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Abstract. In this paper, we study the relative controllability of a fractional stochastic system
with pure delay in finite dimensional stochastic spaces. A set of sufficient conditions is obtained
for relative exact controllability using fixed point theory, fractional calculus (including fractional
delayed linear operators and Grammian matrices) and local assumptions on nonlinear terms.
Finally, an example is given to illustrate our theory.
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1 Introduction

The integrals and derivatives of noninteger order and the fractional integro-differential
equations arise in recent research in theoretical physics, mechanics and applied mathe-
matics and fractional calculus is an effective tool to explain bodily structures that have
long-term reminiscence and lengthy-range spatial integration (see [1, 14, 24]). Fractional
integro-differential operators in the time and area variables describe the long-time period
memory and the nonlocal nature of complicated media, and we refer the reader to the
dynamics of many complex systems, anomalous methods and fractal media; see, for
example, [14, 36].
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In [3] the authors represented a solution for linear-type discrete systems with constant
coefficients and pure delay with the aid of a discrete delayed exponential matrix and
developed a controllability idea for the considered problem. In [4] an explicit solution for
oscillating second-order (integer) single delay systems was represented using delayed sine
and cosine matrices, and the authors established some sufficient conditions for relative
controllability by constructing a specific control function. Further, representation of a so-
lution of the Cauchy problem for an oscillating system with two delays and permutable
matrices is presented in [2]. Representations of solutions for linear higher-order delayed
systems of discrete equations are derived by means of new types of matrix functions of
delayed type in [6].

Controllability plays a vital role in many meaningful applications of dynamical sys-
tems such as robotics, remote control and population models etc.; see [17]. A solution
representation and relative controllability results for higher-order linear discrete delayed
systems with a single delay using a special matrix functions called discrete delayed sine
and cosine matrices can be found in [5]. Controllability of semilinear problems is stud-
ied using the Banach fixed point theorem in [22]. A singularly perturbed linear time-
dependent controlled system with a point-wise delay in state and control variables is
considered for standard and nonstandard original singularly perturbed system in [9]. Alge-
braic necessary and sufficient conditions for relative controllability of linear time-varying
systems with time-variable delays in control and problem of minimum energy control
are examined in [15]. Using Schauder’s fixed point theorem, sufficient conditions for
global relative controllability of nonlinear time-varying systems with distributed delays
in control is generalized in [16]. A series of solution was presented in [12] for the linear
autonomous time-delay system with permutation matrices by using delayed exponential
matrices. An integral form of a solution for the linear Cauchy problem with pure delay is
presented, and relative controllability and stabilization problem for a pendulum with time
delay was established in [13]. A solution representation for the linear inhomogeneous
differential equation with constant coefficients and pure delay was established using the
form of sine and cosine delayed matrices of polynomials of degree dependent on the
value of delay in [11]. A set of sufficient conditions for the constrained controllability
of retarded nonlinear systems is established using the Banach fixed point theorem, and
the existence of a mild solution for the considered system with nonlocal delay condition
was established in [23]. Using the delay Grammian matrix involving the delayed matrix
sine, the authors presented sufficient and necessary conditions of controllability for linear
problem governed by second-order delay differential equations in [25]. Necessary and
sufficient condition for the controllability of matrix second-order linear systems with
scheme for computation of control was proposed in [32]. Relative controllability of first-
order semilinear delay differential systems with linear parts defined by permutable ma-
trices is proposed in [34]. Liang et al. [26] studied the following Cauchy problem for
a linear fractional system with pure delay:

CDq
−τ+

(
CDq
−τ+y

)
(t) = −A2y(t− τ), t ∈ [0, b], τ > 0,

y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0],
(1)
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and represented the solution as

y(t) =
(
cosτ,q At

q
)
ψ(−τ) +A−1

(
sinτ,q A(t− τ)q

)
ψ′(0)

+

0∫
−τ

cosτ,q A(t− τ − s)qψ′(s) ds, (2)

and the Cauchy problem (1) is transformed into (2) by adopting delayed fractional cosine
and sine matrices.

White noise is formed by dynamical systems from outside disturbance and for stochas-
tic models (see [8,10,28]). Necessary and sufficient conditions for various types of stochas-
tic controllability of the linear stochastic system was studied in [7], and stochastic control-
lability of linear systems with state delays, delay in control and variable delay in control
was studied in [18,19,21]. Zabczyk in [35] studied controllability of stochastic linear sys-
tems. Complete controllability of semilinear stochastic system assuming controllability
of the associated linear system was studied in [27], and complete controllability for non-
linear stochastic systems with standard Brownian motion and fractional Brownian motion
was studied in [29]. Stochastic controllability and minimum energy control of systems
with multiple delays in control was analyzed in [20], and controllability and exponential
stability results for a class of nonlinear neutral stochastic functional differential control
systems in the presence of infinite delay driven by Rosenblatt process was presented
in [33]. Sufficient conditions are established for controllability of second-order nonlinear
stochastic delay systems using fixed point theory, delayed sine and cosine matrices and
delayed Grammian matrices in [31]. Set of sufficient conditions for controllability of
fractional higher-order stochastic integro-differential systems with fractional Brownian
motion in finite dimensional space is studied in [30].

In the above literature, representation of the solution and controllability results are
established only for integer-order systems. However, in [26] the representation of solution
for the Cauchy problem (1) is presented, but it is necessary to analyze the relatively
exact controllability of nonlinear stochastic systems with pure delay. In this paper, we
extend the representation of the solution introduced in [26] for fractional linear systems
to nonlinear stochastic systems and present relatively exact controllability results for the
following stochastic systems:

CDq
−τ+

(
CDq
−τ+y

)
(t) +A2y(t− τ)

= Bu(t) + F
(
t, y(t)

)
+

t∫
0

∆
(
s, y(s)

)
dw(s), t ∈ [0, b], τ > 0,

y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0],

(3)

where CDq
−τ+ denotes the Caputo fractional derivative of order 0 < q < 1 with lower

limit −τ , y(t) ∈ Rn is a state vector, and u(t) ∈ Rm is a control vector. Let τ > 0 be
given. HereA ∈ Rn×n andB ∈ Rn×m are assumed to be nonsingular matrices. The non-
linear functions F : [0, b]× Rn → Rn and ∆ : [0, b]× Rn → Rn×d are continuous. The
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initial function ψ ∈ C1([−τ, 0],Rn), and w is a d-dimensional Wiener process. One can
model many systems via our considered equations such as heat transfer, viscoelasticity,
electrical circuit, electro-chemistry, dynamics, economics, polymer physics and control
etc .

In this paper, we propose relative exact controllability of fractional stochastic delay
systems. We establish necessary and sufficient conditions for linear stochastic systems
using controllability Grammian matrices and linear operators, which are defined by de-
layed fractional cosine and sine matrices, and the minimum energy control problem. We
present sufficient conditions for nonlinear fractional stochastic delay systems using the
Banach contraction principle. We present an example to illustrate our results. In particular
the fractional linear system (1) is extended to study the relative exact controllability
for the stochastic nonlinear system (3). Also, we give a solution representation for the
inhomogeneous stochastic system, and we define the delayed Grammian matrix using
fractional delayed sine and cosine matrices.

2 Preliminary

Throughout this paper, (Ω,F,P) is a complete probability space with probability mea-
sure P on Ω with a filtration {Ft, t ∈ [0, b]} generated by the d-dimensional Wiener
process {w(s), s ∈ [0, t]} satisfying the usual conditions (i.e., right-continuous and F0

containing all P-null sets). Let L2(Ω,Fb,Rn) is the Hilbert space of all Fb-measurable
square integrable random variables with values in Rn. LF

2 ([0, b],Rn) is the Hilbert space
of all square integrable and Ft-measurable processes with values in Rn. Furthermore, let
C([0, b], L2(Ω,F,P,Rn)) be the Banach space of continuous function y from [0, b] →
L2(Ω,F,P,Rn) with norm ‖·‖C , where ‖y‖2C = supt∈[0,b] E‖y(t)‖2. Let

C1
(
[0, b], L2

(
Ω,F,P,Rn

))
=
{
y ∈ C

(
[0, b], L2

(
Ω,F,P,Rn

))
: ẏ ∈ C

(
[0, b], L2

(
Ω,F,P,Rn

))}
,

and let the matrix (column sum)

‖A‖ = max

{
n∑
i=1

|ai1|,
n∑
i=1

|ai2|, . . . ,
n∑
i=1

|ain|

}
.

Also, we let ‖ψ‖2C = maxt∈[−τ,0] E‖ψ(t)‖2, ‖ψ′‖2C = maxt∈[−τ,0] E‖ψ′(t)‖2, and we
set M3 = max{‖ψ‖2C , ‖ψ′‖2C}. Let L(Rn,Rn) and Uad = LF

2 ([0, b],Rm) denote the
space of all linear transformation and the set of all admissible controls, respectively.

Definition 1. (See [14].) For a function f : [−τ,∞) → R, the Caputo fractional deriva-
tive is

(
CDq
−τ+f

)
(t) =

1

Γ(1− q)

t∫
−τ

(t− s)−qf ′(s) ds, q ∈ (0, 1], t > −τ,

where f ′(t) = df/dt.
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Definition 2. (See [14].) The Mittag-Leffler function is given by

Eq,p(z) =

∞∑
k=0

zk

Γ(kq + p)
, q, p > 0.

In particular, for p = 1,

Eq,1
(
λzq
)

= Eq
(
λzq
)

=

∞∑
k=0

λkzkq

Γ(qk + 1)
, λ, z ∈ C.

Definition 3. (See [26].) The fractional delayed cosine matrix of a polynomial of degree
2kq on the intervals (k − 1)τ 6 t < kτ identified at the nodes t = kτ , k = 0, 1, . . . , is
defined as

cosτ,q At
q =



Θ, −∞ < t < −τ,
I, −τ 6 t < 0,

· · · · · ·
I −A2 t2q

Γ(2q+1) + · · ·+ (−1)kA2k (t−(k−1)τ)2kτ

Γ(2kq+1) , (k − 1)τ 6 t < kτ,

· · · · · · ,

where Θ denotes the zero matrix, and I denotes the identity matrix.

Definition 4. (See [26].) The fractional delayed sine matrix of a polynomial of degree
(2k+1)q on the intervals (k−1)τ 6 t < kτ identified at the nodes t = kτ , k = 0, 1, . . . ,
is defined as

sinτ,q At
q =



Θ, −∞ < t < −τ,
A (t+τ)q

Γ(q+1) , −τ 6 t < 0,

· · · · · ·
A (t+τ)q

Γ(q+1) + · · ·+ (−1)kA2k+1 (t−(k−1)τ)(2k+1)q

Γ[(2k+1)q+1] , (k − 1)τ 6 t < kτ,

· · · · · · .

The linear bounded operator Lb ∈ L(LF
2 ([0, b],Rm), L2(Ω,Ft,Rn)) is defined as

Lbu =

b∫
0

cosτ,q A(b− τ − s)qBu(s) ds,

and its adjoint

L∗b : L2

(
Ω,Ft,Rn

)
→ LF

2

(
[0, b],Rm

)
is defined by

L∗by = B∗ cosτ,q A
∗(b− τ − s)qE{· | Ft}.
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Consider the linear controllability operator Γ bτ ∈ L(L2(Ω,Ft,Rn), L2(Ω,Ft,Rn)):

Γ bτ = LbL∗b{·}

=

b∫
0

cosτ,q A(b− τ − s)qBB∗ cosτ,q A
∗(b− τ − s)qE{· | Fs}ds, (4)

and the controllability Grammian matrix Gbτ ∈ L(Rn,Rn) defined by

Gbτ =

b∫
0

cosτ,q A(b− τ − s)qBB∗ cosτ,q A
∗(b− τ − s)q ds; (5)

here ∗ denotes the transpose.

Definition 5. The set x(t) = {y(t), ut} is said to be the complete state of system (3) at
time t.

Definition 6. The stochastic system (3) is said to be relatively controllable on [0, b] if, for
every complete state x(0) and every y1 ∈ Rn, there exists a control u(t) defined on [0, b]
such that the corresponding trajectory of the stochastic system (3) satisfies the conditions
y(b) = y1 at time b and y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0].

Definition 7. (See [19].) System (3) is said to be relatively exactly controllable on [0, b] if

Rb(Uad) = L2

(
Ω,Fb,Rn

)
,

where Rb(Uad) = {y(b, u) ∈ L2(Ω,Fb,Rn): u(·) ∈ Uad}.

Lemma 1. Let the matrix A be a nonsingular matrix. A solution of the following inho-
mogeneous linear fractional system:

CDq
−τ+

(
CDq
−τ+y

)
(t) +A2y(t− τ) = f(t), t ∈ [0, b], τ > 0,

y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0],
(6)

with zero initial condition has the following form:

y(t) =

t∫
0

cosτ,q A(t− τ − s)qf(s) ds, t ∈ [0, b].

Proof. Consider (the variation of parameters method)

y(t) =

t∫
0

cosτ,q A(t− τ − s)qC(s) ds,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Relative controllability of a stochastic system 1037

where C(s), s ∈ [0, t], is an unknown function. Taking Caputo fractional derivatives
CDq
−τ+(CDq

−τ+) on both sides and applying the properties and derivative rules of frac-
tional delayed cos and sin matrices, we obtain

CDq
−τ+(CDq

−τ+y)(t)

=
(
cosτ,q At

q
)
C(t)−A2

t∫
0

cosτ,q A(t− 2τ − s)qC(s) ds

= C(t)−A2

t∫
0

cosτ,q A(t− 2τ − s)qC(s) ds

+A2

t−τ∫
0

cosτ,q A(t− 2τ − s)qC(s) ds.

Put the above expression into (6), and we get

C(t)−A2

t∫
0

cosτ,q A(t− 2τ − s)qC(s) ds

+A2

t−τ∫
0

cosτ,q A(t− 2τ − s)qC(s) ds = f(t)

since
∫ t
t−τ cosτ,q A(t− 2τ − s)qC(s) ds = 0.

3 Main results

3.1 Linear case

Consider the corresponding linear stochastic control system of (3)

CDq
−τ+

(
CDq
−τ+y

)
(t) +A2y(t− τ) = Bu(t) +

t∫
0

∆̂(s) dw(s),

t ∈ [0, b], τ > 0,

y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0],

(7)

where ∆̂ : [0, b] → Rn×d. For f ∈ C([0, b],Rn), the corresponding linear deterministic
control system of (7) is

CDq
−τ+

(
CDq
−τ+y

)
(t) +A2y(t− τ) = Bu(t) + f(t), t ∈ [0, b], τ > 0,

y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0].
(8)

Nonlinear Anal. Model. Control, 26(6):1031–1051, 2021
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Using [26] and Lemma 1, the solution of (8) is

y(t) =
(

cosτ,q At
q
)
ψ(−τ) +A−1

(
sinτ,q A(t− τ)q

)
ψ′(0)

+

0∫
−τ

cosτ,q A(t− τ − s)qψ′(s) ds+

t∫
0

cosτ,q A(t− τ − s)qBu(s) ds

+

t∫
0

cosτ,q A(t− τ − s)qf(s) ds.

Definition 8. (See [19].) System (8) is said to be relatively exactly controllable on [0, b]
if and only if Rb = Rn, where Rb be the set of all reachable states from the initial state
y(0) = y0 in time b > 0 using admissible controls.

Lemma 2. (See [19].) The following conditions are equivalent:

(i) System (8) is relatively controllable on [0, b].
(ii) The controllability Grammian matrix (5) is nonsingular.

Theorem 1. (See [19].) The following conditions are equivalent:

(i) System (8) is relatively controllable on [0, b].
(ii) System (7) is relatively exactly controllable on [0, b].

Proof. From [19] note that system (8) is relatively controllable on [0, b]. Then it is well
known from Lemma 2 that the Grammian matrix (5) is nonsingular and strictly positive
for all η ∈ [0, b]. Hence, for some γ > 0, we have〈

Gbτ (η)y, y
〉
> γ‖y‖2, η ∈ [0, b], y ∈ Rn.

Next, to prove the relative exact controllability of (7), we use the relation between equa-
tions (4) and (5). That is, for every y ∈ L2(Ω,Fb,Rn), there exists a process p ∈
LF

2 ([0, b],Rn×d) such that

Γ bτ y = GbτEy +

b∫
0

Gbτ (η)p(η) dw(η).

To write E〈Γ bτ y, y〉 in terms of 〈GbτEy,Ey〉, first note, we obtain

E
〈
Γ bτ y, y

〉
= E

〈
GbτEy +

b∫
0

Gbτ (η)p(η) dw(η), Ey +

b∫
0

p(η) dw(η)

〉

=
〈
GbτEy,Ey

〉
+ E

b∫
0

〈
Gbτ (η)p(η), p(η)

〉
dη

> γ

(
E‖y‖2 + E

b∫
0

∥∥p(η)
∥∥2

dη

)
= γE‖y‖2.

https://www.journals.vu.lt/nonlinear-analysis
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Hence, Γ bτ is strictly positive definite, and consequently, [(Γτ )b0]−1 is bounded. Using the
fact that [(Γτ )b0]−1 is bounded, we can define the control

u(t) = B∗ cosτ,q A
∗(b− τ − t)qE

{[
(Γτ )b0

]−1

[
y1 −

(
cosτ,q Ab

q
)
ψ(−τ)

−A−1
(
sinτ,q A(b− τ)q

)
ψ′(0)−

0∫
−τ

cosτ,q A(b− τ − s)qψ′(s) ds

−
b∫

0

cosτ,q A(b− τ − s)q
( s∫

0

∆̂(η) dw(η)

)
ds

] ∣∣∣ Ft}, t ∈ [0, b],

that transfers system (7) from y0 to the final state y1 at time b, and y(t) = ψ(t) and
y′(t) = ψ′(t), t ∈ [−τ, 0]. The rest proof is similar to [25], so is omitted.

Lemma 3. Assume that system (7) is relatively exactly controllable on [0, b]. Then, for
arbitrary terminal y1 ∈ L2(Ω,Fb,Rn) and an arbitrary matrix ∆̂, the admissible control
function

u0(t) = B∗ cosτ,q A
∗(b− τ − t)qE

{[
(Γτ )b0

]−1

[
y1 −

(
cosτ,q Ab

q
)
ψ(−τ)

−A−1
(
sinτ,q A(b− τ)q

)
ψ′(0)−

0∫
−τ

cosτ,q A(b− τ − s)qψ′(s) ds

−
b∫

0

cosτ,q A(b− τ − s)q
( s∫

0

∆̂(η) dw(η)

)
ds

] ∣∣∣ Ft} (9)

defined for t ∈ [0, b] steers system (7) from y0 to y1 at b. Moreover, among all admissible
controls ua(t) steering from y0 to y1 at b, the control u0(t) minimizes the following
performance index: J (u) = E

∫ b
0
‖u(t)‖2 dt.

Proof. Since system (7) is relatively exactly controllable on [0, b], the operator (Γτ )b0 is
invertible, and its inverse is [(Γτ )b0]−1 ∈ L(L2(Ω,Fb,Rn), L2(Ω,Fb,Rn)). The solution
of (7) is

y(t) =
(
cosτ,q At

q
)
ψ(−τ) +A−1

(
sinτ,q A(t− τ)q

)
ψ′(0)

+

0∫
−τ

cosτ,q A(t− τ − s)qψ′(s) ds+

t∫
0

cosτ,q A(t− τ − s)qBu(s) ds

+

t∫
0

cosτ,q A(t− τ − s)q
( s∫

0

∆̂(η) dw(η)

)
ds. (10)
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Directly substituting (9) into (10) at time b and applying the controllability operator, one
can easily verify that y(b) = y1 and y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0]. In the
second part, we shall show that u0(t), t ∈ [0, b], is a optimal control for J . For that,
suppose u1(t), t ∈ [0, b], is any other admissible control that also steers from y0 to y1 at
time b and y(t) = ψ(t), y′(t) = ψ′(t), t ∈ [−τ, 0]. Hence, by system (7) it is relatively
exactly controllable on [0, b]. Using the controllability operator Lb, we have Lb(u0(·)) =
Lb(u1(·)). Using the basic properties of scalar product in Rn, we have

E

b∫
0

〈(
u1(t)− u0(t)

)
, u0(t)

〉
dt = 0.

Again, by using basic properties of scalar product, we obtain

E

b∫
0

∥∥u1(t)
∥∥2

dt = E

b∫
0

∥∥u1(t)− u0(t)
∥∥2

dt+ E

b∫
0

∥∥u0(t)
∥∥2

dt.

Since E
∫ b

0
‖u1(t)− u0(t)‖2 dt > 0, we conclude that, for any admissible control u1(t),

t ∈ [0, b],

E

b∫
0

∥∥u0(t)
∥∥2

dt 6 E

b∫
0

∥∥u1(t)
∥∥2

dt.

Hence, the control u0(t), t ∈ [0, b], is a optimal control for J , and thus it is a minimum
energy control.

3.2 Nonlinear case

In this subsection, we derive sufficient conditions of relatively exact controllability for
system (3).

Consider the following assumptions:

(H1) The nonlinear functions F ∈ C([0, b]×Rn,Rn) and ∆ ∈ C([0, b]×Rn,Rn×d),
and there exists a constant β > 1 and NF (t), N∆(t) ∈ Lβ([0, b],R+) such that

(i) ‖F (t, x)− F (t, y)‖2 6 NF (t)‖x− y‖2, t ∈ [0, b], x, y ∈ Rn;
(ii) ‖∆(t, x)−∆(t, y)‖2 6 N∆(t)‖x− y‖2, t ∈ [0, b], x, y ∈ Rn.

(H2) There exists a constant β > 1 and MF (t),M∆(t) ∈ Lβ([0, b],R+) such that

(i) ‖F (t, y)‖2 6MF (t)(1 + ‖y‖2), t ∈ [0, b], y ∈ Rn;
(ii) ‖∆(t, y)‖2 6M∆(t)(1 + ‖y‖2), t ∈ [0, b], y ∈ Rn.

(H3) Set M1 = ‖[(Γτ )b0]−1‖2, M2 = ‖Gbτ‖2 and

K := 3b(α+1)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α
×
[
‖NF ‖Lβ([0,b],R+) + b1/αL∆‖N∆‖Lβ([0,b],R+)

]
(1 + 2M1M2) < 1.
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The solution of (3) can be expressed in the following form:

y(t) = (cosτ,q At
q)ψ(−τ) +A−1

(
sinτ,q A(t− τ)q

)
ψ′(0)

+

0∫
−τ

cosτ,q A(t− τ − s)qψ′(s) ds+

t∫
0

cosτ,q A(t− τ − s)qBu(s) ds

+

t∫
0

cosτ,q A(t− τ − s)qF
(
s, y(s)

)
ds

+

t∫
0

cosτ,q A(t− τ − s)q
( s∫

0

∆
(
η, y(η)

)
dw(η)

)
ds, (11)

u(t) = B∗ cosτ,q A
∗(b− τ − t)qE

{[
(Γτ )b0

]−1

[
y1 −

(
cosτ,q Ab

q
)
ψ(−τ)

−A−1
(
sinτ,q A(b− τ)q

)
ψ′(0)−

0∫
−τ

cosτ,q A(b− τ − s)qψ′(s) ds

−
b∫

0

cosτ,q A(b− τ − s)qF
(
s, y(s)

)
ds

−
b∫

0

cosτ,q A(b− τ − s)q
( s∫

0

∆
(
η, y(η)

)
dw(η)

)
ds

] ∣∣∣ Ft}. (12)

In order to establish sufficient conditions for relatively exact controllability, we let

B = C
(
[−τ, b], L2

(
Ω,F,P,Rn

))
be a Banach space endowed with norm ‖·‖C , where ‖y‖2C = supt∈[−τ,b] E‖y(t)‖2, and
define the nonlinear operator P : B → B by

(Py)(t) =
(
cosτ,q At

q
)
ψ(−τ) +A−1

(
sinτ,q A(t− τ)q

)
ψ′(0)

+

0∫
−τ

cosτ,q A(t− τ − s)qψ′(s) ds+

t∫
0

cosτ,q A(t− τ − s)qBu(s) ds

+

t∫
0

cosτ,q A(t− τ − s)qF
(
s, y(s)

)
ds

+

t∫
0

cosτ,q A(t− τ − s)q
( s∫

0

∆
(
η, y(η)

)
dw(η)

)
ds, t ∈ [0, b].
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By substituting (12) into (11), it is easy to check that y(b) = y1, so the control u(t)
steers y0 to y1 at time b. From Lemma 3 we see that if P has a fixed point, then system (3)
has a solution y(t) with respect to the corresponding control function u(·), and also one
can easily show that (Py)(b) = y(b) = y1, and y(t) = ψ(t) and y′(t) = ψ′(t), t ∈
[−τ, 0], which means that system (3) is relatively exact controllable on [0, b]. We have
transformed the relatively exact controllability of system (3) into the existence of a unique
fixed point for P .

Lemma 4. Assume that hypothesis (H1) and (H2) hold. Then P maps B into itself.

Proof. Let y ∈ B and t ∈ [0, b]. From the fact that∥∥cosτ,q At
q
∥∥ 6 E2q

(
‖A‖2t2q

)
6 E2q

(
‖A‖2b2q

)
and Hölder’s inequality we have∥∥∥∥∥

t∫
0

cosτ,q A(t− τ − s)qNσ(s) ds

∥∥∥∥∥
6

( t∫
0

∥∥ cosτ,q A(t− τ − s)q
∥∥α ds

)1/α( t∫
0

∣∣Nβ
σ (s)

∣∣ds)1/β

6

[ t∫
0

(
E2q

(
‖A‖2(t− τ − s)2q

))α
ds

]1/α
‖Nσ‖Lβ([0,b],R+)

6
[
b
(
E2q

(
A2b2q

))α]1/α‖Nσ‖Lβ([0,b],R+),

where 1/α+ 1/β = 1, α, β > 1.
Using (H2), we have

E
∥∥(Py)(t)

∥∥2
6 6E

∥∥(cosτ,q At
q
)
ψ(−τ)

∥∥2
+ 6E

∥∥A−1
(
sinτ,q A(t− τ)q

)
ψ′(0)

∥∥2

+ 6E

∥∥∥∥∥
0∫
−τ

cosτ,q A(t− τ − s)qψ′(s) ds

∥∥∥∥∥
2

+ 6E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)qBu(s) ds

∥∥∥∥∥
2

+ 6E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)qF
(
s, y(s)

)
ds

∥∥∥∥∥
2

+ 6E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)q
( s∫

0

∆
(
η, y(η)

)
dw(η)

)
ds

∥∥∥∥∥
2

. (13)
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Note

E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)qF
(
s, y(s)

)
ds

∥∥∥∥∥
2

6 b

t∫
0

∥∥cosτ,q A(t− τ − s)q
∥∥2

E
∥∥F (s, y(s)

)∥∥2
ds

6 b

t∫
0

∥∥cosτ,q A(t− τ − s)q
∥∥2
MF (s)

(
1 + E

∥∥y(s)
∥∥2)

ds

6 b

( t∫
0

∥∥cosτ,q A(t− τ − s)q
∥∥2α

ds

)1/α( t∫
0

Mβ
F (s) ds

)1/β

×
(

1 + sup
t∈[−τ,b]

E
∥∥y(t)

∥∥2
)

6 b(α+1)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α‖MF ‖Lβ([0,b],R+)

(
1 + ‖y‖2C

)
.

Similar to the above computation, one has

E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)q
( s∫

0

∆
(
η, y(η)

)
dw(η)

)
ds

∥∥∥∥∥
2

6 b(α+2)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α
L∆‖M∆‖Lβ([0,b],R+)

(
1 + ‖y‖2C

)
.

Finally,

E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)qBu(s) ds

∥∥∥∥∥
2

6 6
∥∥Gbτ∥∥2∥∥[(Γτ )b0

]−1∥∥2

[
E‖y1‖2 + E

∥∥(cosτ,q Ab
q
)
ψ(−τ)

∥∥2

+ E
∥∥A−1

(
sinτ,q A(b− τ)q

)
ψ′(0)

∥∥2
+ E

∥∥∥∥∥
0∫
−τ

cosτ,q A(b− τ − s)qψ′(s) ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
b∫

0

cosτ,q A(b− τ − s)qF
(
s, y(s)

)
ds

∥∥∥∥∥
2

+ E

∥∥∥∥∥
b∫

0

cosτ,q A(b− τ − s)q
( s∫

0

∆
(
η, y(η)

)
dw(η)

)
ds

∥∥∥∥∥
2]
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6 6M1M2

[
E‖y1‖2 +

(
E2q

(
‖A‖2b2q

))2
E
∥∥ψ(−τ)

∥∥2
+
∥∥A−1

∥∥2(
Eq
(
‖A‖bq

)
− E2q

(
‖A‖2b2q

))2
E
∥∥ψ′(0)

∥∥2
+ τ2

(
E2q

(
‖A‖2b2q

))2
E
∥∥ψ′(η)

∥∥2

+ b(α+1)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α‖MF ‖Lβ([0,b],R+)

(
1 + ‖y‖2C

)
+ b(α+2)/α

[(
E2q

(
‖A‖2b2q

))2α]1/α
L∆‖M∆‖Lβ([0,b],R+)

(
1 + ‖y‖2C

)]
.

Substitute the above inequalities in (13), and one can chose a C > 0 such that

E
∥∥(Py)(t)

∥∥2

6 6
(
E2q

(
‖A‖2b2q

))2‖ψ‖2C + 6
∥∥A−1

∥∥2(
Eq
(
‖A‖bq

)
− E2q

(
‖A‖2b2q

))2‖ψ′‖2C
+ 6τ2

(
E2q

(
‖A‖2(b− τ − η)2q

))2‖ψ′‖2C + 36M1M2

[
E‖y1‖2

+
(
E2q

(
‖A‖2b2q

))2‖ψ‖2C +
∥∥A−1

∥∥2(
Eq
(
‖A‖bq

)
− E2q

(
‖A‖2b2q

))2‖ψ′‖2C
+ τ2

(
E2q

(
‖A‖2b2q

))2‖ψ′‖2C+ b(α+1)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α‖MF ‖Lβ([0,b],R+)

×
(
1+‖y‖2C

)
+ b(α+2)/α

[(
E2q

(
‖A‖2b2q

))2α]1/α
L∆‖M∆‖Lβ([0,b],R+)

(
1+‖y‖2C

)]
+ 6b(α+1)/α

[(
E2q

(
‖A‖2b2q

))2α]1/α‖MF ‖Lβ([0,b],R+)

(
1 + ‖y‖2C

)
+ 6b(α+2)/α

[(
E2q

(
‖A‖2b2q

))2α]1/α
L∆‖M∆‖Lβ([0,b],R+)

(
1 + ‖y‖2C

)
6 36M1M2E‖y1‖2 + 6

(
E2q

(
‖A‖2b2q

))2
M3(1 + 6M1M2)

+ 6
∥∥A−1

∥∥2(
Eq
(
‖A‖bq

)
− E2q

(
‖A‖2b2q

))2
M3(1 + 6M1M2)

+ 6τ2
(
E2q

(
‖A‖2b2q

))2
M3(1 + 6M1M2) + 6b(α+1)/α

[(
E2q

(
‖A‖2b2q

))2α]1/α
× (1 + 6M1M2)

(
‖MF ‖Lβ([0,b],R+) + b1/αL∆‖M∆‖Lβ([0,b],R+)

)(
1 + ‖y‖2C

)
6 C

(
1 + ‖y‖2C

)
.

Thus, P maps B into itself.

Lemma 5. Assume that hypothesis (H1) and (H3) hold. ThenP is a contraction mapping.

Proof. Let x, y ∈ B. From (H1), for each t ∈ [0, b], we have

E
∥∥(Px)(t)− (Py)(t)

∥∥2

6 3E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)qB
[
ux(s)− uy(s)

]
ds

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)q
[
F
(
s, x(s)

)
− F

(
s, y(s)

)]
ds

∥∥∥∥∥
2

+ 3E

∥∥∥∥∥
t∫

0

cosτ,q A(t− τ − s)q
( s∫

0

[
∆
(
η, x(η)

)
−∆

(
η, y(η)

)]
dw(η)

)
ds

∥∥∥∥∥
2

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Relative controllability of a stochastic system 1045

6 6M1M2

[
b(α+1)/α

[(
E2q

(
‖A‖2b2α

))]1/α‖NF ‖Lβ([0,b],R+) sup
t∈[−τ,b]

E
∥∥x(t)−y(t)

∥∥2

+ b(α+2)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α
L∆‖N∆‖Lβ([0,b],R+) sup

t∈[−τ,b]
E
∥∥x(t)−y(t)

∥∥2
]

+ 3b(α+1)/α
[
(E2q(‖A‖2b2q))2α

]1/α‖NF ‖Lβ([0,b],R+) sup
t∈[−τ,b]

E
∥∥x(t)−y(t)

∥∥2

+ 3b(α+2)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α
L∆‖N∆‖Lβ([0,b],R+) sup

t∈[−τ,b]
E
∥∥x(t)−y(t)

∥∥2

6 3b(α+1)/α
[(
E2q

(
‖A‖2b2q

))2α]1/α‖NF ‖Lβ([0,b],R+)(1 + 2M1M2)‖x− y‖2C
+ 3b(α+2)/α

[(
E2q

(
‖A‖2b2q

))2α]1/α
L∆‖N∆‖Lβ([0,b],R+)(1 + 2M1M2)‖x− y‖2C

= K‖x− y‖2C .

This implies that ‖Px − Py‖2C 6 K‖x − y‖2C . Hence, from (H3), P is a contraction on
B, and so P has a unique fixed point y(·) ∈ B, which is the solution of (3).

Theorem 2. Suppose that hypotheses (H1)–(H3) hold and system (7) is relatively exactly
controllable. Then (3) is relatively exactly on [0, b].

Proof. From Lemmas 3–5 system (3) is relatively exactly controllable on [0, b].

Remark 1. In this manuscript, we investigate the relative controllability of the fractional
stochastic system with pure delay. System (6) was transformed into (11) via delayed sine
and cosine matrices. Suitable control function were defined by delayed controllability
Grammian matrices. A set of sufficient conditions of relative exact controllability for
linear and nonlinear stochastic systems are derived by using fractional delayed linear
operators and Banach’s fixed point theorem, respectively.

4 An example

Consider the following nonlinear stochastic delay system:

CDq
−τ+

(
CDq
−τ+y1

)
(t) + 0.09y1(t− τ)

= u1(t) +
(
e(t+0.5) + 0.6t

)
y1(t) +

t∫
0

(
es + 0.7s

)
y1(s) dw(t),

y1(t) = t, y′1(t) = 1, t ∈ [−0.75, 0];

CDq
−τ+

(
CDq
−τ+y2

)
(t) + 0.72y1(t− τ) + 0.81y2(t− τ)

= u2(t) +
(
e(t+0.5) + 0.6t

)
y2(t) +

t∫
0

(
es + 0.7s

)
y2(s) dw(t),

y2(t) = 3t, y′2(t) = 3, t ∈ [−0.75, 0].

(14)
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The above equation can be rewritten in the form (3) with q = 0.65, τ = 0.75,

A =

(
0.3 0
0.6 0.9

)
, B =

(
1 0
0 1

)
, F

(
t, y(t)

)
=

(
[e(t+0.5) + 0.6t]y1(t)
[e(t+0.5) + 0.6t]y2(t)

)
,

∆(t, y(t)) =

(
[et + 0.7t]y1(t)
[et + 0.7t]y2(t)

)
, ψ(t) =

(
t
3t

)
, ψ′(t) =

(
1
3

)
.

The corresponding delay Grammian matrix of system (14) is

[G0.75]1.50

=

1.5∫
0

cos0.75,0.65A(1.5− 0.75− s)0.65BB∗cos0.75,0.65A
∗(1.5− 0.75− s)0.65 ds

=: G1 +G2,

where

G1 =

0.75∫
0

cos0.75,0.65A(0.75− s)0.65BB∗ cos0.75,0.65A
∗(0.75− s)0.65 ds,

(0.75− s) ∈ (0, 0.75),

G2 =

1.5∫
0.75

cos0.75,0.65A(0.75− s)0.65BB∗ cos0.75,0.65A
∗(0.75− s)0.65 ds,

(0.75− s) ∈ (−0.75, 0),

cos0.75,0.65

(
At0.65

)
=


Θ, −∞ < t < −0.75,

I, −0.75 6 t < 0,

I −A2 t1.3

Γ(2.3) , 0 6 t < 0.75,

I −A2 t1.3

Γ(2.3) +A4 (t−0.75)2.6

Γ(3.6) , 0.75 6 t < 1.5,

and
sin0.75,0.65

(
At0.65

)

=


Θ, −∞ < t < −0.75,

A (t+0.75)0.65

Γ(1.65) , −0.75 6 t < 0,

A (t+0.75)0.65

Γ(1.65) −A3 t1.95

Γ(2.95) , 0 6 t < 0.75,

A (t+0.75)0.65

Γ(1.65) −A3 t1.95

Γ(2.95) +A5 (t−0.75)3.75

Γ(4.75) , 0.75 6 t < 1.5.

By simple computations we obtain the delay Grammian matrix[
G0.75

]1.5
0

=

(
1.3371 0.1175
0.1175 0.5986

)
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and

G1 =

(
0.7160 0.4485
0.4485 0.3312

)
, G2 =

(
0.6211 −0.3310
−0.3310 0.2674

)
.

Moreover, we have

〈
(G0.75)1.5

0 y, y
〉

=

(
1.3371y2

1 + 0.1175y2
2

0.1175y2
1 + 0.5986y2

2

)
> γ‖y‖2,

where 0 < γ 6 0.1175, and hence M1 = 8.5106 and M2 = 1.8370, which implies
that the corresponding linear stochastic system of (14) is relatively exact controllable on
[0, 1.5]. Moreover, one can define a control function for system (14) as

u(t) = B∗ cosτ,q A
∗(b− τ − t)q[(Γτ )b0]−1Ψ

=

{(
1 0
0 1

)
[I −A2 (0.75−s)1.3

Γ(2.3) ][(Γτ )b0]−1Ψ, s ∈ [0, 0.75),(
1 0
0 1

)
[I][(Γτ )b0

]−1
Ψ, s ∈ [0.75, 1.5),

where

Ψ = y1 −
(
cos0.75,0.65A(1.5)0.65

)
ψ(−0.75)−A−1

(
sin0.75,0.65A(0.75)0.65

)
ψ′(0)

−
0∫

−0.75

cos0.75,0.65A(0.75− s)0.65ψ′(s) ds

−
1.5∫
0

cos0.75,0.65A(0.75− s)0.65F
(
s, y(s)

)
ds

−
1.5∫
0

cos0.75,0.65A(0.75− s)0.65

( s∫
0

∆
(
η, y(η)

)
dw(η)

)
ds.

Further, let α = 2 = β. For y = (y1, y2) ∈ R2, we have∥∥F (t, y1)− F (t, y2)
∥∥2

6
∣∣e(t+0.5) + 0.6t

∣∣‖y1 − y2‖2, t ∈ [0, 1.5].

Set NF (·) = e(·+0.5) + 0.6(·) ∈ L2([0, 1.5],R+), and we obtain

‖NF ‖L2([0,1.5],R+) =

( 1.5∫
0

[
e(s+0.5) + 0.6s

]2
ds

)1/2

= 0.0083

and ∥∥∆(t, y1)−∆(t, y2)
∥∥2

6
∣∣et + 0.7t

∣∣‖y1 − y2‖2.
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Choosing N∆(·) = e(·) + 0.7(·) ∈ L2([0, 1.5],R+), we get

‖N∆‖L2([0,1.5],R+) =

( 1.5∫
0

[
es + 0.7s

]2
ds

)1/2

= 0.3645.

From above (H1) and (H2) hold. Now we check hypothesis (H3). Note

K =
(
3b(α+1)/α

[(
E2q

(
‖A‖2(t− τ − η)2q

))2α]1/α)
×
[
‖NF ‖Lβ([0,b],R+) + b1/αL∆‖N∆‖Lβ([0,b],R+)

]
(1 + 2M1M2)

=
(
3(1.5)3/2 · 0.0325

)[
0.0083 + 1.51/2 · 0.1 · 0.3645

](
1 + 2(8.5106 · 1.8370)

)
= 0.3060 < 1.

Thus, all the hypotheses of Theorem 2 are satisfied. Hence, system (14) is relatively exact
controllable on [0, 1.5].

5 Conclusion and future study

The aim of this paper is to provide the representation of the solution for the inhomoge-
neous fractional-order system via sine and cosine matrices and to obtain some results on
relatively exact controllability for fractional stochastic systems with pure delay. Using
fixed point theory and the fractional delayed controllability Grammian matrix, sufficient
conditions are established for the system to be relatively exact controllable. An example
is provided to illustrate our theory. By making some appropriate assumptions on system
functions, by adapting the techniques and ideas established in this paper with suitable
modifications, one can easily discuss the relative controllability of a stochastic system
with noninstantaneous impulses and nonlocal conditions.

Acknowledgment. The authors are grateful to the referees for their careful reading of
the manuscript and their valuable comments. We thank the editor also.

Appendix

Following [26], we have the following properties and rules:

(i) CDq
−τ+ cosτ,q At

q = −A sinτ,q A(t−τ)q , t ∈ [(N−1)τ,Nτ), N = 0, 1, 2, . . . .
(ii) CDq

−τ+ sinτ,q At
q = A cosτ,q At

q , t ∈ [(N − 1)τ,Nτ), N = 0, 1, 2, . . . .
(iii) CDq

−τ+(CDq
−τ+ cosτ,q At

q) = −A2 cosτ,q A(t − τ)q holds with cosτ,q At
q = I

and [cosτ,q At
q]′ = Θ for t ∈ [−τ, 0].

(iv) CDq
−τ+(CDq

−τ+ sinτ,q At
q) = −A2 sinτ,q A(t − τ)q holds with sinτ,q At

q =

A(t+ τ)q/Γ(q + 1) and [sinτ,q At
q]′ = A(t+ τ)q−1/Γ(q) for t ∈ [−τ, 0].

(v) ‖ cosτ,q At
q‖ 6 E2q(‖A‖2t2q), t ∈ [(k − 1)τ, kτ), k = 0, 1, 2, . . . , n.

(vi) ‖ sinτ,q At
q‖ 6 Eq(‖A‖(t + τ)q) − E2q(‖A‖2(t + τ)2q), t ∈ [(k − 1)τ, kτ),

k = 0, 1, 2, . . . n.
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