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Abstract. The nonstationary Navier–Stokes equations are studied in the infinite cylinder Π =
{x = (x′, xn) ∈ Rn: x′ ∈ σ ⊂ Rn−1, −∞ < xn < ∞, n = 2, 3} under the additional
condition of the prescribed time-periodic flow rate (flux) F (t). It is assumed that the flow rate F
belongs to the space L2(0, 2π), only. The time-periodic Poiseuille solution has the form u(x, t) =
(0, . . . , 0, U(x′, t)), p(x, t) = −q(t)xn + p0(t), where (U(x′, t), q(t)) is a solution of an inverse
problem for the time-periodic heat equation with a specific over-determination condition. The
existence and uniqueness of a solution to this problem is proved.

Keywords: Navier–Stokes equations, cylindrical domain, time-periodic Poiseuille-type solution,
inverse problem, minimal regularity.

1 Introduction

Mathematical modelling is very useful in many practical applications. For example, in
medicine, it can be helpful by choosing the optimal strategy of medical treatment. In
such modelling, very important issues are multiscale mathematical models of the blood
circulation in a network of vessels. The full 3D computations are nowadays very time
consuming and may be applied only for small parts of the blood circulation system.
Therefore, a new trend is related to the creation of hybrid dimension models that combine
the 1D reduction in the regular zones (mostly in straight vessels) with 3D zooms in small
zones of singular behaviour. This method of asymptotic partial decomposition of a do-
main was proposed by Panasenko (see [12]) and developed in [13–16]. It mathematically
justifies a size of zoomed areas and prescribes asymptotically exact junction conditions.
These hybrid-dimension models require significantly smaller computational resources.
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The 1D Poiseuille-type flows in straight vessels play a very important role in hybrid-
dimension models.

The steady-state Poiseuille flow in an infinite straight pipe Π = {x = (x′, xn) ∈
Rn: x′ ∈ σ ⊂ Rn−1, −∞ < xn < ∞, n = 2, 3} of constant cross-section σ was
invented by Jean Louis Poiseuille in 1841 (see [2,11,24]). The Poiseuille flow is described
by the fact that the associated velocity field has only one nonzero component u(x′)
directed along the xn-axis ofΠ , which depends only on x′ ∈ σ, and the pressure function
p = p(xn) is linear. The Poiseuille-type solutions can be also defined in the nonstation-
ary case (see [7, 17–21, 23, 26]). Moreover, in [14] the behaviour of the nonstationary
Poiseuille flow was studied in a thin cylinder (with the cross-section of radius ε), and the
asymptotics of it as ε→ 0 was found.

In the time-periodic case, such flow is usually called Womersley’s flow (see [28]).
The time-periodic Poiseuille-type solutions were studied in [3] and [8]. The time periodic
solutions for the full Navier–Stokes problem were considered in many papers (see, e.g.,
[4–6]). Notice that the time-periodic case is very important because of applications to
hemodynamics.

In mentioned above papers the Poiseuille-type solutions were studied in the case when
data is sufficiently regular. However, in real applications, one usually does not have data
defined by smooth functions, and it is important to study the case of minimal regularity
of data. The nonstationary Poiseuille-type solution with a prescribed initial condition and
given flow rate F (t) belonging to L2(0, T ) was studied in [22], where a new class of
weak solutions was introduced, and the unique existence of the solution in such class was
proved. The goal of the present paper is to extend the result obtained in [22] to the case
of time-periodic Poiseuille-type solutions.

Let us consider the time-periodic Navier–Stokes problem describing the motion of
a viscous incompressible fluid in the infinite cylinder Π:

ut − ν∆u + (u · ∇)u +∇p = 0,

divu = 0, u|∂Π = 0, u(x, 0) = u(x, 2π),
(1)

where u is the fluid velocity, p is the pressure function, and ν > 0 is the constant
kinematic viscosity of the fluid.

We look for the solution u of (1) inΠ satisfying the additional condition of prescribed
flow rate (flux) F (t): ∫

σ

un(x, t) dx′ = F (t),

where F (0) = F (2π).1

The solution (u(x, t), p(x, t)) of problem (1) has the following expression:

u(x, t) =
(
0, . . . , 0, Un(x′, t)

)
, p(x, t) = −q(t)xn + p0(t) (2)

1Without loss of generality, we suppose that the period is equal to 2π.
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with an arbitrary function p0(t). Putting (2) into (1), we obtain the following problem on
the cross-section σ:

Ut(x
′, t)− ν∆′U(x′, t) = q(t),

U(x′, t)
∣∣
∂σ

= 0, U(x′, 0) = U(x′, 2π),
(3)

where U(x′, t) = Un(x′, t) and q(t) are unknown functions, ∆′ is the Laplace operator
with respect to x′.

The Poiseuille flow can be uniquely determined either prescribing the pressure drop
q(t) or the flow rate F (t). In the first case the problem is reduced to the standard time-
periodic problem for the heat equation for unknown velocity U = U(x′, t) with time-
periodic forcing q(t). Problems of such type are well studied (see, e.g., [9]). However,
in the real word applications the pressure is unknown, and only the flow rate (flux) of the
fluid is given. Therefore, it is necessary to prescribe the additional condition∫

σ

U(x′, t) dx′ = F (t), F (0) = F (2π). (4)

In this case the solution of problem (3), (4) is a pair of functions (U(x′, t), q(t)), and
one has to solve for U(x′, t) and q(t) more complicated inverse parabolic problem: for
given F (t), to find a pair of functions (U(x′, t), q(t)) solving problem (3) with U(x′, t)
satisfying the flux condition (4).

Thus, in the second case the relation between q(t) and F (t) depends on the solution
of the inverse problem (in the stationary case the flux F and the pressure gradient q are
proportional, and the problem remains very simple). The solvability of the time-periodic
problem with the assumption that the flux F (t) is from the Sobolev space W 1,2(0, 2π)
was proved by Beirão da Veiga [3], and in [8] an elementary relationship between the
pressure drop q(t) and the flux F (t) was found. However, in applications and numerical
computations, the data usually is not regular. Therefore, in this paper, we study prob-
lem (3), (4) assuming only that F ∈ L2(0, 2π).

Problem (3), (4) can be reduced to the case when all involved functions have zero
mean values. Let us denote by H̄ = 1/(2π)

∫ 2π

0
H(t) dt the mean value of a function H .

Let (Ū , q̄) be a solution of the following problem on σ (the stationary Poiseuille solution
corresponding to the flux F̄ ):

−ν∆′Ū(x′) = q̄, Ū(x′)|∂σ = 0,

∫
σ

Ū(x′) dx′ = F̄ . (5)

The solution Ū(x′) of (5) can be represented in the form Ū(x′) = (F̄ /κ0)U0(x′), where

− ν∆′U0(x′) = 1, U0(x′)|∂σ = 0, (6)

and

q̄ =
F̄

κ0
, κ0 =

∫
σ

U0(x′) dx′ = ν

∫
σ

∣∣∇′U0(x′)
∣∣2dx′ > 0. (7)
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Let us represent the solution (U, q) in the form

U(x′, t) = V (x′, t) + Ū(x′), q(t) = s(t) + q̄.

Then, obviously, V̄ (x′) = 0, s̄ = 0, and (V, s) is the solution of the problem

Vt(x
′, t)− ν∆′V (x′, t) = s(t),

V (x′, t)|∂σ = 0, V (x′, 0) = V (x′, 2π),∫
σ

V (x′, t)dx′ = F̃ (t),

(8)

where F̃ (t) = F (t)− F̄ , ¯̃
F = 0. So, without loss of generality, we assume F (t) = F̃ (t),

that is F̄ = 0.
Below, we deal with a weak solution of problem (3), (4). The reasoning about the

reduction to the case of functions with zero mean values remains valid for weak solutions
as well, and we will study only this case.

The rest of the paper is organized in the following way. In Section 2, function spaces
are defined and the main result is formulated. In Section 3 the Galerkin approximations
of the solution are constructed, and in Section 4 a priori estimates for these approxima-
tions are proved. In Section 5 the main result of the paper, that is the existence and the
uniqueness of the solution, is proved.

2 Notation and formulation of main result

2.1 Function spaces

Below, we will use the following notation. If G is the domain in Rn, C∞(G) means, as
usual, the set of all infinitely differentiable functions in G, and C∞0 (G) is the subset of
functions from C∞(G) with compact supports inG. We use the usual (see [1,9]) notation
for Lebesgue and Sobolev spaces: L2(G), W l,2(G), l > 0, and W̊ 1,2(G). The norm of
an element u in the function space V is denoted by ‖u‖V . L2(0, T ;V ) is the Bochner
space of functions u such that u(·, t) ∈ V for almost all t ∈ [0, T ], and the norm

‖u‖L2(0,T ;V ) =

( T∫
0

∥∥u(·, t)
∥∥2
V

dt

)1/2

is finite.
Let us consider the set of smooth periodic functions C∞℘ (0, 2π) = {h ∈ C∞(R):

h(t) = h(t + 2π) ∀t ∈ R} defined on the interval [0, 2π]. Let L2(0, 2π) be a Lebesgue
space on the interval (0, 2π). We extend the functions from L2(0, 2π) to the whole line R
by putting f(t+2π)=f(t) for any t. To emphasize that functions are periodically extended
to R, we use the notation L2

℘(0, 2π). Let L2
] (0, 2π) = {h∈L2

℘(0, 2π):
∫ 2π

0
h(t) dt= 0}.

Clearly, L2
] (0, 2π) is a closure of C∞] (0, 2π) = {h ∈ C∞℘ (0, 2π):

∫ 2π

0
h(t) dt = 0} in
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L2(0, 2π)-norm, and it is a proper subspace of L2
℘(0, 2π). Let W 1,2

℘ (0, 2π) be the closure
of the set C∞℘ (0, 2π) in W 1,2-norm. Since function f from W 1,2

℘ (0, 2π) coincides with
a continuous function on a set whose complement is of measure zero, we may assume
that f(0) = f(2π). Let W−1,2℘ (0, 2π) be dual of W 1,2

℘ (0, 2π), i.e., W−1,2℘ (0, 2π) =
(W 1,2

℘ (0, 2π))∗.
For any function f ∈ L2

℘(0, 2π), denote by Sf (t) its primitive:

Sf (t) = −
t0+2π∫
t

f(τ) dτ, where t0 ∈ [0, 2π), t ∈ [t0, t0 + 2π]. (9)

Clearly, dSf (t)/dt = f(t), Sf (t0 + 2π) = 0.
If f ∈ L2

] (0, 2π), then Sf (t0) = −
∫ t0+2π

t0
f(τ) dτ = −

∫ 2π

0
f(t) dt = 0. Moreover,

2π∫
0

∣∣Sf (t)
∣∣2 dt 6 2π

2π∫
0

t0+2π∫
t

∣∣f(τ)
∣∣2 dτ dt 6 4π2

t0+2π∫
t0

∣∣f(τ)
∣∣2 dτ

= 4π2

2π∫
0

∣∣f(τ)
∣∣2 dτ,

and Sf (t) is a periodic function:

Sf (t+ 2π) = −
t0+2π∫
t+2π

f(τ) dτ = −
t0∫
t

f(τ) dτ = −
t0+2π∫
t

f(τ) dτ +

t0+2π∫
t0

f(τ) dτ

= Sf (t)− Sf (t0) = Sf (t).

Thus, Sf ∈ L2
℘(0, 2π). Note that functions Sf (t) defined by (9) with various t0 differ

from each other by a constant.
Note that the L2-limit of a sequence {Sfn} ⊂ C∞℘ (0, 2π) is not necessary a primitive

of some function from L2
] (0, 2π). We will prove that an element h ∈ W−1,2℘ (0, 2π)

possesses a primitive in the distributional sense.

Lemma 1. Any functional h ∈W−1,2℘ (0, 2π) can be represented in the form

〈h, η〉 =

2π∫
0

H(t)η′(t) dt ∀η ∈W 1,2
℘ (0, 2π) (10)

with the uniquely determined H ∈ L2
] (0, 2π).

Proof. Obviously, the functional given by formula (10) obeys the estimate∣∣〈h, η〉∣∣ 6 ‖H‖L2
](0,2π)

‖η‖W 1,2
℘ (0,2π),

and hence, h ∈W−1,2℘ (0, 2π).

Nonlinear Anal. Model. Control, 26(5):947–968, 2021

https://doi.org/10.15388/namc.2021.26.24502


952 K. Kaulakytė et al.

Let us take an arbitrary functional h ∈ W−1,2℘ (0, 2π) and show that it can be repre-
sented in the form (10). Consider the operator ∂ : η ∈ W 1,2

℘ (0, 2π) 7→ η′ ∈ L2
] (0, 2π)

(due to periodicity,
∫ 2π

0
η′(t) dt = η(2π)− η(0) = 0). Since for any ϕ ∈ L2

] (0, 2π), the
equality ϕ = η′ holds with

η(t) = −
2π∫
t

ϕ(τ) dτ ∈W 1,2
℘ (0, 2π), (11)

we have R(∂) = L2
] (0, 2π), and the operator ∂ is an isomorphism from W 1,2

℘ (0, 2π) to
L2
] (0, 2π), where the bounded operator ∂−1 : L2

] (0, 2π) 7→W 1,2
℘ (0, 2π) is given by (11).

For ϕ ∈ L2
] (0, 2π), define the functional M(ϕ) = 〈h, ∂−1ϕ〉. Clearly,∣∣M(ϕ)

∣∣ 6 c‖h‖W−1,2
℘ (0,2π)

∥∥∂−1ϕ∥∥
W 1,2
℘ (0,2π)

6 c‖h‖W−1,2
℘ (0,2π)‖ϕ‖L2

](0,2π)
.

Hence, there exists a uniquely defined H ∈ L2
] (0, 2π) such that

M(ϕ) =

2π∫
0

H(τ)ϕ(τ) dτ ∀ϕ ∈ L2
] (0, 2π).

Thus,

〈h, η〉 =
〈
h, ∂−1ϕ

〉
=

2π∫
0

H(τ)ϕ(τ) dτ =

2π∫
0

H(τ)η′(τ) dτ ∀η ∈W 1,2
℘ (0, 2π),

and 〈h, η〉 is represented in the form (10).

Remark 1. Note that if the functional h can be represented in the form 〈h, η〉 =∫ 2π

0
H(t)η(t) dt with H ∈ L2

] (0, 2π) and arbitrary η ∈ W 1,2
℘ (0, 2π), then H(t) =

−
∫ 2π

t
h(τ) dτ . Therefore, also in the case of a general functional h, for the distributional

primitive H , we use the notation H(t) = Sh(t).

2.2 Formulation of main result

Definition of a weak solution

Let F ∈ L2
] (0, 2π). By a weak solution of problem (8) we understand a pair (V, s) such

that V ∈ L2
] (0, 2π;L2(σ)),2 SV ∈ L2

℘(0, 2π; W̊ 1,2(σ)),3 s ∈ W−1,2℘ (0, 2π), V (x′, t)
satisfies the flux condition ∫

σ

V (x′, t)dx′ = F (t), (12)

2Since V ∈ L2
] (0, 2π;L2(σ)), SV is a primitive of V , i.e., (SV )t = V , and we have the following

inclusions: SV ∈ L2
℘(0, 2π;L2(σ)), (SV )t ∈ L2

] (0, 2π;L2(σ)).
3The condition that V |∂σ = 0 is understood in the usual sense of traces [1]. If SV ∈ L2(0, 2π; W̊ 1,2(σ)),

then SV = −
∫ 2π
t V (·, τ) dτ ∈ W̊ 1,2(σ) for a.a. t ∈ (0, 2π) and

∫ 2π
t V (x′, τ) dτ |∂σ = 0 in the sense of

traces for such t. But then also V (x′, t)∂σ = 0 in the sense of traces for a.a. t ∈ (0, 2π).
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and the pair (V, s) satisfies the integral identity

2π∫
0

∫
σ

V (x′, t)ηt(x
′, t)dx′ dt+ ν

2π∫
0

∫
σ

∇′SV (x′, t) · ∇′ηt(x′, t)dx′ dt

=

2π∫
0

Ss(t)

∫
σ

ηt(x
′, t)dx′ dt (13)

for any test function η ∈ L2
℘(0, 2π; W̊ 1,2(σ)) such that ηt ∈ L2

] (0, 2π;W 1,2(σ)).
For a regular solution (V, s), taking into account that ∇V = (∇SV )t, s = S′s,

identity (13) can be easily obtained multiplying equation (8)1 by η, integrating over σ
and over the interval (0, 2π) and integrating by parts with respect to x′ and t. On the
other hand, by uniqueness of such weak solution (V, s) (see Theorem 1 below) it follows
that for F ∈ W 1,2

] (0, 2π), the solution (V, s) coincides with the regular one, that is
V ∈ L2

] (0, 2π; W̊ 1,2(σ) ∩W 2,2(σ)), Vt ∈ L2
] (0, 2π;L2(σ)), s ∈ L2

] (0, 2π). Thus, the
proposed definition is an extension of the concept of weak solutions.

Theorem 1. Let F ∈ L2
] (0, 2π). Then problem (8) admits a unique weak solution (V, s).

Then there holds the estimate
2π∫
0

∫
σ

∣∣V (x′, t)
∣∣2 dx′ dt+

2π∫
0

∫
σ

∣∣∇′SV (x′, t)
∣∣2 dx′ dt+

2π∫
0

∣∣Ss(τ)
∣∣2 dτ

6 c

2π∫
0

∣∣F (τ)
∣∣2 dτ, (14)

where the constant c depends only on σ.

Remark 2. Since
∫ 2π

0
η′(t) dt = 0 for η ∈W 1,2

℘ (0, 2π) and all primitives of the function
V (x′, t) differ from each other by a function independent of t, the integral identity (13)
remains valid for any primitive function SV , and we can assume, for example, that SV is
taken to be zero at the point t = 2π.

Theorem 1 will be proved applying some version of Galerkin approximations (see
Sections 3 and 4). Notice that in order to get estimates of approximate solutions
(V

(N)
α (x′, t), s

(N)
α (t)), we have used primitive functions defined over the integrals

∫ t∗+2π

t
with specially chosen points t∗ = t(α,N) ∈ [0, 2π) and t ∈ (t∗, t∗ + 2π). Thus,
estimate (14) is valid only for the primitive function SV obtained as a limit of the sequence
{S

V
(N)
α
}.

3 Construction of Galerkin approximations

Let uk(x′) ∈ W̊ 1,2(σ) and λk be eigenfunctions and eigenvalues of the Laplace operator:

−ν∆′uk(x′) = λkuk(x′), uk(x′)|∂σ = 0.

Nonlinear Anal. Model. Control, 26(5):947–968, 2021
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Note that λk > 0 and limk→∞ λk = ∞. The eigenfunctions uk(x′) are orthogonal in
L2(σ), and we assume that uk(x′) are normalized in L2(σ). Then

ν

∫
σ

∣∣∇′uk(x′)
∣∣2 dx′ = λk,

∫
σ

∇′uk(x′) · ∇′ul(x′) dx′ = 0, k 6= l.

Moreover, {uk(x′)} is a basis in L2(σ) and W̊ 1,2(σ).
We look for an approximate solution of problem (8) in the form

V (N)(x′, t) =

N∑
k=1

w
(N)
k (t)uk(x′). (15)

The coefficients w(N)
k (t) and the function s(N)(t) are obtained by solving the following

linear problems:∫
σ

V
(N)
t (x′, t)uk(x′)dx′ + ν

∫
σ

∇′V (N)(x′, t) · ∇′uk(x′)dx′

= s(N)(t)

∫
σ

uk(x′)dx′, k = 1, 2, . . . , N,

w
(N)
k (0) = w

(N)
k (2π), k = 1, . . . , N,∫

σ

V (N)(x′, t) dx′ = F (t),

(16)

which, in virtue of the orthonormality of functions uk(x′), are equivalent to ordinary
differential equations for the functions w(N)

k (t):(
w

(N)
k (t)

)′
+ λkw

(N)
k (t) = βks

(N)(t), t ∈ (0, 2π),

w
(N)
k (0) = w

(N)
k (2π),

(17)

where βk =
∫
σ
uk(x′)dx′. Note that

∑∞
k=1 βkuk(x′) = 1 and

∑∞
k=1 β

2
k = |σ|.

The solution of problem (17) has the form

w
(N)
k (t) = βk

2π∫
0

Gk(t, τ)s(N)(τ) dτ, (18)

where

Gk(t, τ) =


e−λk(t−τ)

1−e−2πλk
, 0 6 τ 6 t 6 2π,

e−λk(t−τ+2π)

1−e−2πλk
, 0 6 t 6 τ 6 2π.

It is easy to see that w(N)
k (0) = w

(N)
k (2π).
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Substituting expression (18) into (15), we obtain

V (N)(x′, t) =

N∑
k=1

βk

2π∫
0

Gk(t, τ)s(N)(τ) dτ uk(x′).

Now the flux condition yields

F (t) =

∫
σ

V (N)(x′, t)dx′ =

N∑
k=1

βk

2π∫
0

Gk(t, τ)s(N)(τ) dτ

∫
σ

uk(x′) dx′

=

N∑
k=1

β2
k

2π∫
0

Gk(t, τ)s(N)(τ) dτ.

Thus, for the function s(N), we derived Fredholm integral equation of the first kind:

2π∫
0

N∑
k=1

β2
kGk(t, τ)s(N)(τ) dτ = F (t). (19)

It is well known (see, e.g., [10, 25]) that such equations, in general, are ill-posed in L2

setting. In order to regularize equation (19), we consider the following Fredholm integral
equation of the second kind:

αs(N)
α (t) +

2π∫
0

N∑
k=1

β2
kGk(t, τ)s(N)

α (τ) = F (t), (20)

where α later will tend to 0, i.e., instead of problem (16), (19), we study the regularized
problem ∫

σ

(V (N)
α )t(x

′, t)uk(x′) dx′ + ν

∫
σ

∇′V (N)
α (x′, t) · ∇′uk(x′) dx′

= s(N)
α (t)

∫
σ

uk(x′) dx′, k = 1, 2, . . . , N,

V (N)
α (x′, 0) = V (N)

α (x′, 2π),

αs(N)
α (t) +

2π∫
0

N∑
k=1

β2
kGk(t, τ)s(N)

α (τ) dτ = F (t),

(21)

where

V (N)
α (x′, t) =

N∑
k=1

w
(N)
k,α (t)uk(x′), w

(N)
k,α (t) = βk

2π∫
0

Gk(t, τ)s(N)
α (τ) dτ.
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Lemma 2. Let F ∈ L2
] (0, 2π). Then equation (20) admits a unique solution s

(N)
α ∈

L2
] (0, 2π).

Proof. First, we show that equation (20) is well defined in the spaceL2
] (0, 2π). Obviously,

if F is periodic and s(N)
α is the solution of (20), then s(N)

α also is a periodic function.
Assume that mean value F̄ = 0. Then

αs̄(N)
α +

2π∫
0

N∑
k=1

β2
ks

(N)
α (τ)

2π∫
0

Gk(t, τ) dtdτ = 0. (22)

Since

2π∫
0

Gk(t, τ) dt =
1

1− e−2πλk

( 2π∫
τ

e−λk(t−τ) dt+

τ∫
0

e−λk(t−τ+2π) dt

)
=

1

λk
,

the second term in (22) is equal to
∑N
k=1(β2

k/λk)s̄
(N)
α , and from (22) it follows that(

α+

N∑
k=1

β2
k

λk

)
s̄(N)
α = 0,

and thus, s̄(N)
α = 0.

From this it follows that the mean value V̄
(N)
α (x′) of V (N)

α (x′, t) also vanishes:
V̄

(N)
α (x′) = 0.

It is well known that Fredholm integral equations of the second kind satisfy the
Fredholm alternative (e.g., [27]). So, it is enough to prove the uniqueness of the solution
to (20). Let F (t) = 0. By construction,

2π∫
0

N∑
k=1

β2
kGk(t, τ)s(N)

α (τ) dτ =

∫
σ

V (N)
α (x′, t) dx′,

and the homogeneous equation (20) gives∫
σ

V (N)
α (x′, t) dx′ = −αs(N)

α (t).

Multiplying (21)1 byw(N)
k,α (t), summing by k from 1 toN and integrating over the interval

(0, 2π) yield

2π∫
0

∫
σ

(
V (N)
α

)
t
(x′, t)V (N)

α (x′, t) dx′ dt+ ν

2π∫
0

∫
σ

∣∣∇′V (N)
α (x′, t)

∣∣2 dx′ dt

=

2π∫
0

s(N)
α (t)

∫
σ

V (N)
α (x′, τ) dx′ dτ dt = −α

2π∫
0

∣∣s(N)
α (t)

∣∣2 dt.
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Integrating by parts with respect to t and taking into account the time-periodicity of
V

(N)
α (x′, t), we obtain

ν

2π∫
0

∫
σ

∣∣∇′V (N)
α (x′, t)

∣∣2 dx′ dt+ α

2π∫
0

∣∣s(N)
α (t)

∣∣2 dt = 0.

Thus, s(N)
α (t) = 0 for a.a. t ∈ [0, 2π], and the lemma is proved.

4 A priori estimates of Galerkin approximations

Let the pair (V
(N)
α (x′, t), s

(N)
α (t)) be the solution of problem (21) and U0(x′) be the

solution of problem (6). Consider the integral
∫
σ
V

(N)
α (x′, t)U0(x′) dx′. Since the mean

value V̄ (N)
α (x′) = 0, we have

2π∫
0

∫
σ

V (N)
α (x′, t)U0(x′) dx′ dt =

∫
σ

U0(x′)

( 2π∫
0

V (N)
α (x′, t) dt

)
dx′ = 0.

Therefore, there exists t∗ = t(α,N) such that
∫
σ
V

(N)
α (x′, t∗)U0(x′) dx′ = 0.4 By

periodicity we also have
∫
σ
V

(N)
α (x′, t∗ + 2π)U0(x′) dx′ = 0.

Let f ∈ L2
] (0, 2π). For t ∈ [t∗, t∗+2π], define the notation S∗f (t) = −

∫ t∗+2π

t
f(τ) dτ .

Since the mean value of f vanishes, we have S∗f (t∗ + 2π) = S∗f (t∗) = 0. Moreover,
dS∗f (t)/dt = f(t).

Lemma 3. The following estimate

t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, t)

∣∣2 dx′ dt+

t∗+2π∫
t∗

∫
σ

∣∣∇′S∗
V

(N)
α

(x′, t)
∣∣2 dx′ dt+

t∗+2π∫
t∗

∣∣S∗
s
(N)
α

(τ)
∣∣2 dτ

6 c

t∗+2π∫
t∗

∣∣F (τ)
∣∣2 dτ (23)

holds with a constant c independent of α and N .

Proof. Define γ(N)
k,α (t) =

∫ 2π+t∗
t

w
(N)
k,α (τ) dτ , t∗ 6 t 6 2π + t∗. Multiplying (21)1 by

γ
(N)
k,α (t), summing the obtained relation from k = 1 to k = N and integrating them over

4The point t(α,N) depends on α and N , but in this section, we denote it just t∗ in order to simplify the
notation.
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the interval (t∗, t∗ + 2π), we obtain
t∗+2π∫
t∗

∫
σ

(
V (N)
α

)
t
(x′, t)

t∗+2π∫
t

V (N)
α (x′, τ) dτ dx′ dt

+ ν

t∗+2π∫
t∗

∫
σ

∇′V (N)
α (x′, t)

t∗+2π∫
t

∇′V (N)
α (x′, τ) dτ dx′ dt

=

t∗+2π∫
t∗

s(N)
α (t)

t∗+2π∫
t

∫
σ

V (N)
α (x′, τ) dx′ dτ dt. (24)

Using the relation ∫
σ

V (N)
α (x′, t)dx′ =

N∑
k=1

β2
k

2π∫
0

Gk(t, τ)s(N)
α (τ) dτ

and (21)3, we derive ∫
σ

V (N)
α (x′, t) dx′ = F (t)− αs(N)

α (t).

Therefore, (24) can be written as
t∗+2π∫
t∗

∫
σ

(
V (N)
α

)
t
(x′, t)

t∗+2π∫
t

V (N)
α (x′, τ) dτ dx′ dt

+ ν

t∗+2π∫
t∗

∫
σ

∇′V (N)
α (x′, t)

t∗+2π∫
t

∇′V (N)
α (x′, τ) dτ dx′ dt

=

t∗+2π∫
t∗

s(N)
α (t)

t∗+2π∫
t

(
F (τ)− αs(N)

α (τ)
)

dτ dt. (25)

Then
t∗+2π∫
t∗

s(N)
α (t)

t∗+2π∫
t

(
F (τ)− αs(N)

α (τ)
)

dτ dt

=

t∗+2π∫
t∗

dS∗
s
(N)
α

(t)

dt

t∗+2π∫
t

(
F (τ)− αs(N)

α (τ)
)

dτ dt

=

t∗+2π∫
t∗

S∗
s
(N)
α

(t)F (t) dt− α
t∗+2π∫
t∗

S∗
s
(N)
α

(t)s(N)
α (t) dt

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Time-periodic Poiseuille-type solution with minimally regular flow rate 959

=

t∗+2π∫
t∗

S∗
s
(N)
α

(t)F (t) dt− α
t∗+2π∫
t∗

S∗
s
(N)
α

(t)
dS∗

s
(N)
α

(t)

dt
dt

=

t∗+2π∫
t∗

S∗
s
(N)
α

(t)F (t) dt.

Calculating similarly two integrals J1 and J2 on the left-hand side of (25), we derive that

J1 =

t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, t)

∣∣2 dx′ dt, J2 = 0.

Hence, relation (25) takes the form

t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, t)

∣∣2 dx′ dt =

t∗+2π∫
t∗

S∗
s
(N)
α

(t)F (t) dt. (26)

Now multiply (21)1 by (t − t∗)γ(N)
k,α (t), sum from k = 1 till k = N and integrate over

the interval (t∗, t∗ + 2π):

t∗+2π∫
t∗

∫
σ

(t− t∗)
(
V (N)
α

)
t
(x′, t)

t∗+2π∫
t

V (N)
α (x′, τ) dτ dx′ dt

+ ν

t∗+2π∫
t∗

∫
σ

(t− t∗)∇′V (N)
α (x′, t)

t∗+2π∫
t

∇′V (N)
α (x′, τ) dτ dx′ dt

=

t∗+2π∫
t∗

(t− t∗)s(N)
α (t)

t∗+2π∫
t

(
F (τ)− αs(N)

α (τ)
)

dτ dt. (27)

Evaluating each of the three integrals in (27) and having in mind that mean values of
participating functions are zero, we obtain

t∗+2π∫
t∗

∫
σ

(t− t∗)
∣∣V (N)
α (x′, t)

∣∣2 dx′ dt+
ν

2

t∗+2π∫
t∗

∫
σ

∣∣∇′S∗
V

(N)
α

(x′, t)
∣∣2 dx′ dt

=

t∗+2π∫
t∗

(t− t∗)S∗s(N)
α

(t)F (t) dt− α

2

t∗+2π∫
t∗

∣∣S∗
s
(N)
α

(t)
∣∣2 dt

−
t∗+2π∫
t∗

S∗
s
(N)
α

(t)

t∗+2π∫
t

F (τ) dτ dt. (28)
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From (26) and (28) it follows that

t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, t)

∣∣2dx′ dt 6 ε

t∗+2π∫
t∗

∣∣S∗
s
(N)
α

(t)
∣∣2 dt+

1

2ε

t∗+2π∫
t∗

∣∣F (t)
∣∣2 dt (29)

and

ν

2

t∗+2π∫
t∗

∫
σ

∣∣∇′S∗
V

(N)
α

(x′, t)
∣∣2 dx′ dt

6

∣∣∣∣∣
t∗+2π∫
t∗

(t− t∗)S∗s(N)
α

(t)F (t) dt

∣∣∣∣∣+

∣∣∣∣∣
t∗+2π∫
t∗

S∗
s
(N)
α

(t)

t∗+2π∫
t

F (τ) dτ dt

∣∣∣∣∣
6 ε
(
4π2 + 1

)t∗+2π∫
t∗

∣∣S∗
s
(N)
α

(t)
∣∣2 dt+

1

2ε

t∗+2π∫
t∗

∣∣F (t)
∣∣2 dt+

1

2ε

t∗+2π∫
t∗

∣∣∣∣∣
t∗+2π∫
t

F (τ) dτ

∣∣∣∣∣
2

dt

6
(
4π2 + 1

)(
ε

t∗+2π∫
t∗

∣∣S∗
s
(N)
α

(t)
∣∣2 dt+

1

2ε

t∗+2π∫
t∗

∣∣F (t)
∣∣2 dt

)
. (30)

Let us estimate the integral
∫ t∗+2π

t∗
|S∗
s
(N)
α

(t)|2 dt. Let U0 ∈ W̊ 1,2(σ) be a solution of
problem (6). Remind that the flux of U0 is nonzero, κ0 =

∫
σ
U0(x′) dx′ > 0 (see (7)).

Since {uk(x′)} is a basis in W̊ 1,2(σ), U0 can be expressed as a Fourier series in W̊ 1,2(σ):

U0(x′) =

∞∑
k=1

akuk(x′), ak ∈ R.

Let us multiply relations (21)1 by ak and sum them over k. This gives∫
σ

(
V (N)
α

)
t
(x′, t)U0(x′) dx′ + ν

∫
σ

∇′V (N)
α (x′, t) · ∇′U0(x′) dx′

= s(N)
α (t)

∫
σ

U0(x′) dx′ = s(N)
α (t)κ0. (31)

On the other hand, multiplying (6) by V (N)
α (x′, t) and integrating by parts in σ, we obtain

ν

∫
σ

∇′U0(x′) · ∇′V (N)
α (x′, t) dx′ =

∫
σ

V (N)
α (x′, t) dx′ = F (t)− αs(N)

α (t). (32)

Substituting (32) into (31) yields∫
σ

(
V (N)
α

)
t
(x′, t)U0(x′) dx′ + F (t)− αs(N)

α (t) = s(N)
α (t)κ0,
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i.e.,

(κ0 + α)s(N)
α (t) =

∫
σ

(
V (N)
α

)
t
(x′, t)U0(x′) dx′ + F (t). (33)

Integrating (33) with respect to t from τ to t∗ + 2π, we obtain

(κ0 + α)

t∗+2π∫
τ

s(N)
α (t) dt = −(κ0 + α)S∗

s
(N)
α

(τ)

= −
∫
σ

V (N)
α (x′, τ)U0(x′) dx′ +

t∗+2π∫
τ

F (t) dt. (34)

Here we have used the choice of the point t∗, that is∫
σ

V (N)
α (x′, t∗)U0(x′) dx′ =

∫
σ

V (N)
α (x′, t∗ + 2π)U0(x′) dx′ = 0,

and hence,
t∗+2π∫
τ

∫
σ

(
V (N)
α

)
t
(x′, t)U0(x′) dx′ dt = −

∫
σ

V (N)
α (x′, τ)U0(x′) dx′.

From (34) it follows that

(κ0 + α)2
t∗+2π∫
t∗

∣∣S∗
s
(N)
α

(τ)
∣∣2 dτ

6 2

t∗+2π∫
t∗

(∫
σ

V (N)
α (x′, τ)U0(x′) dx′

)2

dτ + 2

t∗+2π∫
t∗

( t∗+2π∫
τ

F (t) dt

)2

dτ

6 2

t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, τ)

∣∣2 dx′
∫
σ

∣∣U0(x′)
∣∣2 dx′ dτ + 2

t∗+2π∫
t∗

∣∣S∗F (τ)
∣∣2 dτ

6 c

t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, τ)

∣∣2dx′
∫
σ

∣∣∇′U0(x′)
∣∣2 dx′ dτ + 2

t∗+2π∫
t∗

∣∣S∗F (τ)
∣∣2 dτ

6 c

( t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, τ)

∣∣2 dx′ dτ +

t∗+2π∫
t∗

∣∣F (τ)
∣∣2 dτ

)
. (35)

Substituting (35) into (29) yields
t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, t)

∣∣2 dx′ dt 6 cε

t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, t)

∣∣2 dx′ dt+ cε

t∗+2π∫
t∗

∣∣F (t)
∣∣2 dt,
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and choosing ε sufficiently small, we obtain
t∗+2π∫
t∗

∫
σ

∣∣V (N)
α (x′, t)

∣∣2 dx′ dt 6 c

t∗+2π∫
t∗

∣∣F (t)
∣∣2 dt. (36)

Estimates (36) and (35) give
t∗+2π∫
t∗

∣∣S∗
s
(N)
α

(τ)
∣∣2 dτ 6 c

t∗+2π∫
t∗

∣∣F (τ)
∣∣2 dτ. (37)

Finally, from (30) and (37) it follows that
t∗+2π∫
t∗

∫
σ

∣∣∇′S∗
V

(N)
α

(x′, t)
∣∣2 dx′ dt 6 c

t∗+2π∫
t∗

∣∣F (t)
∣∣2 dt. (38)

The constants in (36)–(38) are independent of α and N .

5 Convergence of Galerkin approximations. Proof of Theorem 1

5.1 Proof of existence

The constructed approximate solutions (V
(N)
α (x′, t), s

(N)
α (t)) satisfy equalities (21)1. Mul-

tiplying these relations by arbitrary functions dk(t) ∈ L2
℘(0, 2π) such that d′k(t) ∈

L2
] (0, 2π), summing over k from k = 1 to k = M,M 6 N , integrating with respect

to t and then integrating by parts, we obtain the integral identity
2π∫
0

∫
σ

V (N)
α (x′, t) ηt(x

′, t) dx′ dt+ ν

2π∫
0

∫
σ

∇′S∗
V

(N)
α

(x′, t) · ∇′ηt(x′, t) dx′ dt

=

2π∫
0

S∗
s
(N)
α

(τ)

∫
σ

ηt(x
′, t) dx′ dt (39)

for test functions η having the form η(x′, t) =
∑M
k=1 dk(t)uk(x′).

Recall that (V
(N)
α (x′, t), s

(N)
α (t)) obey a priori estimate (23) with a constant c inde-

pendent of α and N .
Since all functions in (23) are 2π-periodic, inequality (23) is equivalent to
2π∫
0

∫
σ

∣∣V (N)
α (x′, t)

∣∣2 dx′ dt+

2π∫
0

∫
σ

∣∣∇′S∗
V

(N)
α

(x′, t)
∣∣2 dx′ dt+

2π∫
0

∣∣S∗
s
(N)
α

(τ)
∣∣2 dτ

6 c

2π∫
0

∣∣F (τ)
∣∣2 dτ. (40)
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Let us fix N and choose a subsequences {αl} and {(V (N)
αl (x′, t), s

(N)
αl (t))} such that

liml→∞ αl = 0, {V (N)
αl } converges weakly in L2

] (0, 2π;L2(σ)) to some V (N), {S∗
V

(N)
αl

}
converges weakly in L2

℘(0, 2π; W̊ 1,2(σ)) to SV (N)
5, while {s(N)

αl } converges weakly in
W−1,2℘ (0, 2π) to s(N). The last convergence means that

lim
l→∞

2π∫
0

S∗
s
(N)
αl

(t) η′(t) dt =

2π∫
0

Ss(N)(t) η′(t) dt =
〈
s(N), η

〉
∀η ∈W 1,2

℘ (0, 2π),

where s(N) ∈ W−1,2℘ (0, 2π), and Ss(N) ∈ L2
] (0, 2π) is a primitive of s(N) in the distri-

butional sense.
Obviously, for the limit functions V (N) and Ss(N) , estimate (40) remains valid with

a constant c independent of N . In (39), taking α = αl and passing to the limit as αl → 0,
we get

2π∫
0

∫
σ

V (N)(x′, t) ηt(x
′, t) dx′ dt+ ν

2π∫
0

∫
σ

∇′SV (N)(x′, t) · ∇′ηt(x′, t) dx′ dt

=

2π∫
0

Ss(N)(τ)

∫
σ

ηt(x
′, t) dx′ dt. (41)

Let us show that V (N)(x′, t) satisfy the flux condition∫
σ

V (N)(x′, t) dx′ = F (t). (42)

Integrating equation (21)3 for α = αl from t to 2π yields

αlSs(N)
αl

(t) +

2π∫
t

∫
σ

V (N)
αl

(x′, τ) dx′ dτ = SF (t). (43)

Obviously, the sequence {ϕ(N)
l (τ) =

∫
σ
V

(N)
αl (x′, τ)dx′} is bounded in L2(0, 2π). So

we may assume, without loss of generality, that {ϕ(N)
l } is weakly convergent to ϕ(N) in

L2(0, 2π). Then the sequence of primitives S
ϕ

(N)
l

(t) = −
∫ 2π

t
ϕ
(N)
l (τ) dτ → Sϕ(N)(t)

for all t ∈ [0, 2π], and hence, ‖S
ϕ

(N)
l

− Sϕ(N)‖L2(0,2π) → 0 as l → ∞ (αl → 0).
From (43) we have

‖S
ϕ

(N)
l

− SF ‖L2(0,2π) = αl‖Ss(N)
αl

‖L2(0,2π) 6 cαl → 0 as l→∞.

5Recall that for U ∈ L2
] (0, T ;L2(σ)), the function SU coincides with the primitive of U .
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Therefore,

2π∫
t

∫
σ

V (N)(x′, τ) dx′ dτ =

2π∫
t

F (τ) dτ for a.a. t ∈ [0, 2π],

and differentiating this equality with respect to t, we get (42).
Now we choose a subsequence {(V (Nk)(x′, t), s(Nk)(t))} such that {V (Nk)} con-

verges weakly in L2
] (0, 2π;L2(σ)) to some V , {SV (Nk)} converges weakly in L2

℘(0, 2π;

W̊ 1,2(σ)) to SV , and {s(Nk)} converges weakly in W−1,2℘ (0, 2π) to s. In (41), passing to
the limit over the subsequence as Nk → +∞ yields

2π∫
0

∫
σ

V (x′, t) ηt(x
′, t)dx′ dt+ ν

2π∫
0

∫
σ

∇′SV (x′, t) · ∇′ηt(x′, t) dx′ dt

=

2π∫
0

Ss(τ)

∫
σ

ηt(x
′, t) dx′ dt. (44)

Exactly as above, we can prove that V (x′, t) satisfies the flux condition (12). How-
ever, the integral identity (44) is proved, up to now, only for test functions η, which
can be represented as the sums: η(x′, t) =

∑M
k=1 dk(t)uk(x′) with dk(t) ∈ L2

℘(0, 2π)
such that d′k(t) ∈ L2

] (0, 2π). After we have passed to the limit in (41) as Nl → +∞,
the subscript M in these sums can be arbitrary large natural number. Such sums are
dense in the space V = {η: η ∈ L2

℘(0, 2π; W̊ 1,2(σ)), ηt ∈ L2
] (0, 2π;L2(σ))}. This

can be proved exactly in the same way as it is done in the book [9] for the case of an
initial boundary value problem. Thus, they also are dense in the subspace V1 = {η: η ∈
L2
℘(0, 2π; W̊ 1,2(σ)), ηt ∈ L2

] (0, 2π;W 1,2(σ))} ⊂ V , and therefore, (41) remains valid
for all η ∈ V1. This proves that (V (x′, t), s(t)) satisfies the integral identity (13), and
thus, it is a weak solution of problem (8). Estimate (14) for (V (x′, t), s(t)) follows from
estimate (40) for the approximate solutions.

5.2 Proof of uniqueness

Assume that F (t) = 0. Since ηt ∈ L2
] (0, 2π;W 1,2(σ)), we take

η(x′, t) =

2π∫
t

(
SV (x′, τ)− S̄V (x′)

)
dτ

=

2π∫
t

(
−

2π∫
τ

V (x′, µ) dµ+
1

2π

2π∫
0

2π∫
t

V (x′, µ) dµdt

)
dτ.
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Obviously, η ∈ V1. Putting this η into identity (13), we obtain
2π∫
0

∫
σ

V (x′, t)
(
SV (x′, t)− S̄V (x′)

)
dx′ dt

+ ν

2π∫
0

∫
σ

∇′SV (x′, t) · ∇′
(
SV (x′, t)− S̄V (x′)

)
dx′ dt

=

2π∫
0

Ss(t)

∫
σ

(
SV (x′, t)− S̄V (x′)

)
dx′ dt. (45)

Since ∫
σ

V (x′, t) dx′ = F (t) = 0,

by Fubini’s theorem and the time-periodicity of the function V (x′, t) we have∫
σ

(
SV (x′, t)− S̄V (x′)

)
dx′

=

∫
σ

(
−

2π∫
t

V (x′, τ) dτ

)
dx′ +

1

2π

∫
σ

( 2π∫
0

2π∫
t

V (x′, τ) dτ dt

)
dx′

= −
2π∫
t

(∫
σ

V (x′, τ) dx′
)

dτ +
1

2π

2π∫
0

2π∫
t

(∫
σ

V (x′, τ) dx′
)

dτ dt = 0;

2π∫
0

∫
σ

V (x′, t)
(
SV (x′, t)− S̄V (x′)

)
dx′ dt

=
1

2

2π∫
0

d

dt

∫
σ

∣∣SV (x′, t)
∣∣2 dt− 1

2

2π∫
0

d

dt

∫
σ

SV (x′, t)S̄V (x′) dx dt = 0;

2π∫
0

∫
σ

∇′SV (x′, t) · ∇′
(
SV (x′, t)− S̄V (x′)

)
dx′ dt

=

2π∫
0

∫
σ

∣∣∇′(SV (x′, t)− S̄V (x′)
)∣∣2 dx′ dt

+

2π∫
0

∫
σ

∇′S̄V (x′) ·
(
SV (x′, t)− S̄V (x′)

)
dx′ dt
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=

2π∫
0

∫
σ

∣∣∇′(SV (x′, t)− S̄V (x′)
)∣∣2 dx′ dt

−
∫
σ

∇′S̄V (x′) · ∇′
( 2π∫

0

(
SV (x′, t)− S̄V (x′)

))
dtdx′

=

2π∫
0

∫
σ

∣∣∇′(SV (x′, t)− S̄V (x′)
)∣∣2 dx′ dt.

Therefore, from (45) it follows that

2π∫
0

∫
σ

∣∣∇′(SV (x′, t)− S̄V (x′)
)∣∣2 dx′ dt = 0.

Then ∇′(SV (x′, t) − S̄V (x′)) = 0, and hence, SV (x′, t) − S̄V (x′) = m(t). Integrating
over σ, we get

|σ|m(t) = −
∫
σ

2π∫
t

V (x′, τ) dτ dx′ +
1

2π

∫
σ

2π∫
0

2π∫
τ

V (x′, µ) dµdτ dx′

= −
2π∫
t

(∫
σ

V (x′, τ) dx′
)

dτ +
1

2π

2π∫
0

2π∫
τ

(∫
σ

V (x′, µ)dx′
)

dµdτ = 0.

Thus, SV (x′, t) = S̄V (x′), and since SV (x′, 0) = SV (x′, 2π) = 0, we conclude that
SV (x′, t) = 0 for a.a. (x′, t) ∈ σ × [0, 2π], that is

∫ 2π

t
V (x′, τ) dτ = 0 for a.a. x′ and t.

This implies V (x′, t) = 0.
From identity (13) it follows that

2π∫
0

Ss(t)

∫
σ

ηt(x
′, t) dx′ dt = 0 ∀η ∈ V1. (46)

In (46), we take η = b(t)U0(x′), where b ∈ W 1,2
℘ (0, 2π) is arbitrary, and U0(x′) is the

solution of problem (6). Recall that
∫
σ
U0(x′) dx′ = κ0 6= 0. Then (46) takes the form

2π∫
0

Ss(t)

∫
σ

ηt(x
′, t) dx′ dt = κ0

2π∫
0

Ss(t)b
′(t) dt = 0 ∀b ∈W 1,2

℘ (0, 2π).

Thus, Ss(t) = const. Since Ss ∈ L2
] (0, 2π), i.e., the mean value of Ss(t) is equal to zero,

we get that Ss(t) = 0. Therefore, the functional s = 0.
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22. K. Pileckas, R. Čiegis, Existence of nonstationary Poiseuille-type solutions under minimal
regularity assumptions, Z. Angew. Math. Phys., 71(192), 2020, https://doi.org/10.
1007/s00033-020-01422-5.

23. K. Pileckas, V. Keblikas, Existence of nonstationary Poiseuille solution, Sib. Math. J., 46:
514–526, 2005, https://doi.org/10.1007/s11202-005-0053-7.

24. J.L.M. Poiseuille, Recherches Expérimentales sur le Mouvement des Liquides dans les Tubes
de Très-Petits Diamètres, Imprimerie Royale, Paris, 1844.

25. W.W. Schmaedeke, Approximate solutions for the Volterra equations of the first kind, J. Math.
Anal. Appl., 23(3):604–613, 1968, https://doi.org/10.1016/0022-247X(68)
90140-6.

26. S.S. Sritharan, On the acceleration of viscous fluid through an unbounded channel, J. Math.
Anal. Appl., 168(1):255–283, 1992, https://doi.org/10.1016/0022-247X(92)
90204-Q.

27. F.G. Tricomi, Integral Equations, Intersience, New York, 1957.

28. J.R. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries
when the pressure gradient is known, J. Physiol., 127(3):553–563, 1955, https://doi.
org/10.1113/jphysiol.1955.sp005276.

https://www.journals.vu.lt/nonlinear-analysis

https://doi.org/10.1016/S1874-5792(07)80012-7
https://doi.org/10.1016/S1874-5792(07)80012-7
https://doi.org/10.1007/s00021-006-0232-8
https://doi.org/10.1007/s00033-020-01422-5
https://doi.org/10.1007/s00033-020-01422-5
https://doi.org/10.1007/s11202-005-0053-7
https://doi.org/10.1016/0022-247X(68)90140-6
https://doi.org/10.1016/0022-247X(68)90140-6
https://doi.org/10.1016/0022-247X(92)90204-Q
https://doi.org/10.1016/0022-247X(92)90204-Q
https://doi.org/10.1113/jphysiol.1955.sp005276
https://doi.org/10.1113/jphysiol.1955.sp005276
https://www.journals.vu.lt/nonlinear-analysis

	Introduction
	Notation and formulation of main result
	Function spaces
	Formulation of main result

	Construction of Galerkin approximations
	A priori estimates of Galerkin approximations
	Convergence of Galerkin approximations. Proof of Theorem1
	Proof of existence
	Proof of uniqueness

	References

