)τ1+α2,2m+k(0, 1)

+ 2mHθ

p∑
n=0

2n−1∑
l=0

cp2n+l2
n(1−H)

(
2τ1+α1,2n+l

(
k+0.5

2m

)
− τ1+α1,2n+l

(
k+1

2m

)
− τ1+α1,2n+l

(
k

2m

))
= b2m+k + xp1a2m+k,0 +

p∑
n=0

2n−1∑
l=0

cp2n+la
p
2m+k,2n+l. (36)

At point t = 1, equation (30) gives the next relation:

xp1 = x0 + g1 +
θx0

Γ(1+α)
+
θ(xp1 − x0)

Γ(α+2)
+ θ

p∑
n=0

2n−1∑
l=0

cp2n+l2
n(1−H)τ1+α1,2n+l(1)

= b0 + xp1a0,0 +

p∑
n=0

2n−1∑
l=0

cp2n+la
p
0,2n+l. (37)

Then relations (36) and (37) yield the statement of the lemma.
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Lemma 6. Let Xp be the solution of equation (30), then Xp tends to the solution of (29)
in the supremum norm on [0, 1].

Proof. Let X be the solution of (29). Denote by errp = Xp −X . Note that

errp(t) = θIα0+SpXp(t)− θIα0+X(t) = θIα0+errp(t) + θIα0+
[
SpXp −Xp

]
(t). (38)

Due to the power series expansion of errp as a solution of equation (38), we have

‖errp‖∞ 6

(
1 +

∞∑
n=1

|θ|n
∥∥Iαn0+

∥∥)∥∥θIα0+[SpXp −Xp

]∥∥
∞.

Then |Xp(t)−SpXp(t)| 6
∑∞
m=p+1

∑2m−1
k=0 2m(1/2−H)|cm,k|em,k(t) 6 L(xH(t)−

Spx
H(t)), where xH is a Takagi–Landsberg function. The second term in the right-hand

side of (38) is bounded by

|θ|
Γ(α)

∣∣∣∣∣
t∫

0

SpXp(u)−X(u)

(t− u)1−α
du

∣∣∣∣∣
6

1

Γ(α)

t∫
0

|SpXp(u)−Xp(u)|
(t− u)1−α

du 6
L

Γ(α)

t∫
0

xH(u)− SpxH(u)

(t− u)1−α
du

6
Ltα

Γ(1+α)
sup
u∈[0,1]

(
xH(u)− SpxH(u)

)
. (39)

Thus, ‖Iα0+[SpXp − Xp](t)‖∞ → 0 as p → ∞. This yields that ‖X − Xp‖∞ → 0,
p→∞.

6.2 A linear differential equation

Let β, γ ∈ R and β 6= 0, γ 6= 0. Let g : [0, 1] → R be a Hölder continuous of order
H > 1/2 with g(0) = g(1) = 0, that is g be a weighted Takagi–Landsberg function with
bounded coefficients cg = {cgm,k, m > 0, k = 0, . . . , 2m − 1}. Let α ∈ (1 − H,H).
Consider the linear equation

X(t) = x0 + βI10+X(t) + γ

t∫
0

X(z) dg(z)

= x0 + β

t∫
0

X(z) dz − γ
t∫

0

[
Dα

0+X
]
(z)
[
D1−α
t−

(
g(·)− g(t)

)]
(z) dz, (40)

where t ∈ [0, 1].
Denote by U : HH → HH the operator U(x) = βI10+x + γ

∫ ·
0
x dg. It was shown

in [14] that U is a compact linear operator on Banach space Wα,∞
0 with respect to the
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norm ‖f‖α,∞ := supt∈[0,1](|f(t)| +
∫ t
0
|f(t)− f(s)|/(t − s)α+1 ds), and for λ > 0,

an equivalent norm is defined by ‖f‖α,λ := supt∈[0,1] e−λt(|f(t)| +
∫ t
0
|f(t)− f(s)|/

(t− s)α+1 ds). Moreover, there exists λ0 > 0 such that ‖U(x)− U(y)‖α,λ0
6 (1/2)×

‖x − x‖α,λ0
for all x, y ∈ U(B0) ⊂ B0 = {u ∈ Wα,∞

0 : ‖u‖α,λ0
6 2(1 + |x0|)}.

This ensures that there exists a unique solution X ∈ Wα,∞
0 of equation (40), e.g. [14,

Thm. 5.1].
Let us apply the Takagi–Landsberg expansion to solve (40). Using notation (10), we

get that the first integral in the right-hand side of (40) has the following representation:

t∫
0

X(s) ds = x0t+
x1 − x0

2
t2 −

∞∑
n=0

2n−1∑
l=0

2n(1−H)cx2n+lτ
2
1,2n+l(t), t ∈ [0, 1].

The Riemann–Stieltjes integral in (40) is H-Hölder continuous and admits the following
representation due to Theorem 2 and Remark 7:

t∫
0

X(s) dg(s) = x0g(t) + (x1 − x0)
(
tg(t)− I10+g(t)

)
−
∞∑
n=0

∞∑
m=0

2m−1∑
k=0

2n−1∑
l=0

2(m+n)(1−H)cxm,kc
g
n,l∆

2
2m+k,2n+l(t),

where t ∈ [0, 1].
Denote by Xp the solution of the following truncated equation:

Xp(t) = x0 + β
[
I10+SpXp

]
(t)

− γ
t∫

0

[
Dα

0+SpX
]
(z)
[
D1−α
t− Sp

(
g − g(t)

)]
(z) dz, t ∈ [0, 1]. (41)

Denote by

a2m+k,2n+l = −2mHβ2n(1−H)∆2
2n+l,2m+k(1)

+ γ

p∑
n2=0

2(n+n2)(1−H)+mH
2n2−1∑
l2=0

cgn2,l2

(
∆2

2n+l,2n2+l2

(
k

2m

)
×−2∆2

2n+l,2n2+l2

(
k+0.5

2m

)
+∆2

2n+l,2n2+l2

(
k+1

2m

))
, (42)

a2m+k,0 = −βx02m(H−2)

4
+ γ

kcgm,k
2m

+ γ

p∑
n2=0

2n2−1∑
l2=0

2mH2n2(1/2−H)cgn2,l2
D2n2 +l2,2

m+k, (43)

Nonlinear Anal. Model. Control, 25(6):1079–1106

https://doi.org/10.15388/namc.2020.25.20566


1100 V. Makogin, Yu. Mishura

a0,2n+l = β2−n(H+1)−2 − γ
p∑

n2=0

2(n1+n2)(1−H)
2n2−1∑
l2=0

cgn2,l2
∆2n+l,2n2+l2(1), (44)

b2m+k = −a2m+k,0 + γx0c
g
m,k, a0,0 =

β

2
− γ

p∑
n2=0

2n2−1∑
l2=0

2−n2(1+H)−2cgn2,l2
, (45)

b0 =
βx0

2
+ γx0

p∑
n2=0

2n2−1∑
l2=0

2−n2(1+H)−1cgn2,l2
. (46)

Lemma 7. Let p > 1, P = 2p+1− 1 and denote by Ap = (ak,l)
P
k,l=0, Cp = (xp1, c

p
1, . . . ,

cpP )T, and bp = (b0, . . . , bP )T, where ak,l and bk are given by (42)–(46). Let Cp be
a solution of

Cp = ApCp + bp

and cpm = bm + xp1am,0 +
∑P
n=1 c

p
nam,n, m > P . Then the function

Xp = x0(1− t) + xp1t+

∞∑
m=0

2m−1∑
k=0

2m(1/2−H)cp2m+kem,k(t), t ∈ [0, 1],

is the solution of equation (41).

Proof. From Remark 7, Lemma 5 and Corollary 1 we have the following relations for the
coefficients cp in the Takagi–Landsberg expansion of Xp:

cp2m+k = β
(
x0 − xp1

)
2m(H−2)−2

− 2mHβ

p∑
n=0

2n1−1∑
l1=0

cp2n1+l1
2n1(1−H)∆2

2n1+l1,2m+k(1)

+ γx0c
g
m,k + γ

(
xp1 − x0

)kcgm,k
2m

+ γ
(
xp1 − x0

) p∑
n2=0

2n2−1∑
l2=0

2mH2n2(1/2−H)cgn2,l2
D2

n2
2 +l2,2m+k

+ γ

p∑
n1=0

2n1−1∑
l1=0

cp2n1+l1

p∑
n2=0

2(n1+n2−m)(1/2−H)

×
2n2−1∑
l2=0

cgn2,l2

1∫
0

en1,l1(u)Hn2,l2(u)Hm,k(u) du

= b2m+k + xp1a2m+k,0 +

p∑
n=0

2n−1∑
l=0

cp2n+la
p
2m+k,2n+l,
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and

xp1 = x0 + β
x0 + xp1

2
+ β

p∑
n=0

2n−1∑
l=0

cp2n+l2
−n(H+1)−2

− γ
(
xp1 − x0

) p∑
n2=0

2n2−1∑
l2=0

2−n2(1+H)−2cgn2,l2

− γ
p∑

n1=0

p∑
n2=0

2n1−1∑
l1=0

2n2−1∑
l2=0

2n1(1−H)+n2(1−H)cpn1,l1
cgn2,l2

∆2
2n1+l1,2n2+l2(1)

:= b0 + x1a0,0 +

p∑
n1=0

2n1−1∑
l1=0

cp2n1+l1
ap0,2n1+l1

.

Lemma 8. Let Xp be the solution of equation (41). Then Xp tends to the solution of (40)
in the norm ‖·‖α,∞.

Proof. Let X be the solution of (40). Recall the operator U(x) = βI10+x+ γ
∫ ·
0
xdg, x ∈

HH [0, 1] and consider the norm ‖·‖α,λ with λ > 0. Then

‖Xp −X‖α,λ =

∥∥∥∥βI10+SpXp − βI10+X + γ

·∫
0

SpXpd[Spg]− γ
·∫

0

X dg

∥∥∥∥
α,λ

6
∥∥U(Xp)− U(X)

∥∥
α,λ

+

∥∥∥∥βI10+[SpXp −Xp] + γ

·∫
0

SpXp d[Spg]− γ
·∫

0

Xp dg

∥∥∥∥
α,λ

6
∥∥U(Xp)− U(X)

∥∥
α,λ

+
∥∥U(SpXp)− U(Xp)

∥∥
α,λ

+

∥∥∥∥γ
·∫

0

SpXp d[Spg]− γ
·∫

0

SpXp dg

∥∥∥∥
α,λ

.

Since ‖U(x)− U(y)‖α,λ 6 (1/2)‖x− y‖α,λ, then

‖Xp −X‖α,λ
2

6
‖SpXp −Xp‖α,λ

2
+ |γ|

∥∥∥∥
·∫

0

SpXp d[Spg − g]

∥∥∥∥
α,λ

. (47)

By [14, Props. 4.2 and 4.4] there exist constants d1 and d2 such that the second norm in
the RHS of (47) is bounded above by

d2
λ1−2α

1 + ‖SpXp‖α,λ
Γ(1−α)

sup
0<s<t<1

∣∣D1−α
t−

[
Spg − g − Sp(t) + g(t)

]
(s)
∣∣

6
d2

λ1−2α
1 + ‖SpXp‖α,λ

Γ(1−α)

∞∑
n=p

2m(1−α−H)Lc1(1− α)→ 0, p→∞,

where the last inequality follows from (16).
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Similarly to (39), consider the norm

‖SpXp −Xp‖α,λ

= sup
0<t<1

e−λt

(
|SpXp −Xp|(t) +

t∫
0

|[SpXp −Xp](t)− [SpXp −Xp](s)|
(t− s)α+1

ds

)

6 sup
0<t<1

e−λt

(
Ltα

Γ(1+α)

∥∥xH − SpxH∥∥∞
+

∞∑
m=p

2m(1/2−H)L

t∫
0

|
∑2m−1
k=0 (em,k(t)− em,k(s))|

(t− s)α+1
ds

)
.

Consider the last integral in more detail. At first, note that

2m−1∑
k=0

em,k(t) = 2−m/2
((

2mt− k
)
∧
(
1 + k − 2mt

))
+

= 2−m/2
(
2mt−

⌊
2mt

⌋)
∧
(
1 +

⌊
2mt

⌋
− 2mt

))
= 2−m/2e0,0

({
2mt

})
, t ∈ [0, 1],

|e0,0({x})−e0,0({y})| 6 1, |e0,0({x})−e0,0({y})| 6 |{x}−{y}|, x, y > 0. Therefore,

t∫
0

|
∑2m−1
k=0 (em,k(t)− em,k(s))‖

(t− s)α+1
ds

= 2−m/2
t∫

0

|e0,0({2mt})− e0,0({2ms})|
(t− s)α+1

ds

= 2mα−m/2
2mt∫
0

|e0,0({2mt})− e0,0({z})|
(2mt− z)α+1

dz

=
(
∫ b2mtc−0.5
0

+
∫ b2mtc
b2mtc−0.5 +

∫ 2mt

b2mtc)(· · ·) dz

2m/2−mα
. (48)

The first integral in the RHS of (48) is bounded by
∫ b2mtc−0.5
0

1/(2mt − z)α+1 dz 6
(2mt−b2mtc+ 0.5)−α/α 6 2α/α. If z ∈ (b2mtc− 0.5, b2mtc), then z = b2mtc− 1 +
{z}, 2mt − z = {2mt} + 1 − {z}, and the second integral in the RHS of (48) is less or
equal than

b2mtc∫
b2mtc−0.5

|{2mt} ∧ (1− {2mt})− (1− {z})|
({2mt}+ 1− {z})α+1

dz
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6

b2mtc∫
b2mtc−0.5

dz

({2mt}+ 1− {z})α

6
1

1− α
((

0.5 +
{

2mt
})1−α − ({2mt

})1−α)
6

2α−1

1−α
. (49)

If z ∈ (b2mtc, 2mt), then 2mt − z = {2mt} − {z} and |e0,0({2mt}) − e0,0({z})| 6
{2mt} − {z} = 2mt− z. Thus, the third integral in the RHS of (48) equals

2mt∫
b2mtc

|e0,0({2mt})−e0,0({z})|
(2mt−z)α+1

dz 6

2mt∫
b2mtc

dz

(2mt−z)α
=

({2mt})1−α

1−α
6

1

1−α
. (50)

Hence, we get from (49) and (50) that the upper bound for the right-hand side of (48) is
2mα−m/2(2α/α+(2α−1+1)/(1−α)). Finally, the norm ‖SpXp−Xp‖α,λ is bounded by

sup
0<t<1

e−λt

(
Ltα

Γ(1+α)
‖xH − SpxH‖∞ + L

(
2α

α
+

2α−1+1

1−α

) ∞∑
m=p

2m(α−H)

)
. (51)

Note that α < H in equation (40). Therefore, the right-hand side of (51) tends to 0 as
p → ∞. It was shown in the proof of Lemma 6 that the first term in (47) tends to 0 as
p→∞. Thus, ‖Xp −X‖α,∞ → 0, p→∞.

6.3 Numerical experiments: the Volterra integral equation

In this section, we illustrate our method of solution of (29) by numerical examples.
Let 0 < H < α ∈ (0, 1) and put g(t) = tH(1 − tα), t ∈ [0, 1]. Then the solution of

equation X(t) = (Γ(α+H + 1)/Γ(H + 1))Iα0+X(t) + tH(1− tα), t ∈ [0, 1], obviously
equals {X(t) = tH , t ∈ [0, 1]}.

We solve truncated equation (30) by Lemma 5 for several combinations of α and H .
For each case, we compute the norm of the error ‖X −Xp‖∞, where Xp is the solution
of truncated equation, and present them on Table 1.

Table 1. Volterra integral equation: norms of the error ‖X −Xp‖∞.

H = 0.01 H = 0.2 H = 0.2 H = 0.2 H = 0.5 H = 0.5 H = 0.8 H = 0.8
p α = 0.05 α = 0.3 α = 0.5 α = 0.8 α = 0.51 α = 0.8 α = 0.81 α = 0.9

3 2.33e− 01 6.76e− 02 5.83e− 02 5.04e− 02 2.38e− 02 2.04e− 02 5.60e− 03 5.39e− 03
4 1.92e− 01 4.32e− 02 2.66e− 02 2.25e− 02 9.02e− 03 7.56e− 03 1.78e− 03 1.71e− 03
5 1.62e− 01 2.83e− 02 1.53e− 02 9.96e− 03 3.34e− 03 2.76e− 03 5.50e− 04 5.28e− 04
6 1.39e− 01 1.89e− 02 9.16e− 03 4.37e− 03 1.23e− 03 9.97e− 04 1.68e− 04 1.61e− 04
7 1.21e− 01 1.28e− 02 5.53e− 03 1.91e− 03 5.97e− 04 3.58e− 04 5.06e− 05 4.85e− 05
8 1.07e− 01 8.75e− 03 3.35e− 03 8.35e− 04 2.92e− 04 1.28e− 04 1.51e− 05 1.45e− 05
9 9.48e− 02 6.02e− 03 2.04e− 03 3.64e− 04 1.43e− 04 4.54e− 05 4.50e− 06 4.31e− 06

10 8.50e− 02 4.17e− 03 1.25e− 03 1.71e− 04 7.07e− 05 1.61e− 05 1.33e− 06 1.27e− 06
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6.4 Numerical experiments: linear integral equation

In this section, we consider the numerical solution of (40).
First, we put g(t) = 0.5H−|t−0.5|H , t ∈ [0, 1], forH ∈ (0.5, 1), and β = −2, γ = 3,

x0 = 1 in (40). We take p = 6, H ∈ {0.51, 0.6, 0.7, 0.8, 0.9}, solve truncated equation
(41) by Lemma 7 and get the Takagi–Landsberg representation of the truncated solution
Xp with coefficients x0, xp1, cp. We present the values of the error’s norm ‖X −Xp‖∞ in
Table 2, whereX(t) = x0 exp(βt+γg(t)), t ∈ [0, 1], is the exact solution. Moreover, we
compute the difference between the exact coefficients x1, cx in the representation of X
and xp1, cp. The values of max16n62p+1 |cxn − cpn| are given in Table 2.

Second, we illustrate our method with the function g(t)=
∑7
m=0

∑2m−1
k=0 cgm,kem,k(t),

t ∈ [0, 1], where cg are some bounded coefficients (we simulate them randomly). The
example of function g, the corresponding exact X and truncated Xp (p = 6) solutions
of (40) with H = 0.51 are presented on Fig. 1. One can observe that the small difference
between the exact and truncated solution. Moreover, if we increase the value of p = 7,
then the graphs of X and Xp for H = 0.501 become visually indistinguishable, and the
computed norm of the error ‖X −Xp‖∞ is 0.01888 for this example.

From the other hand, the wrong value ofH , which is greater than the Hölder exponent
of g, affects on solutionXp and the error betweenXp andX increases. We illustrate such
mis-specification of H on Fig. 2, where one clearly see the difference between the exact
solution X and numerical solution Xp when H is significantly larger than true value 0.5.

Table 2. Linear equation: description of the error X −Xp.

H = 0.51 H = 0.6 H = 0.7 H = 0.8 H = 0.9 H = 0.99

‖X −Xp‖∞ 0.18934 0.08398 0.03218 0.01142 0.00325 0.00047
max16n62p+1 |cxn − cpn| 0.03701 0.01305 0.00409 0.00124 0.00043 0.00028

(a) (b)

Figure 1. (a) Function g; (b) solutions X (black) and Xp (red) for H = 0.51.
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(a) (b)

Figure 2. The mis-specification of (a) H = 0.6 and (b) H = 0.8: graphs of X (black) and Xp (red).
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