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Abstract. The H∞ filtering problem for a class of networked nonlinear Markovian jump systems
subject to randomly occurring distributed delays, nonlinearities, quantization effects, missing
measurements and sensor saturation is investigated in this paper. The measurement missing
phenomenon is characterized via a random variable obeying the Bernoulli stochastic distribution.
Moreover, due to bandwidth limitations, the measurement output is quantized using a logarithmic
quantizer and then transmitted to the filter. Further, the output measurements are affected by sensor
saturation since the communication links between the system and the filter are unreliable and is
described by sector nonlinearities. The objective of this work is to design a quantized resilient filter
that guarantees not only the stochastic stability of the augmented filtering error system but also
a prespecified level of H∞ performance. Sufficient conditions for the existence of desired filter
are established with the aid of proper Lyapunov–Krasovskii functional and linear matrix inequality
approach together with stochastic analysis theory. Finally, a numerical example is presented to
validate the developed theoretical results.

Keywords: discrete-time networked Markovian jump systems, randomly occurring distributed
delay, sensor saturation, quantization effects, missing measurements.

1 Introduction

Markovian jump systems (MJSs) accurately characterize the physical systems, which
experience unexpected structural variations due to system noises, abrupt changes in the
environment, failures in interconnections, switching among subsystems etc. MJSs has
widespread applications in many engineering fields such as robotics, financial systems,
communication control systems, flight control systems and so on. Also, the study on MJSs
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received persistent research attention and a great number of interesting results have been
reported in the literature [7,9,11,18,22,27,39]. For instance, the authors in [27] developed
a H∞ filter by implementing a mode-dependent event-triggering scheme and delay parti-
tioning technology for network-based singular Markovian jump systems. In [39], the H∞
filtering problem for nonlinear Markovian jump systems subject to sensor saturation and
output quantization is discussed. In [7], the authors designed a H∞ filter for Markovian
jump systems subject to time-varying delay by using reciprocally convex approach and
Wirtinger-based inequality. In another research frontier, networked control systems has
widely been used due to its applications in industrial engineering and advantages such
as easy installation, increased system flexibility and high reliability. Nevertheless, the
insertion of networks bring many challenging network induced complications like fading
measurements, packet dropouts and communication delays. Many significant results re-
garding NCSs with these network induced complications have been obtained in the past
decades [3, 12, 13, 15, 20]. Specifically, an event-triggered fuzzy filter is designed in [20]
for T–S fuzzy model based networked control systems by using bounded real lemma.
By modeling the DC motor system as a T–S fuzzy model a peak-to-peak filter is designed
in [3], and the quantization effects is considered for measurement and performance output
signals. The authors in [12] investigated the fault detection problem for nonlinear NCSs
subject to random packet dropouts.

It should be pointed out that the filter design problems for networked control systems
are concerned with the assumption that the transmitted measurement outputs are received
completely by the sensors. In practice, the measurements may not be received fully or
packet dropouts happen due to the imperfect network-based communication medium or
noisy channels (see [6, 23, 32, 36] and references therein). The information exchange in
NCSs is through a shared network based communication medium with limited bandwidth.
Hence, it is appropriate and essential to reduce the bandwidth utilization, and one of
the main strategy to deal this issue is quantization of signals, which reduce the size of
the data before transmission [4, 19, 29, 37]. It should be mentioned that sensors cannot
always provide unlimited signals due to physical and technological constraints, which
results in sensor saturations. For example, in image sensor and temperature sensor, the
nonlinearity and saturation are unavoidable. The saturation in sensors instantaneously
bring unexpected variations that results in nonlinear characteristics of sensors or even
instability of the NCSs. In recent years, great deal of attention is devoted to the NCSs
with sensor saturations [5, 24, 26, 42]. The system performance inherently suffer from
time delay due to communication channel disturbances and limited network resources.
Furthermore, time delay is commonly random and time-varying, which is also a major
hazard to the system performance. Accordingly, many important results are proposed for
Markovian jump and switched time delay systems [1, 8, 10, 14, 21, 30, 35].

On the other hand, the state estimation problems have gained particular research inter-
est since the system states are not fully measurable in most of the situations. Specifically,
H∞ filtering has been perceived as most powerful and effective way in estimating the
unavailable system states, and also, it does not require any prior statistical knowledge of
the exogenous disturbances. The H∞ filtering problems for several dynamical systems
have extensively been investigated in recent years [28,31,40]. Most of the existing results
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in the literature for networked MJSs are proved with the assumption that the filter param-
eters are implemented precisely. But it is not possible always, and there exist unavoidable
parameter variations due to rounding errors, which in turn lead to inaccurate execution of
filters. Recently, studies on nonfragile or resilient filter design has been accelerated among
researchers, and fruitful results are reported [2, 17, 25, 33, 38]. However, the resilient
H∞ filtering problem for networked nonlinear systems with Markovian jumps subject
to randomly occurring nonlinearities, distributed delay and external disturbances is not
fully investigated, which motivates the present study. The main attention is to design an
appropriate filter such that the filtering error system is stochastically stable with prescribed
H∞ performance attenuation index. The significant features of this paper are summarized
as follows:

• A generalized network nonlinear control system with Markovian jumping pa-
rame ters subject to randomly occurring nonlinearities and distributed delay is
considered.

• To deal the overloaded network traffic, missing measurements and sensor satura-
tion is considered. The occurrences of missing measurements are described with
a stochastic variable obeying Bernoulli distribution.

• To reduce the bandwidth utilization, a logarithmic quantizer is incorporated to
quantize the measurement signal.

• A nonfragile filter is designed such that the filtering error system is stochastically
stable and achieves a prescribed performance index.

Finally, a numerical example is provided to examine the applicability and efficacy of
the formulated filter design technique.

2 System formulation and preliminaries

Given a probability space (M,F ,P), where M is the sample space, F represents the
algebra of events, and P is the probability measure defined on F . Consider the discrete-
time networked Markovian jump systems subject to randomly occurring distributed delay
and nonlinearities over the space (M,F ,P) in the following form:

x(k + 1) = A(k, rk)x(k) +B(k, rk)

q∑
l=1

α1l(k)x
(
k − δl(k)

)
+ α2(k)f

(
k, x(k)

)
+D1(k, rk)w(k),

y(k) = C(k, rk)x(k),

yφ(k) = φ
(
y(k)

)
+D2(k, rk)w(k),

z(k) = L(k, rk)x(k),

(1)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rm is the measured output, yφ(k) is
the measured output with saturation, w(k) ∈ Rq is the disturbance input belonging to
l2[0,∞), z(k) ∈ Rp is the performance output to be estimated, and φ(·) represents the
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saturation function.
∑q
l=1 α1l(k)x(k− δl(k)) describes the distributed time delays of the

system in which the stochastic variable α1l(k) stands for the random occurrence of the
delays, and δl(k) for l = {1, 2, . . . , q} are the time-varying delay satisfying δm 6 δl(k) 6
δM , where the nonnegative scalars δm and δM denote the minimum and maximum bounds
of the delay. Also, the stochastic variables α1l(k) for l = {1, 2, . . . , q} describe the
random delays, which are Bernoulli distributed white sequences that are presumed to
obey the conditions P{α1l(k) = 1} = E{α1l(k)} = ᾱ1l, P{α1l(k) = 0} = 1 − ᾱ1l.
A(k, rk), B(k, rk), C(k, rk), D1(k, rk), D2(k, rk) and L(k, rk) are constant matrices
with suitable dimensions. Further, rk ∈ Ω = {1, 2, . . . ,N} is the discrete-time Markov
stochastic process, and the transition probability matrix is defined as Ψ(k) = {ψij(k)},
i, j ∈ Ω, and ψij(k) = P(rk+1 = j | rk = i) is the transition jump rate from mode i at
time k to mode j at time k + 1 with ψij(k) > 0 and

∑N
j=1 ψij(k) = 1. For notational

simplicity, we let (k, r(k)) = i. The nonlinear vector valued function f(·) satisfies the
sector-bounded condition[

f
(
k, x(k)

)
− f

(
k, y(k)

)
−H1(x− y)

]T
×
[
f
(
k, x(k)

)
− f

(
k, y(k)

)
−H2(x− y)

]
6 0, (2)

f(0) = 0, where H1, H2 ∈ Rn×n are diagonal matrices with H2−H1 > 0. The stochas-
tic variable α2(k), which is Bernoulli sequence with assumptions P{α2(k) = 1} =
E{α2(k)} = ᾱ2, P{α2(k) = 0} = 1−ᾱ2, is taken into account to reflect the phenomena
of randomly occurring nonlinearities.

The saturation function φ(·) is assumed to be in the interval [K1,K2] with K1,K2 ∈
Rn×n,K1 > 0,K2 > 0 andK2 > K1. Also, φ(·) satisfies the following sector condition:[

φ
(
y(k)

)
−K1

(
y(k)

)]T[
φ
(
y(k)

)
−K2

(
y(k)

)]
6 0, y(k) ∈ Rm.

The nonlinear function φ(y(k)) describing the sensor saturation phenomenon can be
decomposed into nonlinear and linear parts as φ(y(k)) = φs(y(k)) + K1y(k) in which
the nonlinear part φs(y(k)) satisfies

φTs
(
y(k)

)[
φs
(
y(k)

)
− (K2 −K1)y(k)

]
6 0.

By considering the network bandwidth constraints it is imperative to quantize the mea-
surement signal before transmitting through the communication medium. For this pur-
pose, a logarithmic quantizer that is symmetric and time-invariant is implemented. To
characterize the logarithmic quantizer, the quantization levels are described as

U =
{
±ui: ui = ζiu0, i = ±1,±2, . . .

}
∪ {±u0} ∪ {0},

where 0 < ζi < 1 is the quantization density, and u0 > 0. The quantizer function Qi(·)
is defined as

Qi(ϑ) =


ui if 1

1+µi
ui < ϑ 6 1

1−µi
ui, ϑ > 0,

0 if ϑ = 0,

−Qi(−ϑ) if ϑ < 0
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with µi = (1 − ζi)/(1 + ζi). To incorporate the quantization effects, the following
quantizer is employed:

f(k) = Q
(
y(k)

)
=
[
Q
(
y1(k)

)
. . .Q

(
ym(k)

)]T
.

Further, the quantization errors are solved using the sector bound approach, then
f(k) − y(k) = ∆(k)y(k), where ∆(k) = diag{∆1(k), . . . ,∆m(k)}. Then the input to
the filter can be described as ȳ(k) = (I+∆(k))y(k), where ‖∆i‖ 6 δ̄, i = {1, 2, . . . ,m}.
It should be noted that missing measurements can be encountered during the communi-
cation process due to unreliable network based communication medium. To describe the
missing measurement rate, the stochastic Bernoulli sequence α3(k) is considered with the
assumptions P{α3(k) = 1} = E{α3(k)} = ᾱ3, P{α3(k) = 0} = 1− ᾱ3.

To estimate the performance output z(k), the mode-dependent filter is designed in the
following form:

xf (k + 1) = Āf (k, rk)xf (k) + B̄f (k, rk)ŷ(k),

zf (k) = Lf (k, rk)xf (k),
(3)

where xf (k) ∈ Rn, zf (k) ∈ Rp are the state and output vectors of the filter, respectively;
Āf (k, rk) = Af (k, rk) + ∆Af (k, rk), B̄f (k, rk) = Bf (k, rk) + ∆Bf (k, rk) in which
Af (k, rk), Bf (k, rk) and Lf (k, rk) are the filter gain parameters to be determined and
ŷ(k) = α3(k)ȳ(k). For notational convenience, the gain parameters are denoted as
Af (k, rk) = Afi, Bf (k, rk) = Bfi and Lf (k, rk) = Lfi. Further, the additive filter gain
variations are assumed in the form as ∆Afi = MiF(k)Nai and ∆Bfi = MiF(k)Nbi
wherein Mi, Nai and Nbi are appropriate dimensional constant matrices, and F(k) is an
unknown time-varying matrix function with FT(k)F(k) 6 I .

By setting ξ(k) = [x(k) xf (k)] and z̃(k) = z(k) − zf (k), the augmented system is
obtained as follows:

ξ(k + 1) =
(
Ā1i + ᾱ3(k)Ā2i)ξ(k

)
+

q∑
l=1

(
Ādil + ᾱ1l(k)Âdi

)
ξ
(
k − δl(k)

)
+
(
C1 + ᾱ2(k)C2

)
f(k, xk)

+
(
B̄1i + ᾱ3(k)B̄2i

)
φs
(
y(k)

)
+
(
D̄1i + ᾱ3(k)D̄2i

)
w(k)

z̃(k) = L̄ξ(k),

(4)

where L̄ = [Li − Lfi],

Ā1i =

[
Ai 0

ᾱ3B̄fi(1 +∆(k))K1Ci Āfi

]
, Ā2i =

[
0 0

B̄fi(1 +∆(k))K1Ci 0

]
,

Ādil =

[
ᾱ1lB̄i 0

0 0

]
, Âdi =

[
B̄i 0
0 0

]
, C1 =

[
ᾱ2I
0

]
, C2 =

[
I
0

]
,

B̄1i =

[
0

ᾱ3B̄fi(1 +∆(k))

]
, B̄2i =

[
0

B̄fi(1 +∆(k))

]
,

Nonlinear Anal. Model. Control, 26(2):187–206

https://doi.org/10.15388/namc.2021.26.22355


192 V. Nithya et al.

D̄1i =

[
D1i

ᾱ3B̄fi(1 +∆(k))D2i

]
, D̄2i =

[
0

B̄fi(1 +∆(k))D2i

]
,

ᾱ1l(k) = α1l(k)− ᾱ1l, ᾱ2(k) = α2(k)− ᾱ2 and ᾱ3(k) = α3(k)− ᾱ3.
For obtaining the main results, the following definition and lemmas are needed.

Definition 1. (See [34].) The filtering error system (4) is stochastically stable with
a prescribed H∞ performance index γ if the following two conditions hold:

(i) The filtering error system (4) with w(k) = 0 is stochastically stable, that is, for
any initial condition χ(0), there exists a matrix W > 0 such that the following
holds:

E

{ ∞∑
k=0

∥∥χ(k)
∥∥2|χ0

}
< χT(0)Wχ(0).

(ii) Under zero initial condition,

E

{ ∞∑
k=0

zT(k)z(k)

}
< γ2

∞∑
k=0

wT(k)w(k)

holds for all nonzero w(k) ∈ l2[0,∞).

Lemma 1. (See [16].) Given matrices S, P >0 andR=RT, the inequality STPS−R<0
holds if and only if there exists a matrix Q such that[

−R STQT

∗ P −Q−QT

]
< 0.

Lemma 2. (See [41].) Given matrices Π1,Π2 and Π3 with appropriate dimensions and
Π1 satisfying Π1 = ΠT

1 , then

Π1 +Π2∆(k)Π3 +ΠT
3 ∆

T(k)ΠT
2 < 0

holds for all ∆T(k)∆(k) < I if and only if there exists a scalar ε > 0 such that

Π1 + εΠ2Π
T
2 + ε−1ΠT

3 Π3 < 0.

3 Main results

In this section, a H∞ filter design in the form of (3) is derived for the networked control
Markovian jump system (1) subject to randomly occurring distributed delay and nonlin-
earities, where the measurement output signal suffers from missing measurements and
sensor nonlinearity. First, a set of constraints that are sufficient for the filtering error
system (4) with zero disturbances to be stochastically stable is derived for known filter
gain parameters without any perturbations. Next, the results are extended by considering
the quantization effects and gain fluctuations with a prespecified performance attenuation
index γ > 0.
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Theorem 1. Let ᾱ1l, ᾱ2, ᾱ3, l = 1, 2, . . . , q, γ be given positive scalars, δm, δM are
integers with δM > δm > 1, and let the filter gain parameters Afi, Bfi and Lfi be
known. Then the filtering error system (4) is stochastically stable under zero disturbances
if there exist positive definite matrices Pi, Qi such that the following LMI holds:

Φ =

[
Φ11 Φ12

∗ Φ22

]
< 0, (5)

where

Φ11 =


a1 ĈK̄

T 0 −λ1GTH̃2 0 L̄T

∗ −I 0 0 0 0
∗ ∗ a2 0 0 0
∗ ∗ ∗ −λ1I 0 0
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

 , Φ12 =


ĀT

1iPi υ3Ā
T
2iPi

B̄T
1iPi υ3B̄

T
2iPi∑q

l=1 Ā
T
dilPi 0

CT
1 Pi υ2C

T
2 Pi

D̄T
1iPi υ3D̄

T
2iPi

0 0

 ,

Φ22 = diag{−Pi,−Pi},

a1 =

q∑
l=1

(δM − δm + 1)Ql − Pi − λ1GTH̃1G, a2 =

q∑
l=1

[
υ21lÂ

T
diPiÂdi −Ql

]
,

Ĉ =
[
Ci 0

]
, G =

[
I 0

]
, K̄ = K2 −K1,

H̃1 =
HT

1 H2 +HT
2 H1

2
, H̃2 = −H

T
1 +HT

2

2
,

υ21l = ᾱ1l(1− ᾱ1l), υ22 = ᾱ2(1− ᾱ2) and υ23 = ᾱ3(1− ᾱ3).

Proof. In order to derive the desired results, the Lyapunov–Krasovskii functional candi-
date is considered in the following form: V(k) =

∑3
a=1 Va(k), where

V1(k) = ξT(k)Piξ(k), V2(k) =

q∑
t=1

k−1∑
s=k−δs(k)

ξT(s)Qtξ(s),

V3(k) =

q∑
t=1

δm∑
m=−δM+1

k−1∑
s=k+m

ξT(s)Qtξ(s).

Defining ∆V(k) = V(k + 1) − V(k) with w(k) = 0 and taking the mathematical
expectation, the difference of V1(k) is calculated as

E
{
∆V1(k)

}
= E{V1(k + 1)− V1(k)}

= E

{[(
Ā1i + ᾱ3(k)Ā2i

)
ξ(k) +

q∑
l=1

(
Ādil + ᾱ1l(k)Âdi

)
ξ
(
k − δl(k)

)
+
(
C1 + ᾱ2(k)C2

)
f(k, xk) +

(
B̄1i + ᾱ3(k)B̄2i

)
φs
(
y(k)

)]T
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× Pi

[(
Ā1i + ᾱ3(k)Ā2i

)
ξ(k) +

q∑
l=1

(
Ādil + ᾱ1l(k)Âdi

)
ξ
(
k − δl(k)

)
+
(
C1 + ᾱ2(k)C2

)
f(k, xk) +

(
B̄1i + ᾱ3(k)B̄2i

)
φs
(
y(k)

)]}
− ξT(k)Piξ(k). (6)

Similarly, the differences of V2(k) and V3(k) are calculated as

E
{
∆V2(k)

}
6

q∑
t=1

[
ξT(k)Qtξ(k)− ξT

(
k − δt(k)

)
Qtξ

(
k − δt(k)

)
+

k−δm∑
s=k−δM+1

ξT(s)Qtξ(s)

]
, (7)

E
{
∆V3(k)

}
6

q∑
t=1

[
(δM − δm)ξT(k)Qtξ(k)−

k−δm∑
s=k−δM+1

ξT(s)Qtξ(s)

]
. (8)

From saturation nonlinearity we get

−2φTs
(
y(k)

)
φs
(
y(k)

)
+ 2φTs

(
y(k)

)
K̄y(k) > 0,

which implies that

−2φTs
(
y(k)

)
φs
(
y(k)

)
+ 2φTs

(
y(k)

)
K̄Ĉξ(k) > 0, (9)

where Ĉ and K̄ are defined in (5). By combining (6)–(9) we get

E
{
∆V(k)

}
6 ξT(k)

[
ĀT

1iPiĀ1i + ᾱ3(1− ᾱ3)ĀT
2iPiĀ2i +

q∑
t=1

(δM − δm + 1)Qt − Pi

]
ξ(k)

+ 2ξT(k)
[
ĀT

1iPiB̄1i + ᾱ3(1− ᾱ3)ĀT
2iPiB̄2i + ĈT(K2 −K1)

]
φs
(
y(k)

)
+ 2ξT(k)

[
ĀT

1iPi

q∑
l=1

Ādil
]
ξ
(
k − δ(k)

)
+ 2ξT(k)ĀT

1iPiC1f
(
k, x(k)

)
+ φTs

(
y(k)

)[
B̄T

1iPiB̄1i + ᾱ3(1− ᾱ3)B̄T
2iPiB̄2i − 2I

]
φs
(
y(k)

)
+ 2φTs

(
y(k)

)[
B̄T

1iPi

q∑
l=1

Ādil

]
ξ
(
k − δl(k)

)
+ 2φTs

(
y(k)

)
B̄T

1iPiC1f
(
k, x(k)

)
+

q∑
l=1

q∑
j=1

ξT
(
k − δl(k)

)[
ĀT
dilPiĀdij + ᾱ1l(1− ᾱ1l)Â

T
diPiÂdij

]
ξT
(
k − δj(k)

)
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+ 2ξT
(
k − δl(k)

) q∑
l=1

ĀT
dilPiC1f

(
k, x(k)

)
+ fT

(
k, x(k)

)[
CT

1 PiC1 + ᾱ2(1− ᾱ2)CT
2 PiC2

]
f
(
k, x(k)

)
−

q∑
l=1

ξT
(
k − δl(k)

)
Qtξ

(
k − δl(k)

)
. (10)

From the sector bounded condition (2) we have[
ξ(k)

f(k, x(k))

]T [
GTH̃1G GTH̃2

H̃2G I

] [
ξ(k)

f(k, x(k))

]
6 0. (11)

Let

η(k) =
[
ξT(k) φTs

(
y(k)

)
ξT
(
k − δ1(k)

)
· · · ξT

(
k − δq(k)

)
fT
(
k, x(k)

)]T
.

Letting υ21l = ᾱ1l(1 − ᾱ1l), υ22 = ᾱ2(1 − ᾱ2), υ23 = ᾱ3(1 − ᾱ3), K̄ = K2 − K1 and
combining (10) and (11), we get

E
{
∆V(k)

}
6 ηT(k)Φ̄η(k), (12)

where

Φ̄ =

Φ̄11 Φ̄12 Φ̄13

∗ Φ̄22 Φ̄23

∗ ∗ Φ̄33

 , with Φ̄11 =

[
Φ̄111 Φ̄112

∗ Φ̄113

]
, Φ̄12 =

[
Φ̄121

Φ̄122

]
,

Φ̄111 = ĀT
1iPiĀ1i + υ23Ā

T
2iPiĀ2i +

q∑
t=1

(δM − δm + 1)Qt − Pi,

Φ̄112 = ĀT
1iPiB̄1i + υ23Ā

T
2iPiB̄2i + ĈTK̄, Φ̄121 = ĀT

1iPi

q∑
l=1

Ādil,

Φ̄113 = B̄T
1iPiB̄1i + υ23B̄

T
2iPiB̄2i − 2I, Φ̄122 = B̄T

1iPi

q∑
l=1

Ādil,

Φ̄13 =
[
CT

1 P
T
i Ā1i − λ1H̃T

2 GC
T
1 P

T
i B̄1i

]T
,

Φ̄22 =

q∑
l=1

[
ĀT
dilPiĀdil −Ql + υ21lÂ

T
diPiÂdi

]
,

Φ̄23 =

q∑
l=1

ĀT
dilPiC1 and Φ̄33 = CT

1 PiC1 + υ22C
T
2 PiC2 − λ1I.

Hence, (5) implies that E{∆V(k)} 6 0, then we have E{∆V(k)} 6 −βE{ηT(k)η(k)},
where β = min{λmin[Φ̄]}, and λmin[Φ̄] is the minimal eigenvalue of [−Φ̄]. Summing the
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above inequality from initial time instant to time instant T , we have

E
[
V(T + 1)

]
−E

[
V(0)

]
6 −β

T∑
k=0

ηT(k)η(k).

Then it is easy to get that
T∑
k=0

ηT(k)η(k) 6
1

β
E
[
V(0)

]
− 1

β
E
[
V(T + 1)

]
6

1

β
E
[
V(0)

]
6

1

β
ξT(0)Piξ(0).

Further, it is evident that E[
∑T
k=0 ξ

T(k)ξ(k)] 6 E[
∑T
k=0 η

T(k)η(k)]. When T → ∞,
we get E[

∑∞
k=0 ‖ξT(k)‖2] 6 (1/β)ξT(0)Piξ(0), which proves the stochastic stability

of the filtering error system. Next, we explore the sufficient conditions for the stochastic
stability of the filtering error system by considering the effects of exogenous disturbances.
In order to derive the constraints for all non zero w(k) ∈ l2[0,∞), it follows from (12)
that

E
{
∆V(k) + z̃T(k)z̃(k)− γ2wT(k)w(k)

}
6 E

{
η̄T(k)Φ̃η̄(k)

}
, (13)

where η̄T(k) = [η(k) w(k)],

Φ̃1,1 = ĀT
1iPiĀ1i + υ23Ā

T
2iPiĀ2i +

q∑
t=1

(δM − δm + 1)Qt − Pi + L̄TL̄,

Φ̃1,5 = ĀT
1iPiD̄1i + υ23Ā

T
2iPiD̄2i, Φ̃2,5 = B̄T

1iPiD̄1i + υ23B̄
T
2iPiD̄2i,

Φ̃3,5 =

q∑
l=1

ĀT
dilPiD̄1i, Φ̃4,5 = CT

1 PiD̄1i, Φ̃5,5 = D̄T
1iPiD̄1i+υ

2
3D̄

T
2iPiD̄2i−γ2I,

and the remaining parameters are same as defined in (12). By Schur compliment (13)
implies the matrix inequality in (5), and hence, we have

E
{
∆V(k) + z̃T(k)z̃(k)− γ2wT(k)w(k)

}
6 0. (14)

Summing up (14) from 0 to∞ with respect to k yields the following inequality:

∞∑
k=0

E
{∥∥z̃(k)

∥∥2} < γ2E
{∥∥w(k)

∥∥2}+ E{V(0)} −E{V(∞)}.

Under zero initial conditions, it is easy to conclude that

∞∑
k=0

E
{∥∥z̃(k)

∥∥2} < γ2E
{∥∥w(k)

∥∥2}.
Therefore, by Definition 1 the filtering error system is stochastically stable with a specified
H∞ performance attenuation level. This completes the proof.
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In Theorem 1, sufficient condition, which ensures the stochastic stability of the filter-
ing error system with a prescribed disturbance attenuation index γ > 0, is derived. In the
following theorem, the results are obtained by considering the quantization effects, and
the filter gain parameters are calculated.

Theorem 2. For given positive scalars ᾱ1l, ᾱ2, ᾱ3, l = 1, 2, . . . , q, integers δM , δm
with δM > δm > 1, quantization density 0 < ζi < 1, i = 1, 2, . . . ,m, the filtering error
system (4) is stochastically stable with a prespecified disturbance attenuation index γ > 0
if there exist positive scalar ε1, positive definite matrices P1i, P2i, P3i, Qlj , any matrices
Yij , ĀFi, B̄Fi and LFi for j = 1, 2, 3 such that the following LMI holds:

Φ1 =

[
Φ1
12×12 Φ1

1

∗ Φ1
2

]
, (15)

where

Φ1
1,1 =

q∑
l=1

(δM − δm + 1)Q1l − P1i − λ1H̃1I,

Φ1
1,2 =

q∑
l=1

(δM − δm + 1)Q2l − P2i, Φ1
1,3 = CT

i K̄,

Φ1
1,6 = λ1H̃2I, Φ1

1,8 = LT
i , Φ1

1,9 = AT
i Y

T
1i + ᾱ3C

T
i K

T
1 B̄

T
Fi,

Φ1
1,10 = AT

i Y
T
3i + ᾱ3C

T
i K

T
1 B̄

T
Fi, Φ1

1,11 = υ3C
T
i K

T
1 B̄

T
Fi,

Φ1
1,12 = υ3C

T
i K

T
1 B̄

T
Fi, Φ1

2,2 =

q∑
l=1

(δM − δm + 1)Q3l − P3i,

Φ1
2,8 = −LT

Fi, Φ1
2,9 = ĀT

Fi, Φ1
2,10 = ĀT

Fi,

Φ1
3,3 = −I, Φ1

3,10 = ᾱ3B̄
T
Fi, Φ1

3,12 = υ3B̄
T
Fi,

Φ1
4,4 =

q∑
l=1

υ21lB
T
i PiBi −

q∑
l=1

Q1l, Φ1
4,5 = −

q∑
l=1

Q2l, Φ1
4,10 = ᾱ1lB

T
i Y

T
1i ,

Φ1
4,11 = ᾱ1lB

T
i Y

T
3i , Φ1

5,5 = −
q∑
l=1

Q3l, Φ1
6,6 = −λ1I, Φ1

6,9 = ᾱ2Y
T
1i ,

Φ1
6,10 = ᾱ2Y

T
3i , Φ1

6,11 = υ2Y
T
1i , Φ1

6,12 = υ2Y
T
3i , Φ1

7,7 = −γ2I,

Φ1
7,9 = DT

1iY
T
1i + ᾱ3D

T
2iB̄

T
Fi, Φ1

7,10 = DT
1iY

T
3i + ᾱ3D

T
2iB̄

T
Fi,

Φ1
7,11 = υ3D

T
2iB̄

T
Fi, Φ1

7,12 = υ3D
T
2iB̄

T
Fi, Φ1

8,8 = −I,
Φ1
9,9 = P1i − Y1i − Y T

1i , Φ1
9,10 = P2i − Y2i − Y T

3i ,

Φ1
10,10 = P3i − Y2i − Y T

2i , Φ1
11,11 = P1i − Y1i − Y T

1i ,

Φ1
11,12 = P2i − Y2i − Y T

3i , Φ1
12,12 = P3i − Y2i − Y T

2i ,

Φ1
1 =

[
ε1Φ1 ΦT

2 ε1Φ3 ΦT
4

]
with Φ1 =

[
K1Ci 011

]T
,

Φ2 =
[
08 ᾱ3δ̄B̄

T
Fi ᾱ3δ̄B̄

T
Fi υ3δ̄B̄

T
Fi υ3δ̄B̄

T
Fi

]
, Φ3 =

[
I 011

]T
,

Φ4 =
[
09 ᾱ3δ̄B̄

T
Fi 0 υ3δ̄B̄

T
Fi

]
and Φ1

2 = diag{−ε1I,−ε1I,−ε1I,−ε1I}.
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Moreover, if the given LMIs are feasible, then the quantized filter gain parameters can be
calculated by ĀFi = Y2iĀfi, B̄Fi = Y2iB̄fi and LFi = Lfi.

Proof. To prove the desired result, let us partition the matrices as

Pi =

[
P1i P2i

∗ P3i

]
, Yi =

[
Y1i Y2i
∗ Y3i

]
and Ql =

[
Q1l Q2l

∗ Q3l

]
.

Using Lemma 1, the partition matrices defined above together with the assumptions
ĀFi = Y2iĀfi, B̄Fi = Y2iB̄fi and CFi = Cfi, the matrix inequality in (5) can be
expressed as

Φ̄1 =



Φ̄1
11 Φ̄1

12 0 Φ̄1
14 0 Φ̄1

16 Φ̄1
17 Φ̄1

18

∗ −I 0 0 0 0 Φ̄1
27 Φ̄1

28

∗ ∗ Φ̄1
33 0 0 0 Φ̄1

37 0
∗ ∗ ∗ −λ1I 0 0 Φ̄1

47 Φ̄1
48

∗ ∗ ∗ ∗ −γ2I 0 Φ̄1
57 Φ̄1

58

∗ ∗ ∗ ∗ ∗ −I 0 0
∗ ∗ ∗ ∗ ∗ ∗ Φ̄1

77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̄1

88


, (16)

where

Φ̄1
11 =

[
Φ̄1
111 Φ̄1

112

∗ Φ̄1
113

]
, Φ̄1

12 =

[
CT
i K̄
0

]
, Φ̄1

14 =

[
λ1H̃2I

0

]T
,

Φ̄1
16 =

[
LT
i

LT
Fi

]T
, Φ̄1

17 =

[
Φ̄1
171 Φ̄1

172

Φ̄1
173 Φ̄1

174

]
, Φ̄1

18 =

[
Φ̄1
181 Φ̄1

182

0 0

]
,

Φ̄1
33 =

[
Φ̄1
331 Φ̄1

332

∗ Φ̄1
333

]
, Φ̄1

111 =

q∑
l=1

(δM − δm + 1)Q1l − P1i − λ1H̃1I,

Φ̄1
112 =

q∑
l=1

(δM − δm + 1)Q2l − P2i, Φ̄1
113 =

q∑
l=1

(δM − δm + 1)Q3l − P3i,

Φ̄1
171 = AT

i Y
T
1i + ᾱ3C

T
i K

T
1

(
I +∆(k)

)T
B̄T
Fi,

Φ̄1
172 = AT

i Y
T
3i + ᾱ3C

T
i K

T
1

(
I +∆(k)

)T
B̄T
Fi,

Φ̄1
174 = ĀT

Fi, Φ̄1
181 = υ3C

T
i K

T
1

(
I +∆(k)

)T
B̄T
Fi,

Φ̄1
182 = υ3C

T
i K

T
1

(
I +∆(k)

)T
B̄T
Fi, Φ̄1

27 =
[
0 ᾱ3

(
I +∆(k)

)T
B̄T
Fi

]
,

Φ̄1
28 =

[
0 υ3

(
I +∆(k)

)T
B̄T
Fi

]
, Φ̄1

331 =

q∑
l=1

υ21lB
T
i PiBi −

q∑
l=1

Q1l,

Φ̄1
332 = −

q∑
l=1

Q2l, Φ̄1
333 = −

q∑
l=1

Q3l, Φ̄1
37 =

[
ᾱ1lB

T
i Y

T
1i ᾱ1lB

T
i Y

T
3i

]
,

Φ̄1
47 =

[
ᾱ2Y

T
1i ᾱ2Y

T
3i

]
, Φ̄1

48 =
[
υ2Y

T
1i υ2Y

T
3i

]
,
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Φ̄1
57 =

[
DT

1iY
T
1i + ᾱ3D

T
2iB̄

T
Fi DT

1iY
T
3i + ᾱ3D

T
2iB̄

T
Fi

]
,

Φ̄1
58 =

[
υ3D

T
2iB̄

T
Fi υ3D

T
2iB̄

T
Fi

]
and

Φ̄1
77 = Φ̄1

88 =

[
P1i − Y1i − Y T

1i P2i − Y2i − Y T
3i

∗ P3i − Y2i − Y T
2i

]
.

In order to obtain the quantized filter gain parameters, the uncertain terms in (16) can be
rewritten as

Φ̃1 + sym
(
Φ̄1∆(k)Φ̄2

)
+ sym

(
Φ̄3∆(k)Φ̄4

)
< 0,

where Φ̄1, Φ̄2, Φ̄3 and Φ̄4 are defined as in (15). By employing Lemma 2 and Schur
complement lemma, the matrix inequality given above can be equivalently viewed as the
LMI in (15). Hence, if the LMI in (15) holds, it is easy to conclude that the filtering error
system is stochastically stable with a prescribed H∞ performance index γ > 0. This
completes the proof.

In the following theorem, a quantized nonfragile filter will be designed based on the
results developed in Theorem 2 for the filtering error system by considering the gain
variations in the form given in (3).

Theorem 3. Let ᾱ1l, ᾱ2, ᾱ3, γ and 0 6 ζi 6 1, l = 1, 2, . . . , q, i = 1, 2, . . . ,m, be given
positive scalars. Then the augmented filtering error system (4) is stochastically stable
with prescribed H∞ performance attenuation level if there exist positive scalars ε1, ε2,
ε3, symmetric matrices P1i, P2i, P3i, Qlj > 0, j = 1, 2, 3, and any matrices Y1i, Y2i, Y3i,
AFi, BFi, LFi with appropriate dimensions such that the following LMI holds:

Φ2 =

[
Φ̄2
16×16 Φ2

1

∗ Φ2
2

]
< 0, (17)(18)

where

Φ̄2
1,9 = AT

i Y
T
1i + ᾱ3C

T
i K

T
1 B

T
Fi, Φ̄2

1,10 = AT
i Y

T
3i + ᾱ3C

T
i K

T
1 B

T
Fi,

Φ̄2
1,11 = υ3C

T
i K

T
1 B

T
Fi, Φ̄2

1,12 = υ3C
T
i K

T
1 B

T
Fi, Φ̄2

2,9 = AT
Fi,

Φ̄2
2,10 = AT

Fi, Φ̄2
3,10 = ᾱ3B

T
Fi, Φ̄2

3,12 = υ3B
T
Fi,

Φ̄2
7,9 = DT

1iY
T
1i + ᾱ3D

T
2iB

T
Fi, Φ̄2

7,10 = DT
1iY

T
3i + ᾱ3D

T
2iB

T
Fi,

Φ̄2
7,11 = υ3D

T
2iB

T
Fi, Φ̄2

7,12 = υ3D
T
2iB

T
Fi,

Φ̄2
9,14 = ᾱ3δ̄B

T
Fi, Φ̄2

10,14 = ᾱ3δ̄B
T
Fi, Φ̄2

11,14 = υ3δ̄B
T
Fi,

Φ̄2
12,14 = υ3δ̄B

T
Fi, Φ̄2

10,16 = ᾱ3δ̄B
T
Fi, Φ̄2

12,16 = υ3δ̄B
T
Fi,

Φ2
1 =

[
ε2Φ̄

2
1 Φ̄2T

2 ε3Φ̄
2
3 Φ̄2T

4 ε2Φ̄
2
5 Φ̄2T

6 ε2Φ̄
2
7 Φ̄2T

8 ε2Φ̄
2
9 Φ̄2T

10

]
,

Φ2
2 = diag{ε2I, ε2I, ε3I, ε3I, ε2I, ε2I, ε2I, ε2I, ε2I, ε2I},

Φ̄2
1 =

[
NbiK1Ci 05 NbiK1Ci 09

]T
,
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Φ̄2
2 =

[
08 ᾱ3M

T
i Y

T
2i ᾱ3M

T
i Y

T
2i υ3M

T
i Y

T
2i υ3M

T
i Y

T
2i 04

]
,

Φ̄2
3 =

[
0 Nai 014

]T
, Φ̄2

4 =
[
08 MT

i Y
T
2i MT

i Y
T
2i 06

]
,

Φ̄2
5 =

[
0 Nbi 014

]
, Φ̄2

6 =
[
011 ᾱ3M

T
i Y

T
2i 0 υ3M

T
i Y

T
2i 02

]
,

Φ̄2
7 =

[
08 ᾱ3δ̄M

T
i ᾱ3δ̄M

T
i υ3δ̄M

T
i υ3δ̄M

T
i 04

]T
, Φ̄2

8 =
[
013 NbiY2i 02

]
,

Φ̄2
9 =

[
09 ᾱ3δ̄M

T
i 0 ᾱ3δ̄M

T
i 04

]T
and Φ̄2

10 =
[
013 NbiY2i 02

]
.

Furthermore, the quantized nonfragile filter gain parameters are calculated as AFi =
Y2iAfi, BFi = Y2iBfi and LFi = Lfi.

Proof. The proof of this theorem follows from Theorem 2. By considering the additive
filter gain variations in the form defined in (3), applying Lemma 2 and Schur complement
lemma to the LMI in (15), we can easily obtain the LMI in (17). Therefore, it can
be concluded that the augmented filtering error system (4) is stochastically stable with
a desired H∞ performance attenuation index γ > 0. This completes the proof.

Remark. It should be pointed out that the system under consideration and the filter design
technique in this paper effectively reflect the realistic behaviors of the practical systems
due to the incorporation of quantization effects and time delays. Further, the unexpected
variations caused by the saturation in sensors is considered. Also, the effects of randomly
occurring distributed delay and missing measurements that inherently exist in network-
based systems are taken into account. Moreover, the filter is designed in such a way that
it is insensitive to some amount of uncertainties with respect to its gain. Based on this
scenario, in this paper, the problem of resilient H∞ filter design for a class of discrete-
time nonlinear networked control systems with Markovian jumps subject to randomly
occurring distributed delay, external disturbances and missing measurements is addressed,
which makes the present work different from the existing works.

4 Simulation results

In order to prove the effectiveness of the developed filter design, a numerical example is
presented in this section.

Consider the discrete-time networked nonlinear Markovian jump system (1) subject to
randomly occurring distributed delay and sensor saturation with the following parameters:

A1 =

0.2 0.3 0.2
0 0.25 0

0.1 0.2 0.35

 , B1 =

−0.3 0.2 0.2
0.3 −0.2 0.3
0.3 −0.1 −0.1

× 0.3,

C1 =
[
1 0.5 0.2

]
, D11 =

0.1
0
0

 , L1 =
[
0.5 0 0

]
,

D21 = 0.5, H1 =

 0.2 0.1 0.2
0.1 0.3 0
−0.1 0.1 0.3

 , A2 =

0.1 0.3 0.3
0.5 0.1 0.1
0.1 0.2 0.1

 ,
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B2 =

0.1 0.2 0.1
0.2 0.1 0.3
0.1 0.1 −0.2

× 0.3, C2 =
[
1 0 0

]
, D12 =

0.1
0
0

 ,
L2 =

[
0.5 0 0

]
, D22 = 0.5 and H2 =

−0.2 0.1 0
0.1 −0.3 −0.1
−0.1 0 −0.3

 .
Assume that q = 2 and the stochastic parameters are selected as ᾱ11 = E{α11(k)} =

0.2, ᾱ12 = E{α12(k)} = 0.15, ᾱ2 = E{α2(k)} = 0.2, ᾱ3 = E{α3(k)} = 0.15,
the time-varying delay satisfies 2 6 δl(k) 6 3, l = 1, 2, and the quantization density is
assumed to be δ̄ = 0.8. Also, the nonlinear function f(k, x(k)) is chosen as f(k, x(k)) =
0.4 sinx(k). Here the transition probability matrix is taken as Ψ =

[
0.2 0.8
0.35 0.65

]
. Further,

the sensor nonlinearity is taken as φs(y(k)) = ((K1 +K2)/2)y(k) + ((K2 −K1)/2)×
sinx(k) with K1 = 0.6 and K2 = 0.8. The additive filter gain parameters are chosen
as M1 = M2 = [0.1 0.2 0.1]T, Na1 = [0.1 0.1 0.1], Na2 = [0.1 0.2 0.2] and Nb1 =
Nb2 = 0.1. By solving the LMI condition in (17) the optimalH∞ disturbance attenuation
index is obtained as γ = 0.042, and the corresponding filter gain parameters are calculated
as

Af1 =

−0.0413 −0.0609 −0.0285
−0.0031 −0.0287 0.1571
−0.0391 0.0975 −0.1250

 , Af2 =

0.6417 0.1072 −0.7280
1.3992 0.0967 −1.3783
0.6100 0.1107 −0.7176

 ,
Bf1 =

0.2871
0.0174
0.0383

 , Bf2 =

−0.0500
−0.0561
−0.0264

 ,
Lf1 =

[
0.2333 − 0.1210 0.0728

]
and Lf2 =

[
2.1970 − 0.4775 − 1.1441

]
.

In addition, the initial conditions of the system and filter states are chosen as x(0) =
[0 0 0]T and xf (0) = [0 0 0]T. Further, the disturbance input that affects the performance
of the system is assumed as w(k) = 10e−0.12k cos(0.4k). Based on the obtained filter
gain parameters and initial conditions, the response curves are represented in Figs. 1–8.
In particular, the state responses of the considered system are shown in Fig. 1. Specifically,
Figs. 2–4 show the responses of the states x1(k), x2(k) and x3(k) along with their
estimates, respectively. In Fig. 5, the performance output z(k) and the estimated output
z̃(k) are plotted. It is clear from the figure that estimated output effectively estimates the
performance output of the system under the developed resilient H∞ filter. The estimation
error e(k) is presented in Fig. 6, and it is evident that the error response eventually
converges to zero within a short period of time. The jumping modes of the system during
entire simulation process is given in Fig. 7, and external disturbances affecting the system
performance is shown in Fig. 8. It is obvious from these results that the augmented
filtering error system subject to randomly occurring distributed delays, sensor saturation
and external disturbances is stochastically stable with a prescribedH∞ performance index
γ > 0 via the developed quantized nonfragile filter, which demonstrates the effectiveness
of the proposed filter design technique.
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Figure 1. State responses.
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Figure 2. State x1(k) and its estimate xf1(k).
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Figure 3. State x2(k) and its estimate xf2(k).
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Figure 4. State x3(k) and its estimate xf3(k).
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Figure 5. Output z(k) and its estimate z̃(k).
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Figure 6. Filtering error.
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Figure 7. Jumping modes of the system.
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Figure 8. External disturbance.

5 Conclusion

The problem of resilient H∞ filtering for networked nonlinear Markovian jump sys-
tems with randomly occurring nonlinearities, distributed delays and external disturbances
has been investigated. The measurement output signal is affected by sensor saturation,
missing measurements and quantization effects. Stochastic variables following Bernoulli
statistical distributions are considered to characterize the random occurrences of time-
varying delays, nonlinearities and missing measurements. By Lyapunov–Krasovskii sta-
bility theory, sufficient LMI conditions have been derived for obtaining a resilient H∞
filter that ensures the stochastic stability of the filtering error system with prescribed
performance attenuation index. A numerical example is finally given to show the validity
of the designed resilient filter. Further, the problem of finite-time resilient H∞ filtering
for networked nonlinear Markovian jump systems with uncertainties, sensor faults and
energy constraints is an untreated area. These issues will be our future research topics.
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