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Abstract. In this paper, we use the Fountain theorem under the Cerami condition to study
the gauged nonlinear Schrödinger equation with a perturbation in R2. Under some appropriate
conditions, we obtain the existence of infinitely many high energy solutions for the equation.
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1 Introduction

In this paper, we study the existence of infinitely many high energy solutions for the
following gauged nonlinear Schrödinger equation with a perturbation in R2:

−∆u+ λV (x)u+

(
h2(|x|)
|x|2

+

∞∫
|x|

h(s)

s
u2(s) ds

)
u

= f(u)− µg(x)|u|q−2u. (1)
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Infinitely many solutions for a gauged nonlinear Schrödinger equation 627

We first list our assumptions for our problem (1):

(V1) V ∈ C(R2,R), and infx∈R2 V (x) > V0 > 0, where V0 is a positive constant.
(V2) There exists b > 0 such that meas{x ∈ R2: V (x) 6 b} is finite; here meas

denotes the Lebesgue measure.

(H1) f ∈ C(R,R), and f(u) = o(|u|) as |u| → 0.
(H2) There exists R0 > 0 such that F (u) =

∫ u
0
f(t) dt > 0 and F(u) = f(u)u/6−

F (u) > 0 for |u| > R0.
(H3) f(u)u/|u|6 → +∞ as |u| → ∞.
(H4) There exist α0, R1 > 0, and τ ∈ (1,+∞) such that |f(u)|τ 6 α0F(u)|u|τ for

|u| > R1.
(H5) f(−u) = −f(u) for u ∈ R.

(g) g ∈ Lq
′
(R2), and g(x) > 0 ( 6≡ 0) for x ∈ R2, where q′ ∈ (1, 2/(2 − q)),

q ∈ (1, 2).

Problem (1) arises in the study of standing wave solutions for the gauged nonlinear
Schrödinger equation

iD0φ+ (D1D1 +D2D2)φ+ g(φ) = 0,

∂0A1 − ∂1A0 = − Im(φD2φ),

∂0A2 − ∂2A0 = Im(φD1φ),

∂1A2 − ∂2A1 = −1

2
|φ|2,

where i denotes the imaginary unit, ∂0 = ∂/∂t, ∂1 = ∂/∂x1, ∂2 = ∂/∂x2 for (t, x1, x2) ∈
R1+2, φ : R1+2 → C is the complex scalar field, Aκ : R1+2 → R is the gauge
field, and Dκ = ∂κ + iAκ is the covariant derivative for κ = 0, 1, 2. From the initial
study in [8, 9] many papers on this system appeared in the literature; we refer the reader
to [1, 2, 4–8, 10, 11, 13, 14, 18–21, 25, 26, 28, 29] and the references therein.

When λ = 1, the authors [12] obtained the existence and multiplicity of solutions
for (1) with concave-convex nonlinearities µg(x, u) + νf(x, u), where g has sublinear
growth, and f has asymptotically linear or superlinear growth. In [20], the authors
studied the existence, nonexistence, and multiplicity of standing waves for (1) (λ = 1,
µ = 0) with asymptotically linear nonlinearities and external potential, and in [1, 2, 4–
7, 11, 13, 14, 18, 19, 21, 25, 26, 28, 29], the authors studied the existence and multiplicity
of solutions (including sign-changing solutions and ground state solutions) for gauged
nonlinear Schrödinger equation

−∆u+ ωu+

(
h2(|x|)
|x|2

+

+∞∫
|x|

h(s)

s
u2(s) ds

)
u = f(u), x ∈ R2.

Moreover, in [26], the authors also discussed the energy doubling property, i.e., the energy
of sign-changing solutions is strictly larger than two times the least energy. In [10], the
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628 J. Xu et al.

authors studied the existence and multiplicity of the positive standing wave with f(u) +
εk(x), where the nonlinearity f behaves like exp(α|u|2) as |u| → ∞. Moreover, they
obtained a mountain-pass type solution when ε = 0.

There also are some papers in the literature, which consider perturbation terms; see
[15, 17, 22, 23, 27] and the references therein. In [15, 17], the authors used the famous
Ambrosetti–Rabinowitz conditions to study the existence of solutions for the following
fractional equations:

M

(∫∫
R2N

|u(x)− u(y)|p

|x− y|N+ps
dxdy

)
(−∆)spu+ V (x)|u|p−2u

= f(x, u) + g(x) in RN ,
and

(I −∆)su+ λV (x)u = f(x, u) + µξ(x)|u|p−2u in RN ,

where (−∆)sp is the fractional p-Laplacian operator, and (I −∆)s is the fractional Bessel
operator. Moreover, [17] also considered the effect of the parameter λ, µ on the existence
of solutions for their problem.

Motivated by the aforementioned works, in this paper, we study the existence of in-
finitely many high energy solutions under some appropriate conditions, which are weaker
than the Ambrosetti–Rabinowitz conditions, and also consider the effect of the parameters
and the perturbation terms on the existence of solutions.

Now, we state our main result:

Theorem 1. Suppose that (V1), (V2), (H1)–(H5), and (g) hold. Then for any µ > 0,
there exists Λ > 0 such that system (1) possesses infinitely many high energy solutions
when λ > Λ.

Remark 1. By virtue of (H1), (H2), and (H4) we can obtain a growth condition for f .
Using (H2) and (H4), for |u| > R2 := max{R0, R1}, we have

∣∣f(u)
∣∣τ 6 α0F(u)|u|τ = α0

(
1

6
f(u)u− F (u)

)
|u|τ 6

α0

6

∣∣f(u)
∣∣|u|τ+1,

and ∣∣f(u)
∣∣ 6 τ−1

√
α0

6
|u|

τ+1
τ−1 .

Let p = (τ + 1)/(τ − 1) + 1 = 2τ/(τ − 1). Then from (H4) we have p ∈ (2,+∞), and

∣∣f(u)
∣∣ 6 τ−1

√
α0

6
|u|p−1 for |u| > R2.

On the other hand, using (H1), for all ε > 0, we have∣∣f(u)
∣∣ 6 ε|u| for |u| 6 R2.
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Infinitely many solutions for a gauged nonlinear Schrödinger equation 629

Therefore, by the above two inequalities we have the growth condition for f :

∣∣f(u)
∣∣ 6 ε|u|+ cε|u|p−1, u ∈ R, cε := τ−1

√
α0

6
. (2)

Note the relation F and f , and we obtain∣∣F (u)
∣∣ 6 ε

2
|u|2 +

cε
p
|u|p, u ∈ R. (3)

Remark 2. Let f(t) = t5(6 log |t|+ 1), t ∈ R, and t 6= 0. Then F (t) = t6 ln |t|, and we
can check that f , F satisfy (H1)–(H5). For example, if we take τ ∈ (1, 3/2), we have

lim
|t|→+∞

6 ln |t|+ 1

|t| 6−4τ
τ

= lim
|t|→+∞

6τ

6− 4τ

1

|t| 6−4τ
τ

= 0.

Consequently, for |t| large, we obtain

(6 ln |t|+ 1)τ

|t|6−4τ
6
α0

6

and ∣∣f(t)
∣∣τ =

∣∣t5(6 ln |t|+ 1
)∣∣τ 6

α0

6
|t|6+τ = α0F(t)|t|τ .

This implies that (H4) holds. Moreover, this function also satisfies (H1)–(H3) and (H5).
However, this function does not satisfy the Ambrosetti–Rabinowitz condition, namely:

(AR) There exists µ > 6 such that 0 < µF (u) 6 f(u)u for u ∈ R \ {0}.

2 Preliminaries

Note the parameter λ, and we can consider the work space

E :=

{
u ∈ H1

(
R2
)
:

∫
R2

(
|∇u|2 + λV (x)u2

)
dx < +∞

}
.

Then E is a Hilbert space with the inner product and norm

(u, v) =

∫
R2

(
∇u · ∇v + λV (x)uv

)
dx, ‖u‖ =

√
(u, u).

Moreover, by [24] we have that the embedding E ↪→ Lr(R2) is continuous for r ∈
[2,+∞) and E ↪→ Lr(R2) is compact for r ∈ (2,+∞), i.e., there are constants γr > 0
such that ‖u‖r 6 γr‖u‖ for 2 6 r < ∞, where ‖·‖r is the norm in the usual Lebesgue
space Lr(R2).
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In what follows, we present the energy functional I : E → R for problem (1) defined
as

I(u) =
1

2

∫
R2

(
|∇u|2 + λV (x)u2

)
dx+B(u)−

∫
R2

F (u) dx+
µ

q

∫
R2

g(x)|u|q dx,

where

B(u) :=
1

2

∫
R2

u2

|x|2

( |x|∫
0

r

2
u2(r) dr

)2

dx =
1

2

∫
R2

u2

|x|2

( ∫
B|x|

u2

4π

)2

dx.

Note (3) and (g). We obtain that I is of class C1 and its derivative is

〈
I ′(u), ϕ

〉
=

∫
R2

(
∇u∇ϕ+ λV (x)uϕ

)
dx+

〈
B′(u), ϕ

〉
−
∫
R2

f(u)ϕdx

+ µ

∫
R2

g(x)|u|q−2uϕdx ∀ϕ ∈ E,

where

〈
B′(u), ϕ

〉
=

∫
R2

(
h2(|x|)
|x|2

+

+∞∫
|x|

h(s)

s
u2(s) ds

)
u(x)ϕ(x) dx ∀ϕ ∈ E.

Lemma 1. (See [1,13,14,29].) Suppose that {un} converges weakly to a function u in E
as n→∞. Then

(i) limn→+∞B(un) = B(u),
(ii) limn→+∞〈B′(un), un〉 = 〈B′(u), u〉,

(iii) limn→+∞〈B′(un), ϕ〉 = 〈B′(u), ϕ〉,
(iv) 〈B′(u), u〉 = 6B(u),
(v) B(u) 6 C0‖u‖44‖u‖22 6 C0γ

2
2γ

4
4‖u‖6 := C1‖u‖6 for some C0, C1 > 0.

In order to obtain our main result, we need to introduce the Fountain theorem under
the Cerami condition (C).

Definition 1. (See [16].) Assume that X is a Banach space. We say that J satisfies the
Cerami condition if

(C) J ∈ C1(X,R), and for all c ∈ R,

(i) any bounded sequence {un} ⊂ X satisfying J(un) → c, J ′(un) → 0
possesses a convergent subsequence;

(ii) there exist σ,R, β > 0 such that for any u ∈ J−1([c − σ, c + σ]) with
‖u‖ > R, ‖J ′(u)‖‖u‖ > β.
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Infinitely many solutions for a gauged nonlinear Schrödinger equation 631

Lemma 2. (See [16].) Assume that X =
⊕∞

j=1Xj , where Xj are finite dimensional
subspaces of X . For each k ∈ N, let Yk =

⊕k
j=1Xj , Zk =

⊕∞
j=kXj . Suppose that

J ∈ C1(X,R) satisfies the Cerami condition (C) and J(−u) = J(u). Assume for each
k ∈ N, there exist ρk > rk > 0 such that

(i) bk = infu∈Zk∩Srk J(u)→ +∞, k →∞,
(ii) ak = maxu∈Yk∩Sρk J(u) 6 0, where Sρ = {u ∈ X: ‖u‖ = ρ}.

Then J has a sequence of critical points un such that J(un)→ +∞ as n→∞.

3 Proof of Theorem 1

Lemma 3. Let sequence {un} converge weakly to a function u in E, un(x)→ u(x) a.e.
in R2 as n→∞. Then

I(un) = I(un − u) + I(u) + o(1) as n→∞, (4)〈
I ′(un), ϕ

〉
=
〈
I ′(un − u), ϕ

〉
+
〈
I ′(u), ϕ

〉
+ o(1) ∀ϕ ∈ E as n→∞. (5)

In particular, if

I(un)→ c, I ′(un)→ 0 as n→∞,
then

I(un − u) = c− I(u) + o(1) as n→∞, (6)

and 〈
I ′(un − u), ϕ

〉
= o(1) ∀ϕ ∈ E as n→∞. (7)

Proof. From the compactness of E ↪→ Lr(R2), for r ∈ (2,+∞), we have

un ⇀ u weakly in E,

un → u strongly in Lp(R2) for p ∈ (2,+∞),

un → u for a.e. x ∈ R2.

Let wn = un − u. Then we have

wn ⇀ 0 weakly in E,

wn → 0 strongly in Lp(R2) for p ∈ (2,+∞),

wn → 0 for a.e. x ∈ R2.

Since un ⇀ u in E, we have (un − u, u)→ 0 as n→∞, which implies

‖un‖2 = (wn + u, wn + u) = ‖wn‖2 + ‖u‖2 + o(1) as n→∞.
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Note Lemma 1(v), and we have B(un − u) 6 C0‖un − u‖44‖un − u‖22 → 0 as n→∞.
Consequently, to obtain (4), by Lemma 1(i) we only need to check that∫

R2

(
F (un)− F (wn)− F (u)

)
dx = o(1) as n→∞ (8)

and ∫
R2

g(x)
(
|un|q − |wn|q − |u|q

)
dx = o(1) as n→∞. (9)

Note the definition of (·, ·), for all n ∈ N, we have (un, ϕ) = (un − u, ϕ) + (u, ϕ).
Moreover, since wn ⇀ 0 in E and by Lemma 1(iii), to prove (5), it suffices to show that

sup
‖ϕ‖=1

∫
R2

(
f(un)− f(wn)− f(u)

)
ϕdx = o(1) as n→∞ (10)

and

sup
‖ϕ‖=1

∫
R2

g(x)
(
|un|q−2un − |un − u|q−2(un − u)− |u|q−2u

)
ϕdx

= o(1) as n→∞. (11)

We first prove that (9) and (11). Using the inequality from page 13 in [17] and the
Hölder inequality, for qq′/(q′ − 1) > 2, we have∣∣∣∣ ∫

R2

g(x)
(
|un|q − |u|q

)
dx

∣∣∣∣ 6 ∫
R2

g(x)|wn|q dx 6 ‖g‖q′‖wn‖qqq′
q′−1

→ 0 as n→∞.

Hence, (9) holds. From Lemma 1 in [3] there exists Cq > 0 such that ||un|q−2un −
|u|q−2u| 6 Cq|un − u|q−1. Therefore, from (g) and the Hölder inequality we only need
to prove:

sup
‖ϕ‖=1

∣∣∣∣ ∫
R2

g(x)|wn|q−2wnϕdx

∣∣∣∣
6 sup
‖ϕ‖=1

∫
R2

g(x)|wn|q−1|ϕ|dx

6 ‖g‖q′
(∫

R2

|ϕ|
qq′
q′−1 dx

) q′−1
qq′
(∫

R2

|wn|
qq′
q′−1 dx

) q−1
q′−1

qq′

6 ‖g‖q′γ qq′
q′−1

‖wn‖q−1qq′
q′−1

→ 0 as n→∞.
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Consequently, (11) is true. Note that we can use similar methods in Lemma 4.7 of [30] to
prove (10). In what follows, we prove (8). Using the ideas in [17, 22, 23], we have

F (un)− F (un − u) = −
1∫

0

(
d

dt
F (un − tu)

)
dt =

1∫
0

f(un − tu)udt.

Hence, from (2) we obtain∣∣F (un)− F (un − u)
∣∣ 6 ε1|un||u|+ ε1|u|2 + Cε1 |un|p−1|u|+ Cε1 |u|p

for some ε1, Cε1 > 0, where p > 2. Therefore, together with (3), using the Young
inequality with ε (for all ε > 0), we obtain∣∣F (un)− F (wn)− F (u)

∣∣
6 Cε1,Cε1

[
ε|un|2 + Cε,ε1 |u|2 + ε|un|p + Cε,Cε1 ,cε |u|

p
]
.

Consequently, we consider the function f̃n defined as

f̃n(x) := max
{∣∣F (un)− F (wn)− F (u)

∣∣− Cε1,Cε1 ε(|un|2 + |un|p
)
, 0
}
.

Then

0 6 f̃n(x) 6 Cε1,Cε1Cε,ε1 |u|
2 + Cε1,ε1Cε,Cε1 ,cε |u|

p ∈ L1(R2),

and by the Lebesgue dominated convergence theorem we have∫
R2

f̃n(x) dx→ 0 as n→∞. (12)

Note that ∣∣F (un)− F (wn)− F (u)
∣∣ 6 f̃n(x) + Cε1,Cε1 ε

(
|un|2 + |un|p

)
.

Using (12) shows that (8) holds.
Compare (4), (5) with (6), (7). We only need to prove that 〈I ′(u), ϕ〉 = 0 for all

ϕ ∈ E. Note Lemma 1(iii), (10), (11), and (un − u, ϕ) → 0 as n → ∞. It suffices
to check that

∫
R2 f(wn)ϕdx = o(1) as n → ∞. Note the arbitrariness of ε in (2), and

wn → 0 in Lp(R2), p > 2. Therefore, from (2) we have∣∣∣∣ ∫
R2

f(wn)ϕdx

∣∣∣∣ 6 ∫
R2

(
ε|wn|+ cε|wn|p−1

)
|ϕ|dx

6 εγ22‖wn‖‖ϕ‖+ cεγp‖wn‖p−1p ‖ϕ‖

→ 0 as n→∞.

This completes the proof.
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Lemma 4. Suppose that all the assumptions in Theorem 1 hold. Then I satisfies the
Cerami condition (C).

Proof. For all c ∈ R, suppose that there exists {un}n∈N ⊂ E is bounded and

I(un)→ c, I ′(un)→ 0 as n→∞.

Using 〈I ′(u), ϕ〉 = 0 for all ϕ ∈ E in Lemma 3 and noting Lemma 1(iv), we have

I(u) = I(u)− 1

6

〈
I ′(u), u

〉
=

1

3
‖u‖2 +

∫
R2

F(u) dx+ µ

(
1

q
− 1

6

)∫
R2

g(x)|u|q dx.

This implies that

1

3
‖u‖2 +

∫
R2

F(u) dx = I(u)− 1

6

〈
I ′(u), u

〉
− µ

(
1

q
− 1

6

)∫
R2

g(x)|u|q dx

6 I(u)− 1

6

〈
I ′(u), u

〉
.

Recall wn = un − u. From (6) and (7) we have

1

3
‖wn‖2 +

∫
R2

F(wn) dx

6 I(wn)− 1

6

〈
I ′(wn), wn

〉
6 c− I(u) + o(1)

= c−
[

1

3
‖u‖2 +

∫
R2

F(u) dx+ µ

(
1

q
− 1

6

)∫
R2

g(x)|u|q dx

]
+ o(1)

6 M̃ for some M̃ > 0.

As V (x) < b on a set of finite measure and wn ⇀ 0 in E, we have

‖wn‖22 =

∫
R2

|wn|2 dx 6
1

λb

∫
V>b

λV (x)|wn|2 dx+

∫
V <b

|wn|2 dx

6
1

λb
‖wn‖2 + o(1).

Combining this and the Hölder inequality, recall p = 2τ/(τ − 1) ∈ (2,+∞), fixed
ν ∈ (p,+∞), we have

‖wn‖pp =

∫
R2

|wn|p dx =

∫
R2

|wn|
2(ν−p)
ν−2 |wn|p−

2(ν−p)
ν−2 dx

6

(∫
R2

|wn|
2(ν−p)
ν−2

ν−2
ν−p dx

) ν−p
ν−2
(∫

R2

|wn|(p−
2(ν−p)
ν−2 ) ν−2

p−2 dx

) p−2
ν−2

https://www.journals.vu.lt/nonlinear-analysis
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Infinitely many solutions for a gauged nonlinear Schrödinger equation 635

=

(∫
R2

|wn|2 dx

) ν−p
ν−2
(∫

R2

|wn|ν dx

) p−2
ν−2

6

(
1

λb

) ν−p
ν−2

γ
ν(p−2)
ν−2

ν ‖wn‖
2(ν−p)
ν−2 ‖wn‖

ν(p−2)
ν−2

=

(
1

λb

) ν−p
ν−2

γ
ν(p−2)
ν−2

ν ‖wn‖p for γν > 0.

From (H1), for all ε > 0, there exists δ = δ(ε) > 0 such that |f(u)| 6 ε|u| for x ∈ R2

and |u| 6 δ. Without loss of generality, we can choose this δ > R1, where R1 is defined
in (H4). Therefore, we have∫

|wn|6R1

f(wn)wn dx 6 ε

∫
|wn|6R1

|wn|2 dx 6
ε

λb
‖wn‖2 + o(1).

On the other hand, when |wn| > R1, from (H4) we have∫
|wn|>R1

f(wn)wn dx =

∫
|wn|>R1

f(wn)

wn
w2
n dx

6

( ∫
|wn|>R1

∣∣∣∣f(wn)

wn

∣∣∣∣τ dx

)1/τ( ∫
|wn|>R1

|wn|
2τ
τ−1 dx

)(τ−1)/τ

6

( ∫
|wn|>R1

α0F(wn) dx

)1/τ

‖wn‖2p

6 (α0M̃)1/τ
(

1

λb

) 2(ν−p)
p(ν−2)

γ
2ν(p−2)
p(ν−2)
ν ‖wn‖2 + o(1).

Consequently, from (7) we obtain

o(1) =
〈
J ′(wn), wn

〉
= ‖wn‖2 +

〈
B′(wn), wn

〉
−
∫
R2

f(wn)wn dx+ µ

∫
R2

g(x)|wn|q dx

>

[
1− ε

λb
− (α0M̃)1/τ

(
1

λb

) 2(ν−p)
p(ν−2)

γ
2ν(p−2)
p(ν−2)
ν

]
‖wn‖2 + o(1).

Thus, given the arbitrariness of ε, there exists Λ > 0 such that wn → 0 in E when λ > Λ.
This implies that un → u in E, and Definition 1(i) holds.

Finally, we prove that Definition 1(ii) holds. We argue indirectly, i.e., suppose that
there exist c ∈ R and {un}n∈N ⊂ E such that

I(un)→ c, ‖un‖ → ∞,
∥∥I ′(un)

∥∥‖un‖ → 0 as n→∞. (13)
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Then we have

c+ o(1) = I(un)− 1

6

〈
I ′(un), un

〉
=

1

3
‖un‖2 +

∫
R2

F(un) dx+ µ

(
1

q
− 1

6

)∫
R2

g(x)|un|q dx

>
∫
R2

F(un) dx. (14)

Using Lemma 1(iv), (13), and (g), we obtain

1 =
‖un‖2

‖un‖2

=
〈I ′(un), un〉
‖un‖2

− 〈B
′(un), un〉
‖un‖2

+

∫
R2 f(un)un dx

‖un‖2
−
µ
∫
R2 g(x)|un|q dx

‖un‖2

6 lim sup
n→∞

[
〈I ′(un), un〉
‖un‖2

+

∫
R2 f(un)un dx

‖un‖2
+

µ‖g‖q′γqqq′
q′−1

‖un‖q

‖un‖2

]
6 lim sup

n→∞

∫
R2 f(un)un dx

‖un‖2
. (15)

Let vn = un/‖un‖. Then ‖vn‖ = 1, and there exists a function v ∈ E such that vn ⇀ v
weakly in E, vn → v strongly in Lr(R2) with r ∈ (2,+∞), vn(x) → v(x) for a.e.
x ∈ R2. Define a set Ωn(a, b) = {x ∈ R2: a 6 |un(x)| < b} with 0 6 a < b, and
consider the following two possible cases.

Case 1. The function v is a zero function in E, i.e., v = 0, and vn ⇀ 0 weakly in E,
vn(x)→ 0 for a.e. x ∈ R2. From (2) we have∫
Ωn(0,R1)

f(un)un
‖un‖2

dx =

∫
Ωn(0,R1)

f(un)un
|un|2

|vn|2dx 6
(
ε+ cεR

p−2
1

) ∫
Ωn(0,R1)

|vn|2 dx

6
(
ε+ cεR

p−2
1

) ∫
R2

|vn|2 dx→ 0. (16)

On the other hand, by the Hölder inequality, (14), and (H4) we obtain∫
Ωn(R1,∞)

f(un)un
‖un‖2

dx =

∫
Ωn(R1,∞)

f(un)un
|un|2

|vn|2 dx

6

( ∫
Ωn(R1,∞)

(
f(un)un
|un|2

)τ
dx

) 1
τ
( ∫
Ωn(R1,∞)

|vn|
2τ
τ−1 dx

) τ−1
τ

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Infinitely many solutions for a gauged nonlinear Schrödinger equation 637

6

( ∫
Ωn(R1,∞)

∣∣∣∣f(un)

un

∣∣∣∣τ dx

) 1
τ
( ∫
Ωn(R1,∞)

|vn|p dx

) 2
p

6

( ∫
Ωn(R1,∞)

α0F(un) dx

) 1
τ
( ∫
Ωn(R1,∞)

|vn|p dx

) 2
p

6 [α0(c+ 1)]
1
τ ‖vn‖2p → 0. (17)

Combining (16) and (17), we have∫
R2

f(un)un
‖un‖2

dx =

∫
Ωn(0,R1)

f(un)un
‖un‖2

dx+

∫
Ωn(R1,∞)

f(un)un
‖un‖2

dx→ 0,

which contradicts (15).
Case 2. The function v is not a zero function in E, i.e., v(x) 6≡ 0, x ∈ R2.

Hence, if we set A = {x ∈ R2: v(x) 6= 0}, then measA > 0. For x ∈ A, we
have limn→∞ |un(x)| = ∞, and hence A ⊂ Ωn(R1,∞) for large n. By (H3) and
Lemma 1(iv), (v), noting the nonnegativity of f(u)u, Fatou’s Lemma enables us to obtain

0 = lim
n→∞

〈I ′(un), un〉
‖un‖6

= lim
n→∞

[
‖un‖2

‖un‖6
+
〈B′(un), un〉
‖un‖6

−
∫
R2 f(un)un dx

‖un‖6
+
µ
∫
R2 g(x)|un|q dx

‖un‖6

]
6 lim
n→∞

[
‖un‖q

‖un‖6
µ‖g‖q′γqqq′

q′−1

+ 6C1
‖un‖6

‖un‖6

−
∫

Ωn(0,R1)

f(un)un
‖un‖6

dx−
∫

Ωn(R1,∞)

f(un)un
|un|6

|vn|6 dx

]

6 6C1 + lim sup
n→∞

∫
Ωn(0,R1)

f(un)un
‖un‖6

dx− lim inf
n→∞

∫
Ωn(R1,∞)

f(un)un
|un|6

|vn|6 dx

6 6C1 + lim sup
n→∞

εR2
1 + cεR

p
1

‖un‖6
meas

(
Ωn(0, R1)

)
− lim inf

n→∞

∫
Ωn(R1,∞)

f(un)un
|un|6

[
χΩn(R1,∞)(x)

]
|vn|6 dx

6 6C1 −
∫

Ωn(R1,∞)

lim inf
n→∞

f(un)un
|un|6

[
χΩn(R1,∞)(x)

]
|vn|6 dx

→ −∞.

This is also a contradiction.
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Combining the above two cases, we have that Definition 1(ii) holds. Thus, I satisfies
the Cerami condition (C). This completes the proof.

Proof of Theorem 1. Note that E is a Hilbert space, and let ej be an orthonomormal basis
of E. Then we have

Yk =

k⊕
j=1

Xj , Zk =

∞⊕
j=k

Xj , k ∈ N, Xj = Rej .

In what follows, we show that for each k ∈ N, there exist ρk > rk > 0 such that

bk = inf
u∈Zk, ‖u‖=rk

I(u)→ +∞ as k →∞ (18)

and
ak = max

u∈Yk, ‖u‖=ρk
I(u) 6 0. (19)

Note that the compact embedding E ↪→ Lr(R2) with r ∈ (2,+∞), and by Lemma 3.8
in [24] we have βk(r) = supu∈Zk, ‖u‖=1 ‖u‖r → 0, k → ∞. This, together with (3),
implies that

I(u) =
1

2
‖u‖2 +B(u)−

∫
R2

F (u) dx+
µ

q

∫
R2

g(x)|u|q dx

>
1

2
‖u‖2 −

∫
R2

F (u) dx >
1

2
‖u‖2 − ε

2
‖u‖22 −

cε
p
‖u‖pp

>
1

2
‖u‖2 − ε

2
γ22‖u‖2 −

cε
p
‖u‖pp. (20)

Note that p = 2τ/(τ − 1), and if we take ε 6 1/(γ22(2τ − 1)) and rk = (cεβ
p
k)1/(2−p),

by (20), for u ∈ Zk and ‖u‖ = rk, we find

I(u) >
τ − 1

2τ − 1
‖u‖2 − cε

p
βpk‖u‖

p >

(
τ − 1

2τ − 1
− τ − 1

2τ

)(
cεβ

p
k

) 2
2−p

→ +∞ as k → +∞

with τ > 1, p > 2. Therefore, (18) holds.
On the other hand, for any finite dimensional subspace Ẽ ⊂ E, we show that

I(u)→ −∞, ‖u‖ → ∞, u ∈ Ẽ. (21)

Arguing indirectly, assume that for some sequence {un} ⊂ Ẽ with ‖un‖ → ∞, there
existsM > 0 such that I(un) > −M for all n ∈ N. Let vn = un/‖un‖. Then ‖vn‖ = 1,
and there is a function v ∈ Ẽ such that vn ⇀ v in Ẽ. Since dim Ẽ <∞, we have vn → v
in Ẽ, vn(x)→ v(x) for a.e. x ∈ R2, and ‖v‖ = 1. Let Ω = {x ∈ R2: v(x) 6= 0}. Then
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measΩ > 0, and limn→∞ |un(x)| → ∞ for a.e. x ∈ Ω. From Lemma 1(v) and (g) we
have

lim
n→∞

∫
R2

F (un)

‖un‖6
dx = lim

n→∞

1
2‖un‖

2 +B(un)− I(un) + µ
q

∫
R2 g(x)|un|q dx

‖un‖6

6 lim
n→∞

1
2‖un‖

2 + C1‖un‖6 − I(un) + µ
q ‖g‖q′γ

q
qq′
q′−1

‖un‖q

‖un‖6

= C1. (22)

From the L’Hôspital’s rule and (H3) we have

lim
|u|→∞

F (u)

|u|6
= +∞ uniformly in x ∈ R2.

Fatou’s lemma implies that

lim
n→∞

∫
R2

F (un)

‖un‖6
dx > lim

n→∞

∫
Ω

F (un)

‖un‖6
dx > lim inf

n→∞

∫
Ω

F (un)

|un|6
|vn|6 dx

>
∫
Ω

lim inf
n→∞

F (un)

|un|6
|vn|6 dx >

∫
Ω

lim inf
n→∞

F (un)

|un|6
[
χΩ(x)

]
|vn|6 dx

= +∞.

This contradicts (22), and thus (21) holds. As a result, we can take u ∈ Yk and large ρk
(ρk > rk) such that

J(u) 6 0 for u ∈ Yk, ‖u‖ = ρk.

Thus, (19) holds.
Finally, (H5) implies that I is an even functional on E, and by Lemma 4 I satisfies

all the conditions of Lemma 2. Then I has a sequence of critical points {un} such that
I(un)→ +∞ as n→∞. This means that (1) has infinitely many high energy solutions.
This completes the proof.
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