
Nonlinear Analysis: Modelling and Control, Vol. 26, No. 3, 440–460
https://doi.org/10.15388/namc.2021.26.23053

Press

Stability analysis of fractional-order systems with
randomly time-varying parameters

Dehua Wanga,b,1 , Xiao-Li Dingc,2,3 , Juan J. Nietod,4

aSchool of Sciences, Xi’an Technological University,
Xi’an, Shaanxi, 710021, China
bSchool of Mathematical Sciences,
University of Electronic Science and Technology of China,
Chengdu, Sichuan, 610054, China
cDepartment of Mathematics, Xi’an Polytechnic University,
Xi’an, Shaanxi 710048, China
dingding0605@126.com
dDepartamento de Estatística, Análisis Matemático e Optimización,
Instituto de Matemáticas, Universidade de Santiago de Compostela,
15782 Santiago de Compostela, Spain

Received: February 2, 2020 / Revised: October 12, 2020 / Published online: May 1, 2021
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1 Introduction

In recent years, the increasing interest of the scientific community towards fractional
calculus experienced an exceptional boost and its applications can now be found in a va-
riety of real world problems, for example, viscous material [6], random and disordered
media [21, 23], finance [16, 26], electrical circuits [14], automatic control system [18, 30]
and so on. The reason of the success of the fractional calculus is that the fractional calculus
operators are nonlocal, which makes them more precisely to characterize actual evolution
process than the integer-order calculus and help to model physical problems in a more
realistic manner.

Fractional differential equations are now considered as useful tools as they can model
many physical systems. In order to find out the essential performance of the established
equations, the existence and stability of the solutions of the equations is the first pre-
requisite. In the last few years, several results on this topic were presented including
asymptotic stability [1,4,15,24]), exponential stability [2,25] and Mittag-Leffler stability
[5,19,27–30]. The general method for analyzing the stability is based on the first method
of Lyapunov, the second method of Lyapunov and other mathematical techniques. The
idea of the first one is that the system is stable if there are some Lyapunov functional
candidates for the system, while the second one only provides a sufficient condition to
show the stability of the system, and one cannot find a Lyapunov functional candidate to
conclude the stability. Other mathematical strategies are mainly based on the expressions
of the solutions to the systems and integral inequalities.

Fractional stochastic differential systems often arise in applications [1,3,7,13,22,26,
30]. In recent years, such systems have attracted more and more researchers’ attention
in the field of stochastic differential systems. A lot of important results based on the
existence and uniqueness and stability of the solutions to the systems were obtained. For
example, in 1959, Bertram and Sarachik [1] studied the stability of the following system:

dx(t)

dt
= Ax(t), t > 0,

where

A =



[
−1 1

0 −1

]
, prob = p,[

0 1

0 0

]
, prob = 1− p.

In 1977, Ladde [15] used logarithmic norm to discuss the stability of linear systems
with random parameters. However, to the authors’ knowledge, the stability of solution
of fractional-order differential system with randomly time-varying coefficients have yet
to be reported. In this paper, we plan to investigate the stability of the following fractional-
order differential system with randomly time-varying parameters:

(CDα
0+x)(t) = f

(
t, ω(t), x(t)

)
, (1)
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where 0 < α 6 1, ω(t) denotes the randomly time-varying parameters, f : [0,∞) ×
Rn × Rn → Rn is piecewise continuous in t and locally Lipschitz with respect to x in
mean sense on [0,∞)×Rn ×Rn. And assume that f(t, ω(t), 0) = 0, so that x = 0 is an
equilibrium point whose stability is to be examined. If ω(t) is a constant, then system (1)
becomes a classical fractional differential system.

The organization and main results of the paper are listed briefly as follows. In Sec-
tion 2, we firstly give some definitions and properties about fractional calculus and special
functions. Then we extend the ideas about the definitions of stability in [1] to define
some types of the stability of system (1). In Section 3, we give main results. On the one
hand, we use the generalized Lyapunov method to discuss the stability. Besides that, we
use ingenious mathematical calculation and integral inequalities to check the stability of
system (1). Some concluding remarks are presented in Section 4.

2 Preliminaries

In this section, we recall some basic definitions and properties about fractional calculus.
For more details, we can refer them to the monograph [12].

Let Ω = [0, T ] (0 6 T 6 ∞) be a finite or infinite interval of the real axis R. We
denote by Lp(Ω) the set of all the Lebesgue-measurable functions f on Ω with the norm
‖f‖p < ∞. Denote Cm(Ω) a space of functions f , which are m-times continuously
differentiable on Ω with the norm ‖f‖m =

∑m
k=0 maxx∈Ω |f (k)(x)|.

Definition 1. Let α > 0 and f ∈ L1(Ω). Then the Riemann–Liouville fractional integral
of order α with respect to t is defined as

Iα0+f(t) =
tα−1

Γ(α)
∗ f(t) =

1

Γ(α)

t∫
0

(t− τ)α−1f(τ) dτ, t > 0,

where Γ(·) is the gamma function, and ∗ denotes the convolution operator.

The Riemann–Liouville fractional integral operator have the following properties [8].

Property 1. Let α, β > 0 and f ∈ L1(Ω). Then

(i) Iα0+f is nondecreasing with respect to f . In particular, if f > 0, then Iα0+f > 0;
(ii) The operator Iα0+ is compact, and σ(Iα0+) = {0}, where σ(·) denotes the spectral

set of Iα0+ ;
(iii) (Iα0+I

β
0+f)(t) = (Iβ0+I

α
0+f)(t) = (Iα+β0+ f)(t);

(iv) For the real-valued continuous function f , it has ‖Iα0+f‖ 6 I
α
0+‖f‖, where ‖·‖

denotes an arbitrary norm.

For the fractional derivatives, there are two types that are commonly used: the Riemann–
Liouville fractional derivative and the Caputo derivative.
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Definition 2. Let f ∈ L1(Ω) and m − 1 < α 6 m, m ∈ N+. The Riemann–Liouville
fractional derivative and Caputo fractional derivative of order α with respect to t are
defined, respectively, as

Dα
0+f(t) =

1

Γ(m− α)

dm

dtm

t∫
0

(t− τ)m−α−1f(τ) dτ,

(
CDα

0+f
)
(t) = Dα

0+

(
f(t)−

m−1∑
k=0

f (k)(0)

k!
tk

)
, t > 0.

Further, if f(t) ∈ Cm(Ω), then Caputo fractional derivative can also be defined as

(
CDα

0+f
)
(t) =

1

Γ(m− α)

t∫
0

(t− τ)m−α−1f (m)(τ) dτ, t > 0,

m− 1 < α 6 m, m ∈ N+, which is known as a smooth fractional derivative.

Note that if f (k)(0) = 0, k = 0, 1, . . . ,m − 1, then (CDα
0+f)(t) coincides with

(Dα
0+f)(t).
The Caputo fractional derivative shares many similar properties with the ordinary

derivative, and it is suitable for initial value problems, and so it can be applied into a lot
of engineering and physical problems in real world.

Property 2. Let m− 1 < α 6 m, m ∈ N+. The following formulas hold:

(
CDα

0+I
α
0+f

)
(t) = f(t),

(
Iα0+

CDα
0+f

)
(t) = f(t)−

m−1∑
k=0

f (k)(0)

k!
tk.

Definition 3. The generalized Mittag-Leffler function is defined by

Eρβ,γ(z) =

∞∑
k=0

(ρ)kz
k

Γ(βk + γ)k!
, β, γ, ρ > 0, z ∈ C,

where (ρ)0 = 1, (ρ)k = ρ(ρ+ 1) · · · (ρ+ k − 1), k = 1, 2, . . . .

In particular, when ρ = 1, it becomes the two-parameter Mittag-Leffler function, i.e.,
E1
β,γ(z) = Eβ,γ(z); when ρ = γ = 1, it becomes the one-parameter Mittag-Leffler

function, i.e., E1
β,1(z) = Eβ(z).

Definition 4. [20] The Wright function is defined by

Wλ,µ(z) =

∞∑
n=0

zn

n!Γ(nλ+ µ)
, λ > −1, µ > 0, z ∈ C.
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Note that the case λ = 0 is trivial since W0,µ(z) = ez/Γ(µ). In particular, for the case
0 < ν < 1, W−ν,1−ν(−z) = Mν(z), where Mν(z) is the Mainardi’s function defined as

Mν(z) =

∞∑
n=0

(−z)n

n!Γ(−nν + 1− ν)
.

The Laplace transform of the Mainardi’s function is

∞∫
0

e−stMν(t) dt = Eν(−s). (2)

On the other hand, Mν(z) satisfies the following two equalities:

∞∫
0

ν

tν+1
Mν

(
1

tν

)
e−st dt = e−s

ν

,

∞∫
0

tδMν(t) dt =
Γ(δ + 1)

Γ(νδ + 1)
,

where δ > −1, 0 < ν < 1.
The special functions listed as above play an important role in the investigation of

fractional differential equations. In the following, we give the solutions of some kinds of
fractional differential equations with help of the special functions.

Lemma 1. (See [12].) Let 0 < α 6 1, λ ∈ R. The solution to the initial value problem(
CDα

0+x
)
(t)− λx(t) = f(t), x(0) = x0 ∈ R

has the form

x(t) = Eα(λtα)x0 +

t∫
0

(t− τ)α−1Eα,α
(
λ(t− τ)α

)
f(τ) dτ.

Lemma 2. (See [12].) Let 0 < α 6 1, γ > −α, λ ∈ R. The solution to the initial value
problem (

CDα
0+x

)
(t)− λtγx(t) = 0, x(0) = x0 ∈ R

has the form

x(t) = x0Eα,1+γ/α,γ/α
(
λtα+γ

)
,

where Eν,m,l(z) is defined by the following series:

Eν,m,l(z) =

∞∑
k=0

ckz
k, ν,m, l > 0, z ∈ C,

with

c0 = 1, ck =

k−1∏
j=0

Γ(ν(jm+ 1))

Γ(ν(jm+ l + 1) + 1)
, k = 1, 2, . . . .
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Lemma 3. (See [10].) Let 0 < α 6 1, and let a(t) be a bounded and continuous function
on Ω. The solution to the initial value problem

(CDα
0+x)(t)− a(t)x(t) = 0, x(0) = x0 ∈ R

has the form x(t) =
∑∞
k=0Rkax0, where Ra is a bounded linear operator defined on

C(Ω):

(Raϕ)(t) =
1

Γ(1− α)

t∫
0

(t− τ)−αa(τ)ϕ(τ) dτ,

R0
a is an identity operator, andRka denotes the k-times composition operator ofRa.

Lemma 4. (See [9].) Let 0 < α 6 1, 0 < β < 1, µ1, µ2 ∈ R with µ2 6= 0. Then the
unique solution of the following initial value problem

(
CDα

0+x
)
(t) + µ1x(t) + µ2

t∫
0

(t− τ)β−1x(τ) dτ = f(t), t ∈ Ω,

x(0) = x0

has the form

x(t) =

∞∑
k=0

(−1)kµkt(α+β)kEk+1
α,(α+β)k+1

(
−µ1t

α
)
x0

+

∞∑
k=0

(−1)kµk
t∫

0

t(α+β)k+α−1Ek+1
α,(α+β)k+α

(
−µ1(t− τ)α

)
f(τ) dτ,

where µ = µ2Γ(β).

Next, we list some properties about the special functions and two integral inequalities,
which will be used in the latter discussion.

Lemma 5. (See [11].) Let ρ, µ, γ, ν, σ > 0, and let t > 0, then

t∫
0

(t− τ)µ−1Eγρ,µ
(
λ(t− τ)ρ

)
τν−1Eσρ,ν

(
λτρ

)
dτ = tµ+ν−1Eγ+σρ,µ+ν

(
λtρ
)
.

In particular,

t∫
0

(t− τ)µ−1Eγρ,µ
(
λ(t− τ)ρ

)
τν−1Eρ,ν

(
λτρ

)
dτ = tµ+ν−1Eγ+1

ρ,µ+ν

(
λtρ
)
,

t∫
0

(t− τ)µ−1Eγρ,µ(λ(t− τ)ρ)Eρ(λτ
ρ) dτ = tµEγ+1

ρ,µ+1

(
λtρ
)
.
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Lemma 6. (See [31].) Let 0 < α 6 1, a(t) and l(t) be continuous, nonnegative functions
on Ω, and u(t) be a continuous, nonnegative function on Ω with

u(t) 6 a(t) +
1

Γ(α)

t∫
0

(t− s)α−1l(s)u(s) ds.

Then it has

u(t) 6

[
A(t) +

t∫
0

L(s)A(s) exp

( t∫
s

L(τ) dτ

)
ds

]β
, t ∈ Ω.

If a(t) is nondecreasing on Ω, then the inequality is reduced to

u(t) 6

[
A(t) +

t∫
0

L(s)A(s) exp

( t∫
s

L(τ) dτ

)
ds

]β
, t ∈ Ω.

If a(t) ≡ 0 on Ω, then u(t) ≡ 0, where 0 < β < α 6 1, and

A(t) = 21/β−1a1/β(t),

L(t) =
21/β−1

(Γ(α))1/β

[
Γ

(
α− β
1− β

)
Γ

(
1− α
1− β

)](1−β)/β
t(α−β)/βl1/β(t).

Lemma 7. (See [8].) Suppose β > 0, a(t) and u(t) are nonnegative, locally integrable
functions on Ω, g(t) is a nonnegative, nondecreasing continuous function on Ω, and they
satisfy the following relationship:

u(t) 6 a(t) + g(t)

t∫
0

(t− τ)β−1Eβ,β
(
λ(t− τ)β

)
u(τ) dτ, λ > 0, t ∈ Ω. (3)

Then, for any t ∈ Ω, we have

u(t) 6 a(t) +

∞∑
k=1

gk(t)

t∫
0

(t− τ)kβ−1Ekβ,kβ
(
λ(t− τ)β

)
a(τ) dτ.

Finally, we introduce some concepts of stability in the case of a fractional-order sys-
tem with randomly time-varying parameters. Stability studies about differential systems
are essentially problems of convergence. For the system with randomly time-varying
parameters, it is only possible to investigate the convergence in some stochastic sense
such as convergence in mean sense, convergence in probability, or convergence with
probability one. In this paper, we will mainly consider the stability of system in mean
sense.
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Definition 5. A constant vector x∗ = (x∗1, x
∗
2, . . . , x

∗
n)T ∈ Rn is an equilibrium solution

of system (1) if and only if f(t, ω(t), x∗) = 0.

Remark 1. For convenience, we state all definitions and theorems for the case when the
equilibrium solution of system (1) is the origin of Rn, i.e., x∗ = 0. There is no loss of
generality in doing so because any equilibrium solution can be changed to the origin via
a change of variables. Suppose the equilibrium solution for system (1) is x∗ 6= 0 and
consider the change of variable y = x − x∗. Then system (1) with respect to the new
variable y is (

CDα
0+y
)
(t) =

(
CDα

0+(x− x∗)
)
(t) = f

(
t, ω(t), x(t)

)
= f

(
t, ω(t), y(t) + x∗

)
= g
(
t, ω(t), y(t)

)
, (4)

where g(t, ω(t), 0) = 0, and the new system (4) has equilibrium solution at the origin.

Definition 6. The equilibrium solution x(t) = 0 of system (1) is said to be stable in mean
sense if for any ε > 0, there exists a δ(ε) > 0 such that for any initial condition satisfying
‖x0‖ < δ(ε), the expected value of the norm of the solution x(t) satisfies E(‖x(t)‖) < ε
for any t > 0.

Definition 7. The equilibrium solution x(t) = 0 of system (1) is said to be asymptotically
stable in mean sense if, in addition, to being stable in mean sense, it is true that for each
x0, there exists a δ > 0 such that limt→∞E(‖x(t)‖) = 0 whenever ‖x0‖ < δ.

Definition 8. The equilibrium solution x(t) = 0 of system (1) is said to be Mittag-Leffler
stable in mean sense if for each x0, the expected value of the norm of the solution satisfies

E
∥∥x(t)

∥∥ 6 ‖x0‖Eα
(
−λtα

)
,

where 0 < α 6 1, and λ > 0.

Definition 9. If the equilibrium solution x(t) = 0 of system (1) is said to be stable
(asymptotically stable, Mittag-Leffler stable) in mean sense, then we also call system (1)
stable (asymptotically stable, Mittag-Leffler stable) in mean sense.

3 Main results

3.1 Stability analysis based on generalized Lyapunov method

In this subsection, we will use the generalized Lyapunov functional method to analyze
the stability of system (1). The method is to construct a scalar functional V (t, x), which
is continuous in both t and x, has first partial derivatives in these variables and equals
zero only at the equilibrium solution x(t) = 0. Such a functional is called a Lyapunov
functional. The basic idea of the Lyapunov method is that if we can construct a Lyapunov
functional, which represents some tubes surrounding the equilibrium solution x(t) = 0
such that all solutions cross through the tubes towards x(t) = 0.
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For any solution x, the α-order Caputo derivative of the scaler functional V is calcu-
lated as

CDα
0+V (t, x) =

1

Γ(1− α)

t∫
0

(t− τ)−αV̇ (τ, x(τ)) dτ,

where

V̇
(
t, x(t)

)
=

dV

dt
=
∂V

∂t
+
∂V

∂x

dx

dt
.

Theorem 1. Let 0 < α 6 1, and let V (t, x(t)) : [0,∞) × Rn → R be a continuously
differential function and locally Lipschitz continuous with respect to x and satisfy the
following conditions:

(i) V (t, 0) = 0;
(ii) V (t, x) > a‖x‖;

(iii) E(CDα
0+V (t, x)) 6 0.

Then the equilibrium solution x(t) = 0 of system (1) is stable in mean sense.

Proof. Note that V (t, x(t)) can be written as

V
(
t, x(t)

)
= V0 +

1

Γ(α)

t∫
0

CDα
0+V (τ, x(τ))

(t− τ)1−α
dτ, (5)

where V0 = V (0, x0) only depends on the initial state x0.
Taking the expected value on the both sides of equality (5) leads to

EV
(
t, x(t)

)
= V0 +

1

Γ(α)

t∫
t0

(t− τ)α−1E
(
CDα

0+V (τ, x)
)

dτ.

Furthermore, combining condition (iii) and Property 1, we have

EV
(
t, x(t)

)
6 V0.

On the other hand, from condition (ii) we get

aE
∥∥x(t)

∥∥ 6 V0.

Since V (t, x) is locally Lipschitz continuous with respect to x, there exists a constant L
such that for some γ > 0 and 0 < ‖x‖ 6 γ, it has V (t, x) 6 L‖x‖. Then, for any ε > 0,
if δ(ε) is chosen as δ = min(aε/L, γ), then, for ‖x0‖ < δ(ε), it has

aE
∥∥x(t)

∥∥ 6 V0 6 L‖x0‖ 6 aε.

This implies that the equilibrium solution x(t) = 0 of system (1) is stable in mean sense.
The proof is completed.
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According to Theorem 1 and the definition of Caputo fractional derivative, we can
immediately obtain the following corollary.

Corollary 1. Let V (t, x(t)) : [0,∞) × Rn → R be a continuously differential function
and locally Lipschitz continuous with respect to x and satisfy the conditions

(i) V (t, 0) = 0;
(ii) V (t, x) > a‖x‖;

(iii) E(dV (t, x(t))/dt) 6 0.

Then the equilibrium solution x(t) = 0 of system (1) is stable in mean sense.

Next, we will discuss the asymptotically stability of system (1). To do this, we state
a lemma.

Lemma 8. (See [1].) If g(r) is an always increasing function defined for all r > 0 and
g(0) = 0, then if E{r} >M > 0, there exists an L(M) > 0 such that E{g(r)} > L.

Theorem 2. Under the hypothesis of Theorem 1, further assume that V (t, x) has the
property that E(CDα

0+V (t, x)) is negative definite, i.e.,

E
(
CDα

0+V (t, x)
)
6 −h

(
‖x‖
)
, (6)

where h(0) = 0, and h(‖x‖) is an increasing function. Then the equilibrium solution
x(t) = 0 of system (1) is asymptotically stable in mean sense.

Proof. We will prove it by contradiction. Assume that E{‖x(t)‖} does not tend to zero
as t→∞. Then it is possible to find a δ > 0 such that E{‖x(t)‖} > δ for any t > t0. It
follows from Lemma 8 that there exists a κ(δ) such that

E
{
h
(
‖x‖
)}

> κ(δ). (7)

On the other hand, from inequalities (6), (7) and Property 1 we get

E
{
V
(
t, x(t)

)}
6 V0 −

1

Γ(α)

t∫
0

(t− τ)α−1E
{
h
(∥∥x(τ)

∥∥)} dτ

6 V0 −
κ(δ)tα

Γ(α+ 1)
.

This implies that if we choose t such that tα > Γ(α + 1)V0/κ(δ), then it has
E{V (t, x(t))} < 0, which leads to a contradiction with condition (ii). It follows that
E{‖x(t)‖} tends to zero as t→∞. The proof is completed.

Corollary 2. Under the hypothesis of Theorem 2, further assume that V (t, x) has the
property that E(dV (t, x(t))/dt) is negative definite, i.e.,

E

(
dV (t, x(t))

dt

)
6 −h

(
‖x‖
)
,

where h(0) = 0, and h(‖x‖) is an increasing function. Then the equilibrium solution
x(t) = 0 of system (1) is asymptotically stable in mean sense.
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Finally, we will consider Mittag-Leffler stability of system (1) in mean sense.

Theorem 3. Under the hypothesis of Theorem 2, further assume that there exist positive
constants ai, p, q (i = 1, 2, 3) and β (0 6 β < 1) such that V (t, x) has the properties:

(iv) ‖x‖q 6 V (t, x) 6 a1‖x‖p + a2I
β
0+‖x‖

q;
(v) E(CDα

0+V (t, x)) 6 −a3E‖x‖p.

Then the equilibrium solution x(t) = 0 of system (1) is Mittag-Leffler stable in mean
sense.

Proof. From the second inequality in condition (iv) we have

−a3‖x‖p 6 −
a3
a1
V (t, x) +

a2a3
a1

Iβ0+‖x‖
q.

Also, from condition (v) we get

E
(
CDα

0+V (t, x)
)
6 −a3

a1
EV (t, x) +

a2a3
a1

E
(
Iβ0+‖x‖

q
)
. (8)

On the other hand, from the first inequality in condition (iv) we have

a2a3
a1

Iβ0+‖x‖
q 6

a2a3
a1

Iβ0+V (t, x). (9)

Then, combining inequalities (8) and (9), we can obtain

E
(
CDα

0+V (t, x)
)
6 −a3

a1
EV (t, x) +

a2a3
a1

E
(
Iβ0+V (t, x)

)
.

According to the well-known comparison principle in [17] and Lemma 4, we have

EV (t, x) 6 Eα

(
−a2a3Γ(β)

a1
tα+β +

a3
a1
tα
)
.

The proof is completed.

Remark 2. For the case α = 1, Theorems 1 and 2 become Theorems 3.1 and 3.2 in [1],
respectively. Theorem 3 improves and extends Theorems 5.1 and 5.4 in [19].

Example 1. Consider the stability of the following linear fractional-order system:(
CDα

0+x
)
(t) = A(t)x(t), t > 0, x(0) = x0. (10)

Construct a Lyapunov functional as

V (t, x) = xT(t)Qx(t),

where Q is a constant positive definite matrix, and xT denotes the transpose of x.
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According to Corollary 1, a sufficient condition for stability of system (10) is

E

(
dV (t, x)

dt

)
< 0, t > 0.

That is to say, a sufficient condition for stability of system (10) is that

E

(
dV (t, x)

dt

)
= E

(
xT(t)

(
AT(t)Q+QA(t)

)
x(t)

)
(11)

be negative definite for all t > 0.
Now we consider a particular case when A(t) is a diagonal matrix, i.e.,

A(t) =


a1(t) 0 · · · 0

0 a2(t) · · · 0
...

...
...

...
0 0 0 an(t)

 ,
where ai(t) (i = 1, 2, . . . , n) are bounded continuous functions on [0,∞) or have the
form as tγ with γ > 0. Then, according to Lemmas 2 and 3, system (10) has a unique
solution, and the unique solution can be expressed in a closed form. For convenience, we
denote the unique solution as

x(t) = Φ(t)x0. (12)

Substituting (12) into (11), we obtain a sufficient condition for the stability in mean sense
is that

E
(
ΦT(t)(AT(t)Q+QA(t))Φ(t)

)
be negative definite for all t > 0. Let Q be an identity matrix. Then it is stable in mean
sense if ai(t) < 0 (i = 1, 2, . . . , n) for all t > 0.

In the following, we demonstrate numerical simulation. For example, we take α =
0.5, and

A(t) =

−3t 0 0
0 −5t2 0
0 0 −t3

 .
Then, according to Theorem 1, the equilibrium solution x(t) = 0 is stable. Figure 1 is

the numerical result. From Fig. 1 one sees that the numerical results agree with the theory
analysis.

Remark 3. We obtained the stability criteria by the Lyapunov functional approach in
this subsection. However, by Example 1 one can find that it is only in some special cases
that a Lyapunouv function can be constructed. Zhou et al. in [30] studied the exponential
stability for delayed neutral networks driven by fractional Brownian noise using some
mathematical techniques and Gronwall inequality. It motivates us investigate the stability
of system (1) by mathematical techniques and generalized Gronwall integral inequalities
in the next subsection.
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Figure 1. Transient behavior of system (10).

3.2 Stability analysis based on integral inequalities

In this subsection, we firstly prove the boundness of the solution of system (1) by using
some generalized Gronwall inequalities and then provide another alternative approach to
verify the stability of system (1) in mean sense.

Lemma 9. Let the function f(t, ω(t), x) in system (1) satisfies the relation

E
∥∥f(t, ω(t), x

)
− f

(
t, ω(t), y

)∥∥ 6 L
(
t, E‖x− y‖

)
, (13)

and let L verifies the condition

0 6 L(t, u)− L(t, v) 6M(t, v)(u− v), u > v > 0, (14)

where M : [0,∞) × R → R is a nonnegative continuous function. Then we have the
estimate

E
∥∥x(t)− x0

∥∥ 6

[
A(t) +

t∫
0

Φ(s)A(s) exp

( t∫
s

Φ(τ) dτ

)
ds

]β
, t > 0, (15)

where 0 < β < α < 1, and

A(t) = 21/β−1

(
‖x0‖
Γ(α)

t∫
0

(t− τ)α−1M(τ, 0) dτ

)1/β

,

Φ(t) =
21/β−1

(Γ(α))1/β

[
Γ

(
α− β
1− β

)
Γ

(
1− α
1− β

)](1−β)/β
t(α−β)/β

(
M
(
t, ‖x0‖

))1/β
.

Proof. Let x(t) be the solution of system (1). Then we have

x(t) = x0 +
1

Γ(α)

t∫
0

(t− τ)α−1f
(
τ, ω(τ), x(τ)

)
dτ.
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Let us define the mapping y(t) : [0,∞)→ Rn as

y(t) =
1

Γ(α)

t∫
0

(t− τ)α−1f
(
τ, ω(τ), x(τ)

)
dτ.

Then it has x(t) = x0 + y(t). Noting the fact f(t, ω(t), 0) ≡ 0, we get

E
∥∥f(t, ω(t), x)

∥∥ 6 L
(
t,E‖x‖

)
.

On the other hand, from (14) we have L(t, 0) ≡ 0 and L(t, u) 6M(t, 0)u. Then by (13)
and (14) we have

E
∥∥y(t)

∥∥ 6
1

Γ(α)

t∫
0

(t− τ)α−1E
∥∥f(τ, ω(τ), x(τ)

)∥∥dτ

6
1

Γ(α)

t∫
0

(t− τ)α−1L
(
τ,E

{
‖x0‖+

∥∥y(τ)
∥∥}) dτ

6
1

Γ(α)

t∫
0

(t− τ)α−1L
(
τ, ‖x0‖

)
dτ

+
1

Γ(α)

t∫
0

(t− τ)α−1M
(
τ, ‖x0‖

)
E
∥∥y(τ)

∥∥dτ

6
‖x0‖
Γ(α)

t∫
0

(t− τ)α−1M(τ, 0) dτ

+
1

Γ(α)

t∫
0

(t− τ)α−1M
(
τ, ‖x0‖

)
E
∥∥y(τ)

∥∥dτ.

According to Lemma 4, we can obtain estimate (15). The proof is completed.

By using Lemma 9 we can formulate the following lemma, which tells us that the
solution of system (1) is bounded under suitable conditions.

Lemma 10. If the function f satisfies the condition in Lemma 9 and also there exist two
positive constants δ0 and M such that

∞∫
0

s(α−β)/β
(
M(s, δ)

)1/β
ds 6M

for all 0 6 δ 6 δ0, then there exists an M̃ > 0 such that for all t > 0,

E
∥∥x(t)− x0

∥∥ 6 M̃.
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Proof. With the help of Hölder’s inequality, we have

t∫
0

(t− τ)α−1M(τ, 0) dτ

=

t∫
0

(t− τ)α−1τβ−ατα−βM(τ, 0) dτ

6

[ t∫
0

(
(t− τ)α−1τβ−α

)1/(1−β)
dτ

]1−β[ t∫
0

(
τα−βM(τ, 0)

)1/β
dτ

]β

=

[
Γ

(
α− β
1− β

)
Γ

(
1− α
1− β

)]1−β[ t∫
0

(
τα−βM(τ, 0)

)1/β
dτ

]β
.

This implies that

lim
t→∞

t∫
0

(t− τ)α−1M(τ, 0) dτ 6M
β
[
Γ

(
α− β
1− β

)
Γ

(
1− α
1− β

)]1−β
.

It follows from Lemma 9 that the solution x(t) is bounded for all t > 0, and the bound-
edness is denoted as M̃ . The proof is completed.

Now we can give the following theorem of stability for the equilibrium solution of
system (1).

Theorem 4. If the function f satisfies the condition in Lemma 9 and also there exist two
positive constants δ0 and M such that

∞∫
0

s(α−β)/β
(
M(s, δ)

)1/β
ds 6M

for all 0 6 δ 6 δ0, then the equilibrium solution x(t) = 0 of system (1) is stable in mean
sense.

Proof. Let ε > 0 and x(t) be the solution of system (1). We choose δ such that

δ(ε) = min

{
ε

2
, δ0,

ε

2M̃

}
,

where M̃ is the constant boundedness in Lemma 10. Then, for ‖x0‖ < δ(ε), we have

E
∥∥x(t)

∥∥ 6 E
{
‖x0‖+ ‖x− x0‖

}
6
ε

2
+ ‖x0‖M̃ <

ε

2
+
ε

2
= ε.

This implies that the equilibrium solution x(t) = 0 of system (1) is stable in mean sense.
The proof is completed.
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Finally, we will discuss the Mittag-Leffler stability of system (1) using integral in-
equality.

Theorem 5. Assume that system (1) can be decomposed into

(CDα
0+x)(t) = Ax(t) + g

(
t, ω(t), x(t)

)
, t > 0, x(0) = x0. (16)

Also, assume that

(i) There exist two constants λ, K > 0 such that ‖eAt‖ 6 Ke−λt, t > 0;
(ii) For any t > 0, it has g(t, ω(t), 0) = 0, and there exists a constant L > 0 with

L < λ such that for x, y ∈ Rn, it has

E
∥∥g(t, ω(t), x)− g(t, ω(t), y)

∥∥ 6 LE‖x− y‖. (17)

Then the equilibrium solution x(t) = 0 of system (1) is Mittag-Leffler stable in mean
sense.

Proof. Combining the fact g(t, ω(t), 0) ≡ 0 and inequality (17), we have

E
∥∥g(t, ω(t), x)

∥∥ 6 LE‖x‖.

Let x(t) be the solution of system (16). Then by Lemma 1 we have

x(t) = Eα(Atα)x0 +

t∫
0

(t− τ)α−1Eα,α
(
A(t− τ)α

)
g
(
τ, ω(τ), x(τ)

)
dτ. (18)

According to equality (2), we have the estimate

∥∥Eα(Atα)
∥∥ 6

∞∫
0

∥∥eAt
αs
∥∥Mα(s) ds 6

∞∫
0

Ke−λt
αsMα(s) ds

= K

∞∑
n=0

(−λ)ntnα

n!

∞∫
0

snMα(s) ds

= K

∞∑
n=0

(−λ)ntnα

n!

Γ(n+ 1)

Γ(nα+ 1)
= KEα(−λtα). (19)

Using the similar arguments to (19), we can deduce that∥∥Eα,α(Atα)
∥∥ 6 KEα,α

(
−λtα

)
.

Then, taking the expectation on the both sides of inequality (19), we get

E
∥∥x(t)

∥∥ 6 KEα
(
−λtα

)
‖x0‖

+ LK

t∫
0

(t− τ)α−1Eα,α
(
−λ(t− τ)α

)
E
∥∥x(τ)

∥∥dτ. (20)
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Applying Lemma 6 to inequality (20), we have

E
∥∥x(t)

∥∥ 6 K2
∞∑
k=0

LktkαEk+1
α,kα+1(−λtα)‖x0‖.

In fact, it has
∞∑
k=0

LktkαEk+1
α,kα+1(−λtα)

=

∞∑
k=0

∞∑
n=0

Lktkα
(k + 1)n(−λ)ntnα

Γ(nα+ kα+ 1)n!
=

∞∑
k=0

∞∑
m=k

Lk(−λ)m−ktmαm!

Γ(mα+ 1)k!(m− k)!

=

∞∑
m=0

tmα

Γ(mα+ 1)

m∑
k=0

m!Lk(−λ)m−k

k!(m− k)!
=

∞∑
m=0

(L− λ)mtmα

Γ(mα+ 1)

= Eα
(
(L− λ)tα

)
.

It follows that E‖x(t)‖ 6 K2Eα((L− λ)tα)‖x0‖. The proof is completed.

Example 2. We consider the stability of system (10) in Example 1. Obviously, it has
L(t, u) = ‖A(t)‖u. If ‖A(t)‖ satisfies the condition

∞∫
0

sα/β−1
∥∥A(s)

∥∥1/β ds 6M,

where M is a positive constant, then by Theorem 4 system (10) is stable in mean sense.
For the particular case when ‖A(t)‖ 6 e−λt (λ > 0), it has

∞∫
0

sα/β−1
∥∥A(s)

∥∥1/β ds 6 Γ

(
α

β

)(
λ

β

)α/β
.

Then by Theorem 5 system (10) is Mittag-Leffler stable in mean sense.

For example, we take α = 0.5, and

A(t) =

 e−5t −e−5t −e−3t

−e−3t e−3t −e−t

e−2t −e−t −e−3t

 .
Then, according to Theorem 5, the equilibrium solution x(t) = 0 is stable. Figure 2 is
the numerical result. From Fig. 2 one sees that the numerical results agree with the theory
analysis.

Example 3. Consider the following fractional stochastic differential equation:

dI1−α0+

(
x(t)− x(0)

)
= A(t)x(t) dt+ µx(t) dB(t), t > 0,

x(0) = x0,
(21)

where B(t) is the standard Brownian motion.
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Figure 2. Transient behavior of system (10) in the case α = 0.5.

Figure 3. Transient behavior of system (21) in the case µ = 1, where the green lines (- ·) denote ten sample
paths x(t), the red line (−) denotes the mean value of x, and the blue line (- -) denotes the Mittag-Leffer function
x0Eα(−λtα).

Take α = 0.5, A(t) = −5t, and x0 = 1. Then it has L = 0 and λ = 1. Therefore,
according to Theorem 5, the equilibrium solution x(t) = 0 is Mittag-Leffler stable in
mean sense. Figure 3 is the numerical result, and from it one sees that the numerical
result agrees with the theory analysis.

4 Conclusions

In this paper, we provided two approaches to assess the stability of fractional-order sys-
tems with randomly time-varying parameters. The first approach is based on the gener-
alized Lyapunov functionals. We can construct suitable Lyapunov functionals satisfying
some conditions to discuss the stability of such systems. This approach has important
theoretical significance, although the finding of suitable Lyapunov functional is difficult
in applications. The second approach is based on integral inequalities and ingenious
mathematical reduction. Several examples show that the derived results are effective and
reliable to check the stability. Compared with the first approach, the second approach is
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a convenient way to handle the stability of the fractional-order systems with randomly
time-varying parameters. Besides that, the derived criteria improve the existing related
results. We believe these results with weak conditions are useful for the analysis of the
stability of fractional differential equations in the future.

Acknowledgment. We would like to thank the anonymous referees for constructive
comments that helped us improve the manuscript.
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