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Abstract. In this paper, we investigate the effects of pollution on the body size of prey about
a predator–prey evolutionary model with a continuous phenotypic trait in a pulsed pollution
discharge environment. Firstly, an eco-evolutionary predator–prey model incorporating the rapid
evolution is formulated to investigate the effects of rapid evolution on the population density and the
body size of prey by applying the quantitative trait evolutionary theory. The results show that rapid
evolution can increase the density of prey and avoid population extinction, and with the worsening
of pollution, the evolutionary traits becomes smaller gradually. Next, by employing the adaptive
dynamic theory, a long-term evolutionary model is formulated to evaluate the effects of long-term
evolution on the population dynamics and the effects of pollution on the body size of prey. The
invasion fitness function is given, which reflects whether the mutant can invade successfully or not.
Considering the trade-off between the intrinsic growth rate and the evolutionary trait, the critical
function analysis method is used to investigate the dynamics of such slow evolutionary system.
The results of theoretical analysis and numerical simulations conclude that pollution affects the
evolutionary traits and evolutionary dynamics. The worsening of the pollution leads to a smaller
body size of prey due to natural selection, while the opposite is more likely to generate evolutionary
branching.

Keywords: pulse pollution, quantitative trait model, evolutionary singularity strategy, continuously
stable, evolutionary branching.

1 Introduction

Biological evolution is a common phenomenon in nature. It refers to the process in which
an organism interacts with its living environment and its genetic system changes irre-
versibly over time, leading to the evolution of corresponding phenotypic characteristics.
Some evolution is rapid. Due to the influence of ecological changes and other factors,
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species selection pressure becomes stronger and rapid evolution occurs. In fishing, larger
fish tend to be caught, while slow-growing fish are smaller, which are better able to escape
nets and have a higher chance of passing on their genes to the next generation. Some
evolution is a long, slow, continuous process in which highly adaptable organisms evolve
in their environment through natural selection over generations. In an environment where
food was scarce, giraffes with long necks were able to survive by eating leaves from taller
trees, while those with short necks were eliminated, so giraffes evolved long necks by
natural selection over time.

There are mainly two modelling methods for the evolution of biological phenotypic
characteristics: quantitative trait model (QTM) and adaptive dynamic model (ADM).
QTM assumes the ecology and evolution occur at the same time scale, and the evolution
of quantitative trait is described as a differential dynamical system, which is incorporated
into the ecological dynamical system to study the effects of rapid evolution on phenotypic
trait and population dynamics. QTM was first proposed by Lande [13], providing a theo-
retical basis for the study of the rapid evolution of a biological trait. Next, Saloniemi [25]
investigated a coevolutionary quantitative trait model in the predator–prey system, consid-
ering the influence of rapid evolution on the dynamics of a predator–prey system. The re-
sults showed that rapid evolution promoted the stable coexistence of predator and prey and
the existence of periodic solutions. Then the rapid evolution based on the quantitative trait
model has been extensively studied [2,5,6,8,11,21–23,26,30]. For example, Fussmann et
al. studied the rapid evolutionary response of predator–prey system with sexual predispo-
sition trait [5] and genotype trait [6], respectively. Michael et al. in [2] studied a general
predator–prey system exhibiting fast evolution in either the predator or the prey. Kaitala
et al. in [11] used the quantitative trait evolution model to simulate observational data
and concluded that the interaction between predator and prey (bacteria and ciliates) in the
microbial system could be best explained as a coevolutionary process, where both the prey
and predator evolved. Wang et al. in [30] formulated and explored an eco-evolutionary
resource–consumer–predator trophic cascade model incorporating the rapid evolution to
study the effects of rapid evolution on the consumer’s body size and to investigate the
impact of density-mediate indirect effect on the population dynamics and trait dynamics.

ADM assumes that evolutionary population are frequency-dependent and that evo-
lutionary and ecological processes occur at different time scales, that is, evolution is
a slow process and ecology is a fast process. It provides an important theoretical tool
for studying the evolution of species with continuous phenotype trait due to frequency-
dependent selection, and its basic framework was proposed by Metz [20], Dieckman [3]
and Geritz [7]. ADM is more widely used and is suitable for the study of dynamics such
as the evolutionary stability of phenotypic characteristics and evolutionary branching. In
recent years, many studies have been conducted on the evolution of biological phenotypic
characteristics in predator–prey systems by using adaptive dynamics theory [18,19,24,29,
31,32]. For example, Zu et al. studied the evolutionary response in predator–prey systems
with predation rate trait [31] and the prey’s defence ability trait [32], respectively. Wang
et al. formulated and investigated a tri-trophic food chain model with foraging effort being
the single evolutionary trait and assumed that the predation rate of the top predator to the
intermediate predator was the trade-off function of phenotypic characteristics [24].
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With the rapid development of industry and agriculture, human production and life
lead to the discharge of a large number of toxicants and harmful substances into the
surrounding environment, which affect the survival of biological species seriously. With
the pollution worsening, there will be obvious changes in morphological characteristics
and the density of species. For example, scientists have shown that the body sizes of
living polar bears have shrunk compared to their ancestors, the main reason for these
changes is environmental pollution, which has affected the evolution of the species. In
recent years, much research has been done on the survival and extinction of biological
species in a polluted environment by mathematical models [4,9,10,14,15,17], especially
by impulsive differential equations [9, 10, 14, 15], since in real life, the discharge of some
toxins such as waste water, waste gas and waste impurities and the spraying of pesticides
are instantaneous and not continuous. Further, some studies have been given to the effects
of environmental pollution on the evolutionary changes of species. Liu et al. in [16]
considered the effects of continuous discharge pollution on the evolution of phenotypic
characteristics of a single species; Veprauskas et al. investigated the dynamics of the
daphniid population model with rapid evolution of toxicant resistance trait in a polluted
environment [28]. Ackleh et al. developed a discrete-time predator–prey evolutionary
model to study how the pest population evolved resistance to the toxicants [1]. In this
paper, based on [14], we use QTM and ADM to establish the predator–prey evolution
model with the body size as the trait in a pulsed pollution environment to explore the
dynamics of fast evolution and slow evolution, respectively, and analyze how the pollution
affects the body size of the prey and biodiversity of the species.

The rest of this paper is organized as follows. In the next section, the ecological
model of a predator–prey system in a pulsed polluted environment is formulated, and
its dynamics are given. In Section 3, we establish a quantitative trait model with the body
size of the prey as a continuous phenotypic trait to discuss the effects of rapid evolution
and pollution on the population density and the evolutionary trait. In Section 4, an adaptive
dynamics model is established to investigate the evolutionary dynamics of slow evolution,
and the effects of pollution on evolutionary trait and stability are analyzed theoretically
and numerically. We give our conclusions in the last section.

2 Ecological model in a polluted environment and its dynamic
analysis

In this section, based on [14], an ecological predator–prey model with the phenotypic trait
(the body size of prey) in a polluted environment with pulse toxicants input at fixed times
is established as follows:

dN(t)

dt
= N(t)

(
r1(x)− l1(x)c0(t)− f(x, x)N(t)− β(x)P (t)

)
,

dP (t)

dt
= P (t)

(
r2 − l2(x)c0(t) + αβ(x)N(t)− aP (t)

)
,

(1)

where N(t) and P (t) are the densities of the prey and predator at time t; c0(t) is the
toxicant concentration in the organism at time t; r1(x) is a trait-dependent intrinsic growth
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function of the prey, which exhibits a trade-off between the body size and the intrinsic
growth of prey, and is assumed to be a continuous and decreasing function because big
individuals generally absorb more toxin and imply a low survival and fecundity; l1(x)
denotes the decrease rate function of prey due to the absorption of the toxin. In general,
the amount of toxin absorbed by the organism is related to its body size, and the larger it is,
the more toxins it absorbs, thus we assume l′1(x) > 0. For simplicity, we take l1(x) = l1x
and l1 > 0; r2 is the intrinsic growth rate of the predator; l2 denotes the decrease rate of
predator due to the absorption of toxin; f(x, x) is the intraspecific competition coefficient,
where we adopt the following phenotypic dependent asymmetric competition functions
proposed by Kisdi [1]:

f(xi, xj) = c

(
1− 1

1 + v exp(−β(xi − xj))

)
,

where c, v and β are positive constants. c is the maximum competition coefficient between
prey species with traits xi and xj ; v reflects the intensity of competition. The larger value
of v, the stronger the competition; f(xi, xj) reflects the effect of the species with trait
xj on the species with trait xi. In model (1), since the phenotypic trait is the same, then
xi = xj = x. β(x) is the predation rate using the following function:

β(x) = β0 exp

(
−(x− x0)2

2σ2
β

)
, (2)

and it reaches its maximum when x = x0, β0 is the maximum predation rate, and σ2
β is

the phenotypic variance of the trait x to x0; α > 0 denotes the conversion rate; a > 0
denotes the interspecific competition coefficient of predators.

In this paper, we assume that the toxicants in the environment are discharged period-
ically at fixed times. Therefore, c0(t) satisfies the following dynamical system in Liu et
al. [14]:

dc0(t)

dt
= kce(t)− gc0(t)−mc0(t), t 6= nτ, n ∈ Z+,

dce(t)

dt
= −hce(t), t 6= nτ, n ∈ Z+,

c0
(
t+
)
= c0(t), ce

(
t+
)
= ce(t) + b, t = nτ, n ∈ Z+,

(3)

where ce(t) is the concentration of toxicants in the environment at time t; kce(t) repre-
sents the species’s net uptake of toxicants from the environment; −gc0(t) and −mc0(t)
represent the egestion and depuration rates of toxicants in the species, respectively;
−hce(t) is the toxicants loss rate from the environment itself by volatilization and so
on; b is the discharge amount of toxicants at time t = nτ ; τ is the impulse period of
toxicants discharge.

Since c0(t) and ce(t) are the concentrations of toxicants, they should satisfy the
following inequalities:

0 6 c0(t) 6 1, 0 6 ce(t) 6 1. (4)
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From Liu et al. [14] we know it is necessary for (4) to be true that

k 6 g +m, b 6 1− exp(−hτ) (5)

hold. In the following, we assume that conditions (5) always hold true.

Lemma 1. (See [14].) System (3) has a unique positive τ -periodic solution (c̃0(t), c̃e(t))
T,

and for any solutions (c0(t), ce(t))T of system (3), we have c0(t)→ c̃0(t), ce(t)→ c̃e(t)
as t→∞, where

c̃0(t) = c̃0(0) exp(−(g +m)(t− (n− 1)τ))

+
kb(exp(−(g +m)(t− (n− 1)τ))− exp(−h(t− (n− 1)τ)))

(h− g −m)(1− exp(−hτ))
,

c̃e(t) =
b exp(−h(t− (n− 1)τ))

1− exp(−hτ)
,

c̃0(0) =
kb(exp(−(g +m)τ))− exp(−hτ)))

(h− g −m)(1− exp(−(g +m)τ))(1− exp(−hτ))
,

c̃e(0) =
b

1− exp(−hτ)

for t ∈ ((n− 1)τ, nτ ], n ∈ Z+.

Therefore, the dynamics of model (1) is equivalent to the following limit system:

dN(t)

dt
= N(t)

(
r1(x)− l1(x)c̃0(t)− f(x, x)N(t)− β(x)P (t)

)
,

dP (t)

dt
= P (t)

(
r2 − l2c̃0(t) + αβ(x)N(t)− aP (t)

)
.

(6)

Now we give the dynamics of the nonautonomous system

du(t)

dt
= u(t)

(
α(t)− β(t)u(t)

)
, (7)

where α(t) and β(t) are τ -periodic continuous functions defined on R, τ > 0.

Lemma 2. (See [27].) In system (7), if β(t) > 0 for any t ∈ R and
∫ τ
0
β(t)dt > 0, then

system (7) has a unique globally asymptotically stable nonnegative τ -periodic solution
u∗(t), that is, for any positive solution u(t) of system (7), we have u(t) → u∗(t) as
t→∞. Moreover, if

∫ τ
0
α(t) dt > 0, then u∗(t) > 0 for any t ∈ R and if

∫ τ
0
α(t) dt 6 0,

then u∗(t) ≡ 0.

From Lemma 2 we know the ultimate boundedness of solutions of system (7), that
is, there is a constant M > 0 such that for any positive solution u(t) of system (7),
limt→∞ supu(t) 6M .
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Considering the one-dimensional subsystem of system (6)

dP (t)

dt
= P (t)

(
r2 − l2c̃0(t)− aP (t)

)
. (8)

If
τ∫

0

(
r2 − l2c̃0(t)

)
dt > 0 (9)

holds, then system (8) has a unique τ -periodic solution P20(t) > 0. For any positive
solution P (t) of system (8), we have P (t) → P20(t) as t → ∞. Call (0, P20(t)) the
semitrivial periodic solution of system (6).

Next, we give the definition and the sufficient and necessary conditions of the uniform
persistence for system (6).

Definition 1. System (6) is said to be uniform persistent if there exist constants M >
m > 0 such that

m 6 lim
t→∞

inf N(t) 6 lim
t→∞

supN(t) 6M,

and
m 6 lim

t→∞
inf P (t) 6 lim

t→∞
supP (t) 6M

hold for any positive solution (N(t), P (t)) of system (6).

From Theorem 2 of [27] we obtain

Lemma 3. If condition (9) holds, then system (6) is uniform persistent if and only if the
semitrivial periodic solution (0, P20(t)) is linearly unstable, that is,

τ∫
0

[
r1(x)− l1(x)c̃0(t)− β(x)P20(t)

]
dt > 0. (10)

In the following study, we assume system (6) is uniform persistent, that is, condi-
tions (9) and (10) hold.

Further, we can deduce the following conclusions.

Theorem 1. Suppose (N(t), P (t)) is the solution of system (6). Denote

N∗ = lim
t→∞

1

t

t∫
0

N(t) dt, P ∗ = lim
t→∞

1

t

t∫
0

P (t) dt.

If
a

β(x)
>

r2
r1(x)− l1(x)c0

(11)
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holds, (N∗, P ∗) satisfies

N∗=
a[r1(x)− l1(x)c0]− r2β(x)

A(x)
,

P ∗ =
αβ(x)[r1(x)− l1(x)c0] + r2f(x, x)

A(x)
,

(12)

where A(x) = αβ2(x) + af(x, x), c0 = limt→∞(1/t)
∫ t
0
c̃0(t) dt = kb/(τh(g +m)),

r2 = r2 − l2c0, and N∗ > 0, P ∗ > 0.

Proof. From system (6) we have

1

t
ln
N(t)

N(0)
=

1

t

t∫
0

[
r1(x)− l1(x)c̃0(t)− f(x, x)N(t)− β(x)P (t)

]
dt,

1

t
ln
P (t)

P (0)
=

1

t

t∫
0

[
r2 − l2c̃0(t) + αβ(x)N(t)− aP (t)

]
dt.

(13)

Since system (6) is uniform persistent, we have

lim
t→∞

1

t
ln
N(t)

N(0)
= 0, lim

t→∞

1

t
ln
P (t)

P (0)
= 0.

Let t→∞, then equations (13) becomes

0 = r1(x)− l1(x)c0 − f(x, x)N∗ − β(x)P ∗, 0 = r2 + αβ(x)N∗ − aP ∗,

which is equivalent to

f(x, x)N∗ + β(x)P ∗ = r1(x)− l1(x)c0, −αβ(x)N∗ + aP ∗ = r2.

Solve the above equations, we have

N∗=
a[r1(x)−l1(x)c0]−r2β(x)

A(x)
, P ∗ =

αβ(x)[r1(x)−l1(x)c0]+r2f(x, x)
A(x)

,

thus (N∗, P ∗) satisfies (12). From (11) we know a[r1(x)− l1(x)c0] > r2β(x) holds true,
so N∗ > 0. From (9) and (10) it is obvious that r1(x) − l1(x)c0 > 0 and r2 > 0 hold,
then we have P ∗ > 0.

Remark 1. In the case of no pollution, the persistent condition of system (6) is a/β(x) >
r2/r1(x). Condition (11) in Theorem 1 is actually equivalent to the persistent condition
of system (6) under which the toxicant concentration in the organism is averaged, and
also can be written as ar1(x) − r2β(x) > (al1(x) − l2β(x))c0 > 0. In the following
discussion, we assume ar1(x) > r2β(x) and al1(x) > l2β(x) hold true.
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3 Quantitative trait model and its dynamics analysis

In this section, we study the evolutionary dynamics of the body size of prey by using
the method of quantitative trait model. Assume that the evolution process is density
dependent, and the evolution occurs rapidly enough such that the ecological processes and
evolutionary processes take place on the same time scales. The eco-evolutionary model
with the rapid evolution of trait (the body size of prey) is as follows:

dN(t)

dt
= N(t)

(
r1(x)− l1(x)c̃0(t)− f(x, x)N(t)− β(x)P (t)),

dP (t)

dt
= P (t)

(
r2 − l2c̃0(t) + αβ(x)N(t)− aP (t)

)
,

dx

dt
= Gx

∂

∂x

(
1

N

dN

dt

)
,

(14)

where (1/N)(dN/dt) is the fitness of prey, Gx is the genetic variance of the trait x, and
Gx > 0.

In the following, by numerical simulations we study the evolutionary dynamics of
population density and the body size of prey in the quantitative trait model (14) and further
discuss the effects of an ecosystem on evolutionary traits and the feedback mechanism of
the traits on the ecosystem with the rapid evolution.

The plots in Figs. 1, 2(a) and 3(a) show that the rapid evolution of traits promotes the
survival of prey, increases the prey density and avoids prey population from extinction,
but has little influence on the density of the predator population. It is also found that in
the polluted environment, the rapid evolution drives the body sizes of prey to be smaller
(see Fig. 3).

Next, we study the effects of pollution on the evolutionary trait. The plots in Fig. 4
show that pollution affects the phenotypic traits of the prey. With the increase of the

(a) r1(x) = 2(1 + 0.8x) exp(−0.8x) (b) r1(x) = 1.2(1 + 2.2x) exp(−2.2x)

Figure 1. Effects of rapid evolution on population density and traits. Time series of predator (dashed line) and
prey (solid line) without considering the occurrence of evolution. The other parameters are r2 = 1, l1 = 0.3,
l2 = 0.2, c = 1, v = 5, β = 2, α = 0.5, a = 0.6, β0 = 0.8, σβ = 0.05, h = 0.6, g = 0.4, m = 0.3,
k = 0.5, τ = 1, b = 0.2, x = x0 = 0.8.
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(a) r1(x) = 2(1 + 0.8x) exp(−0.8x) (b) r1(x) = 1.2(1 + 2.2x) exp(−2.2x)

Figure 2. Effects of rapid evolution on population density and traits. Time series of predator (dashed line) and
prey (solid line) considering the rapid evolution. The other parameters are the same as those in Fig. 1.

(a) r1(x) = 2(1 + 0.8x) exp(−0.8x) (b) r1(x) = 1.2(1 + 2.2x) exp(−2.2x)

Figure 3. Effects of rapid evolution on population density and traits. The body size of the prey without evolution
(thick line) and with evolution (thin line). The other parameters are the same as those in Fig. 1.

(a) (b)

Figure 4. Bifurcation diagram of evolutionary trait with respect to impulsive toxicants input for the trade-off
function r1(x) = (1 + 0.6x)exp(−0.6x) + 0.41: (a) The effects of parameter b on the trait, τ = 1; (b) the
effects of parameter τ on the trait, b = 0.2. The other parameters are the same as those in Fig. 1.
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discharge amount b of toxicants, the body size of prey decreases gradually (see Fig. 4(a)),
while with the prolongation of the impulsive discharge period, the body size of prey
increases (see Fig. 4(b)). So it can be seen that the worsening pollution will result in
a smaller body size of prey.

4 Adaptive dynamic model and its dynamics analysis

4.1 Adaptive dynamic model

In this subsection, the adaptive dynamics theory [20] is applied to study the long-term
evolutionary response of the body size of prey. We assume that evolution is a slow process
and ecology is a fast process, that is, evolution and ecology occur at different time scales.

Suppose that evolution is a long-term evolutionary behavior, and rare mutant prey
population Nmut with a slightly different trait y appears in the community of resident
prey population N with trait x, and they compete with each other. Then the resident-
mutant predator–prey model is described by

dN(t)

dt
= N(t)

(
r1(x)− l1(x)c̃0(t)− f(x, x)N(t)− f(x, y)Nmut(t)

− β(x)P (t)
)
,

dP (t)

dt
= P (t)

(
r2 − l2c̃0(t) + αβ(x)N(t) + αβ(y)Nmut(t)− aP (t)

)
,

dNmut(t)

dt
= Nmut(t)

(
r1(y)− l1(y)c̃0(t)− f(y, x)N(t)− f(y, y)Nmut(t)

− β(y)P (t)
)
.

The instantaneous growth rate of rare mutant with trait y is

1

Nmut(t)

dNmut(t)

dt
= r1(y)− l1(y)c̃0(t)− f(y, x)N(t)− β(y)P (t).

The long-term invasion fitness function is the average function of the instantaneous
growth rate of mutant species, then the invasion fitness function [20] is as follows:

h(y, x) = lim
t→∞

1

t

t∫
0

[
r1(y)− l1(y)c̃0(t)− f(y, x)N(t)− β(y)P (t)

]
dt,

that is,

h(y, x) = r1(y)− l1(y)c0 − f(y, x)N∗(x)− β(y)P ∗(x), (15)

whereN∗ and P ∗ are given by equation (12). h(y, x) is the long-term average exponential
growth rate of the mutant with respect to trait x and h(x, x) = 0. The sign of invasion
fitness function determines whether the mutant can successfully invade or not. If the
invasion fitness is positive, that is, h(y, x) > 0, then the mutant can invade the resident
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(a) (b)

Figure 5. Time series of the resident and mutant species for the trade-off function r1(x) = 2(1 + 0.8x) ×
exp(−0.8x)+0.12: (a) the mutant species invades successfully and coexists with the resident species, y = 0.2;
(b) the mutant species fails to invade and the resident species survives, y = 0.4. x0 = 0.8, y0 = 0.5 x = 0.26,
and the other parameters are the same as those Fig. 1.

and will coexist with the resident (see Fig. 5(a)) or replace the resident and become the
new resident species. Otherwise, if h(y, x) < 0, the mutant cannot invade the resident
(see Fig. 5(b)). It can be seen from equation (15) that the invasion success of a mutant
species is related to the intrinsic growth rate of mutant species and resident species, the
decrease rate of prey due to the absorption of toxin, the intraspecific and interspecific
competition intensity between mutant species and resident species, the discharge amount
and discharge period of toxicants and the predation rate of the predator.

If the mutations are rare and the mutant trait y is very close to the resident trait x, then
the invasion fitness function can be approximately calculated as

h(y, x) ≈ D(x)(y − x),
where

D(x) =
∂h(y, x)

∂y

∣∣∣∣
y=x

= r′1(x)− l′1(x)c0 − f ′(x, x)N∗(x)− β′(x)P ∗(x), (16)

and r′1(x) = dr1(y)/dy|y=x, l′1(x) = dl1(y)/dy|y=x, f ′(x, x) = ∂f(y, x)/∂y|y=x.
Substitute N∗, P ∗ of (12) into the above equation (16), and let

F1(x) =
af ′(x, x) + αβ(x)β′(x)

A(x)
, F2(x)˚ =

β′(x)f(x, x)− β(x)f ′(x, x)
A(x)

,

then equation (16) can be reduced to the following equation:

D(x) = r′1(x)− l′1(x)c0 − F1(x)
(
r1(x)− l1(x)c0

)
− F2(x)r2. (17)

D(x) is the value of invasion fitness function’s partial derivative to mutant trait y at the
resident trait x, which is called the invasion fitness gradient and determines the direction
of evolutionary change. If D(x) > 0, then only the mutants with trait y > x can invade
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and replace the resident, whereas if D(x) < 0, then only the mutants with trait y < x can
invade residents.

If the mutations are rare and random, then the evolution process of residents species
with trait x can be well approximated by the following canonical equation of adaptive
dynamics proposed by Dieckmann and Law [14]:

dx

dt
=

1

2
µσ2N∗(x)D(x), (18)

where N∗ = (a[r1(x) − l1(x)c0] − r2β(x))/A(x), µ is the probability that a newly
born prey species is a mutant, σ2 is the variance of the mutation distribution, µ, σ2

are constants, 1/2 means that only half of the mutant prey species are at a selective
disadvantage and are doomed to be eliminated.

4.2 Dynamics analysis

In this subsection, we first analyze the stability of evolutionary traits of adaptive dynamic
model (18) to explore the evolutionary dynamics of a biological trait in the presence of
mutant prey species. For evolutionary dynamics, it is very important to identify the point
x∗, where the invasion fitness gradient function D(x∗) = 0. Such trait values are called
evolutionary singular strategies or evolutionary singular points. By equation (17), an
evolutionary singular strategy x∗ satisfies the following equation:

D(x∗) = r′1(x
∗)− l′1(x∗)c0 − F1(x

∗)(r1(x
∗)− l1(x∗)c0)− F2(x

∗)r2 = 0. (19)

It is difficult to solve x∗ analytically from (19) since the trade-off function r1(x)
does not have the explicit expression. Now we give the stability analysis of evolutionary
singular strategy x∗ by using critical function analysis [20].

Critical function r1crit(x) is a continuously differentiable function and has the same
slope value as the trade-off function r1(x) at x∗. From equation (19) the slope of the
critical function at evolutionary singular strategy x∗ is

r′1crit(x
∗) = l′1(x

∗)c0 + F1(x
∗)
(
r1crit(x

∗)− l1(x∗)c0
)
+ F2(x

∗)r2,

so the critical function r1crit(x) satisfies the following differential equation:

r′1crit(x) = l′1(x)c0 + F1(x)
(
r1crit(x)− l1(x)c0

)
+ F2(x)r2.

In general, the evolutionary singular strategy is the point x∗ at which the critical
function r1crit(x) is tangent to the trade-off function r1(x) (see Fig. 6(a)).

An evolutionary singular strategy x∗ is called to be locally convergently stable or an
attractor (CS) if the resident prey species can be invaded by the mutants whose phenotype
trait are closer to x∗, which indicates that in the neighborhood of evolutionary singu-
larity x∗, the invasion fitness function h(y, x) > 0, that is, if the residents with trait x
can be invaded by the mutants with y and x < x∗, then x < y < x∗ and D(x) > 0;
if the residents with trait x can be invaded by the mutants with y and x > x∗, then
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(a) (b)

Figure 6. (a) Critical function analysis for the trade-off function r1 = 2(1 + 0.8x) exp(−0.8x) + 0.12 (blue
dashed line) is tangent to the critical function rcrit(x) (green solid line) at evolutionary singularity x∗ (red
solid point), x∗ = 0.77. (b) Pairwise invasibility plot. The green region with ’+’ is where h(y, x) > 0 , and the
white region with ’-’ is where h(y, x) > 0, x0 = 0.4, and the other parameters are the same as those Fig. 1.

x∗ < y < x and D(x) < 0. So the sufficient condition of the local convergence stability
of the evolutionary singularity point x∗ is as follows:

dD(x)

dx

∣∣∣∣
x=x∗

= r′′1 (x
∗)− l′′1 (x)c0 − f ′(x∗, x∗)N ′∗(x∗)− β′′(x∗)P ∗(x∗)

− β′(x∗)P ′∗(x∗) < 0. (20)

An evolutionary singular strategy x∗ is called a locally evolutionarily stable strategy
(ESS) if any mutant species with trait y 6= x∗ fails to evolve and the evolution stops. The
fitness function h(y, x∗) as a function of trait y attains a maximum at y = x∗. So from
equation (15) the sufficient condition of the local evolutionary stability of the evolutionary
singularity point x∗ satisfies

∂2h(y, x)

∂y2

∣∣∣∣
y=x=x∗

= r′′1 (x
∗)− f ′′(x∗, x∗)N∗(x∗)− β′′(x∗)P ∗(x∗) < 0, (21)

where f ′′(x∗, x∗) = ∂2f(y, x)/∂y2|y=x=x∗ .
An evolutionary singular strategy x∗ is called a continuously stable strategy (CSS) if

it is both convergently stable and evolutionarily stable. The continuously stable strategy
indicates that selection pressure drives the evolution of trait towards evolutionary singu-
larity x∗ and then comes to a halt, and cannot be invaded by the prey species with other
traits (A in Fig. 6(b), x∗ = 0.235).

An evolutionary singular strategy is called an evolutionary branching point (BP) if it is
convergently stable but not evolutionarily stable. The presence of evolutionary branching
indicates that selection pressure drives the evolution of traits towards the evolutionary sin-
gularity, and any mutant near the evolutionary singularity can invade. Over a long period
of evolution, the monomorphic resident prey species will split into two prey subspecies
with different traits, which promotes diversity of species. (C in Fig. 6(b)), x∗ = 0.79).
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An evolutionary singular strategy x∗ is called an evolutionary repellor if it is neither
convergently stable nor evolutionarily stable ((B in Fig. 6(b), x∗ = 0.401)).

For the evolutionary singular strategy x∗ of adaptive dynamic model (18), we have
the following theorem.

Theorem 2. If inequalities (20) and (21) are both true, then the evolutionary singular
strategy x∗ is continuously stable; if inequality (20) is true, while inequality (21) is not
true, then the evolutionary singular strategy x∗ is an evolutionary branching point; if
neither of inequalities (20) and (21) is true, then the evolutionary singular strategy x∗ is
an evolutionary repellor.

5 Effects of pollution on the evolutionary trait

In this section, suppose that the evolutionary singularity is continuously stable or an
evolutionary branching point. We discuss the effects of pollution on the phenotype trait
of the prey species theoretically and numerically.

Firstly, the effects of the discharge amount b of toxicants emissions on the evolution-
ary singularity x∗ are discussed. Since there is no explicit analytical solution for x∗, it
is impossible to solve the derivative of x∗ concerning b directly. By the definition of
evolutionary singular strategy we know D(x∗) = 0, which is given by (19). Considering
x∗ as a function of b, by the derivative of an implicit function we have

dx∗

db
= −

∂D(x∗)
∂b

∂D(x∗)
∂x∗

.

Since we only consider the case that the evolutionary singular strategy x∗ is con-
tinuously stable or an evolutionary branching point, both of which means x∗ must be
convergently stable and ∂D(x∗)/∂x < 0. So the sign of dx∗/db is determined by the
sign of numerator ∂D(x∗)/∂b. By equation (19) we obtain

∂D(x∗)

∂b
= −l1 ·

k

τh(g +m)
+ F1(x

∗) · kl1(x
∗)

τh(g +m)
+ F2(x

∗) · kl2
τh(g +m)

=
k

τh(g +m)

(
−l1 +

f ′(x∗, x∗)(αl1(x
∗)− l2β(x∗))

A(x∗)

+ β′(x∗)
αl1(x

∗)β(x∗) + l2f(x
∗, x∗)

A(x∗)

)
.

Since al1(x) > l2β(x) and f ′(x∗, x∗) < 0, we know

f ′(x∗, x∗)(αl1(x
∗)− l2β(x∗))

A(x∗)
< 0.

By (2) we get

β′(x∗) = β0
x0 − x∗

σ2
β

exp

(
−(x∗ − x0)2

2σ2
β

)
.
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If x0 < x∗, then β′(x∗) < 0, and we have ∂D(x∗)/∂b < 0, thus dx∗/db < 0. So,
with the increase of the discharge amount b of toxicants, the continuously stable trait x∗

will always decrease. This indicates that the worsening of pollution causes a continuously
stable singular strategy to change, and the evolutionary trait tends to be smaller to adapt to
the environment. If the evolutionary singular strategy experiences evolutionary branching,
the trait value of the branching point will also decrease with an increase in b, suggesting
that evolution first makes the prey species smaller and then splits into two different
subspecies with different traits.

Similarly, the effect of the pulse discharge period τ on the evolutionary singular
strategy x∗ is discussed. Considering x∗ as a function of τ , calculate the derivative of
x concerning τ , we have

dx∗

dτ
= −

∂D(x∗)
∂τ

∂D(x∗)
∂x∗

,

and the sign of dx∗/dτ is determined by the sign of numerator ∂D(x∗)/∂τ . By equa-
tion (19) we have

∂D(x∗)

∂τ
= l1 ·

k

τ2h(g +m)
− F1(x

∗) · kl1(x
∗)

τ2h(g +m)
− F2(x

∗) · kl2
τ2h(g +m)

=
−k

τ2h(g +m)

(
−l1 +

f ′(x∗, x∗)(αl1(x
∗)− l2β(x∗))

A(x∗)

+ β′(x∗)
αl1(x

∗)β(x∗) + l2f(x
∗, x∗)

A(x∗)

)
.

Similar to the above analysis, we can get if x0 < x∗, then dx∗/dτ > 0. So, with the
longer pulse discharge period, the continuously stable trait x∗ will get larger. This indi-
cates that the amount of toxicants in the environment will decrease, which is conducive
to the survival of the population, thus making the body size of the prey population larger.
If the evolutionary singularity experiences an evolutionary branching point, its trait value
will also increase with the prolongation of the impulse discharge period τ , indicating that
evolution will first make the prey species larger and then split into two subspecies with
different traits.

The influence of pollution on the phenotype trait is further analyzed through numerical
simulations. Select b as a bifurcation parameter to simulate the adaptive dynamics of
model (18). Figure 7(a) shows that the evolutionary singular strategy x∗ becomes smaller
with the increase of the discharge amount b of toxicants in the environment. When the trait
x of the mutant is smaller than x0, the evolutionary singular strategy remains continuously
stable; when the trait x of the mutant is larger than x0, the evolutionary singular strategy
changes from evolutionary branching to continuously stable with the increase of b.

We can also select τ as a bifurcation parameter for analysis. Figure 7(b) shows that
evolutionary singular strategy x∗ strictly increase with the prolongation of the period τ ,
which means that the increase of τ leads to larger body size of prey and that when the
trait x of the mutant are smaller than x0, the evolutionary singularity strategy remains
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(a) (b)

Figure 7. Evolutionary bifurcation diagram of evolutionary singularity x∗ with respect to the impulsive
discharge pollution. Take the trade-off function r1(x) = (1 + 0.6x) exp(−0.6x) + 0.41. Thin dashed line
indicates that the evolutionary singularity x∗ is evolutionary branching point and thin solid line indicates that
the evolutionary singularity x∗ is continously stable. (a) Bifurcation diagram of x∗ with respect to b, τ = 1;
(b) Bifurcation diagram of x∗ with respect to τ , b = 0.2. The other parameters are the same as those Fig. 1.

continuously stable; when the trait x of the mutant is larger than x0, the evolutionary sin-
gular strategy changes from continuous stable to only convergent stable with the increase
of τ .

Therefore, it can be seen from the above analysis that pollution affects the body
size of prey and the stability of the evolutionary singularity strategy no matter the exact
relationship between the trade-off function r1(x) and x. The worsening of the pollution
(the increase of the discharge amount b of toxicants or shortening the pulse period τ )
promotes evolutionary stability but discourages the presence of evolutionary branching,
and drives the body size of prey species to be smaller, while the opposite is more likely to
generate evolutionary branching and promote species diversity.

6 Conclusions

In this paper, the evolutionary response of the phenotypic characteristics of the prey
population in the predator–prey model under a pulsed pollution environment was ex-
plored. We assumed that the prey species contained only a single phenotypic trait (body
size) and that the absorption function of the prey to the toxin, the growth rate of the
prey species, the competitive intensity between the prey population, and the predation
rate of predators were all related to this trait. Moreover, it was assumed that there was
a trade-off relationship between the growth rate of prey species and its body size, the
absorption function of the prey species to toxin was proportional to the body size of prey,
the interspecies competition function between the prey population adopted the phenotypic
dependent asymmetric competition function proposed by Kisdi [12], and the predation
rate of the predator to the prey was taken as a power exponential function of the body
size of the prey. We discussed the evolutionary dynamics from the rapid evolution and
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the long-term evolution process by applying the quantitative trait evolutionary theory and
adaptive dynamic theory, respectively. Our results showed that pollution affected the
evolutionary dynamics and the trait value. The worsening of the pollution led to a smaller
body size of prey due to natural selection, while the opposite was more likely to generate
evolutionary branching and promote biological diversity.

Recently, there are many researchers on the evolutionary dynamics of single-population
model, predator–prey model, competition model, food chain model, infectious disease
model, but the influence of pollution on evolution and the trait value is less considered
in the polluted environment. Liu et al. [16] investigated the effects of toxicants on the
evolving trait of prey species in a continuous polluted environment. They concluded that
an increase in the strength of toxicants uptake resulted in a decrease in the trait value
of singular evolutionary strategy and promoted the evolutionary stability. In contrast,
low levels of toxicants emissions could lead to biological diversity. Our conclusions are
consistent with those obtained in [16], which is a good explanation for why the body size
of prey species tends to get smaller in a polluted environment.

Finally, we would like to point out that our studies have some limitations. In this paper,
we only considered a deterministic evolutionary predator–prey model to study the effects
of pollution on the single evolutionary trait and evolutionary dynamics. The growth
of species in the natural world is inevitably affected by the environmental fluctuations,
so more interesting work is to analyze the influence of the stochastic disturbance on
evolutionary changes in adaptive trait dynamics. At the same time, the evolutionary model
incorporating more well selected traits, deserves further investigations. We leave these in
future work.
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