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Abstract. We consider a new fractional impulsive differential hemivariational inequality, which
captures the required characteristics of both the hemivariational inequality and the fractional
impulsive differential equation within the same framework. By utilizing a surjectivity theorem
and a fixed point theorem we establish an existence and uniqueness theorem for such a problem.
Moreover, we investigate the perturbation problem of the fractional impulsive differential
hemivariational inequality to prove a convergence result, which describes the stability of the solution
in relation to perturbation data. Finally, our main results are applied to obtain some new results for
a frictional contact problem with the surface traction driven by the fractional impulsive differential
equation.

Keywords: fractional differential variational inequality, fractional impulsive equation, hemivaria-
tional inequality, frictional contact.

1 Introduction

Let Y , Z1, Z2 be three reflexive and separable Banach spaces, and letZ∗2 be the dual space
of Z2. For a prefixed T > 0, let Q = [0, T ], f : Q× Z1 × Z2 → Z1, A : Q× Z2 → Z∗2 ,
N : Z2 → Y , J : Q×Y → R, and g : Q×Z1 → Z∗2 . This paper focuses on the following
fractional impulsive differential hemivariational inequality (FIDHVI): find z : Q → Z1

and y : Q→ Z2 such that
CDκ

0 z(t) = f
(
t, z(t), y(t)

)
, t ∈ Q, t 6= τj , j = 1, 2, . . . ,m,

z(0) = z0, Λz(τj) = Θj
(
z(τ−j )

)
, j = 1, 2, . . . ,m,〈

A
(
t, y(t)

)
, x
〉

+ J◦
(
t,Ny(t);Nx

)
>
〈
g
(
t, z(t)

)
, x
〉
∀(t, x) ∈ Q× Z2,
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where CDκ
0 (0 < κ 6 1) stands for the Caputo derivative of fractional order κ, Θj :

Z1 → Z1 is an impulsive function with j = 1, 2, . . . ,m, Λz(τj) is given by Λz(τj) =
z(τ+

j ) − z(τ−j ) with z(τ+
j ) and z(τ−j ) being the left and right limit of z at t = τj ,

respectively, and 0 = τ0 < τ1 < · · · < τm < τm+1 = T .
We remark that for appropriate and suitable choices of the spaces and the above

defined maps, FIDHVI includes a number of differential variational inequalities as special
cases [5, 12, 13, 26, 29].

It is worth mentioning that FIDHVI is a new model, which captures the required char-
acteristics of both the hemivariational inequality and the fractional impulsive differential
equation within the same framework. In addition, FIDHVI can be used to describe the
frictional contact problem with the surface traction driven by the fractional impulsive
differential equation (see Section 5).

The study of differential variational inequality (DVI) can ascend to the work of Aubin
and Cellina [1]. DVI described by the following generalized abstract system

ẏ(t) = f
(
t, y(t), x(t)

)
, G

(
y(0), y(T )

)
= 0 ∀t ∈ Q,

t∫
0

(
v − x(t)

)T
F
(
t, y(t), x(t)

)
dt > 0 ∀v ∈ K.

was then examined by Pang and Stewart [20] in finite dimensional Euclidean spaces.
Here K is a nonempty, closed, and convex subset of Rm, f : Q × Rn × Rm → Rn,
F : Q×Rn×Rm → Rm, and G : Rn×Rn → Rn are three given functions. As pointed
out by Pang and Stewart [20], DVI provides a powerful tool of describing many practical
problems such as fluid mechanical problems, engineering operation research, dynamic
traffic networks, economical dynamics, and frictional contact problems [6, 23, 25]. In
2010, Li et al. [11] discussed the solvability for a class of DVI in finite dimensional
spaces. Later, Chen and Wang [4] employed the regularized time-stepping method to
consider a class of parametric DVI and provided convergence analysis for this method in
finite dimensional Euclidean spaces. Liu et al. [14] studied a class of nonlocal semilinear
evolution DVI in Banach spaces. By using the theory of topological degree they obtained
some existence results for their model under some suitable assumptions. Recently, in order
to describe a free boundary problem raising from contact mechanics, Sofonea et al. [21]
studied a differential quasivariational inequality and proved the stability of the solutions
for such a problem. For more works related to DVIs, we refer the reader to [10,13,15,28]
and the the references therein.

As is well known, fractional calculus, that is, the noninteger calculus, allows us to
define derivatives of arbitrary order and has many applications in practical problems [9].
Recently, by applying the fixed point approach, Ke et al. [8] discussed the solvability of
a class of fractional DVI in finite dimensional spaces. Using the Rothe method, Zeng et
al. [30] studied a class of parabolic fractional differential hemivariational inequalities in
Banach spaces. Xue et al. [29] discussed the existence of the mild solutions of a class
of fractional DVIs in Banach spaces under some appropriate hypotheses. Very recently,
Weng et al. [27] considered a fractional nonlinear evolutionary delay system driven by
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A new class of fractional impulsive differential hemivariational inequalities 201

a hemivariational inequality in Banach spaces and established an existence theorem for
such a system by employing the KKM theorem, fixed point theorem for condensing set-
valued operators, and the theory of fractional calculus.

It is worth noting that, in the real world, many systems are often disturbed suddenly,
and systems changes suddenly in a short time. These phenomena are called impulsive
effects. We note that diverse numerical methods and theoretical results have been widely
studied for differential equations with impulsive effects using different assumptions in
the literature; for instance, we refer the reader to [2] and the references therein. In [17]
and [16], Migórski and Ochal studied the existence of the solutions for two class of
nonlinear second-order impulsive evolution inclusions problems. Recently, Li et al. [12]
introduced a class of impulsive DVI in finite dimensional spaces and presented some
existence and stability results of the solutions under some suitable assumptions. However,
in some practical situations applications, it is necessary to consider FIDHVI. To illustrate
this point, a fractional contact problem with the surface traction driven by the fractional
impulsive differential equation will be considered as an application of FIDHVI in Section
5. The discipline of FIDHVI is still not explored, and very little is known. To fill this gap,
in this paper, we seek to make a contribution in this new direction.

The outline of this work is as follows. In the next section, we present some necessary
preliminaries and notations. After that, Section 3 establishes an existence and uniqueness
result concerning FIDHVI under some mild conditions. In Section 4, we provide a
stability result of the solution of FIDHVI with respect to the perturbation of data. Finally,
we apply our main results for FIDHVI to the frictional contact problem with the surface
traction driven by the fractional impulsive differential equation in Section 5.

2 Preliminaries

For a Banach space X , we denote C(Q;X) the space of all functions x : Q → X
that is continuous, Lp(Q;X) the space of all pth power Bochner integrable functions
on Q taking values in X , IC(Q;X) the space of all functions x : Q → X such that
x : Q \ ∪j=1,...,m{τj} → X is continuous, and z(τ+

j ) and z(τ−j ) exist with z(τj) =

z(τ−j ), P (X) the set of all nonempty subsets of X , Pc(X) the set of all closed subsets
of X , Pk(cb)v(X) the set of all compact (closed and bounded) convex subsets of X . For
a set U ⊂ X , we define ‖U‖X = sup{‖u‖X |u ∈ U}. The norms in spaces C(Q;X),
Lp(Q;X), and IC(Q;X) are respectively defined by ‖z‖C(Q;X) = maxt∈Q ‖z(t)‖X ,
‖z‖Lp(Q;X) = (

∫
Q
‖z(t)‖pX dt)1/p, and ‖z‖IC(Q;X) = supt∈Q ‖z(t)‖.

In the sequel, let Γ(·) denote the gamma function.

Definition 1. (See [9].) The qth fractional integral of z(s) with q > 0 is defined by

D−q0 z(s) :=
1

Γ(q)

s∫
0

(s− t)q−1z(t) dt, s > 0.
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Definition 2. (See [9].) For α ∈ (n − 1, n), the Caputo fractional-order derivative of α
of z(s), denoted by CDα

0 z(s), can be defined by setting

CDα
0 z(s) :=

1

Γ(n− α)

s∫
0

(s− t)n−α−1z(n)(t) dt, s > 0.

Definition 3. (See [3].) The generalized directional derivative of a locally Lipschitz
functional F : Z2 → R at x ∈ Z2 in the direction z ∈ Z2 and the generalized gradient of
function F at v, denoted respectively by F ◦(x; z) and ∂F (v), are respectively defined by

F ◦(x; z) = lim sup
y→x, µ→0+

F (y + µz)− F (y)

µ
∀x, z ∈ Z2

and
∂F (v) =

{
η ∈ Z∗2

∣∣ F ◦(v; z) > 〈η, z〉 ∀z, v ∈ Z2

}
.

Definition 4. (See [22].) An operator B : Z2 → Z∗2 is said to be

(i) monotone if 〈Bx1 −Bx2, x1 − x2〉 > 0 for all x1, x2 ∈ Z2;
(ii) strongly monotone if there exists mB > 0 satisfying 〈Bx1 − Bx2, x1 − x2〉 >

mB‖x1 − x2‖2Z2
for all x1, x2 ∈ Z2;

(iii) pseudomomotone if B is bounded and xn → x weakly in Z2 with lim sup〈Bxn,
xn − y〉 6 0 yields that lim inf〈Bxn, xn − y〉 > 〈Bx, x− y〉 for all y ∈ Z2;

(iv) demicontinuous if zn → z in Z2 implies that Bzn → Bz weakly in Z∗2 ;
(v) bounded if Ω ⊂ Z2 is bounded implies B(Ω) ⊂ Z∗2 is bounded.

Definition 5. (See [18].) A set-valued operator B : Z2 → P (Z∗2 ) is said to be pseudo-
momotone if

(i) for every x ∈ Z2, Bx ∈ Pcb(Z∗2 );
(ii) for any subspace H of Z2, B is upper semicontinuous from H to Z∗2 endowed

with the weak topology;
(iii) if zn → z weakly inZ2 and z∗n ∈ Bzn such that lim sup〈z∗n, zn−z〉 6 0, then for

every x ∈ Z2, there exists z∗ ∈ Bz such that lim inf〈z∗n, zn− x〉 > 〈z∗, z− x〉.

Lemma 1. (See [7, Prop. 5.6].) Assume that U1 and U2 are two reflexive Banach spaces,
ψ : U1 → U2 is a linear, continuous, and compact operator, and ψ∗ : U∗2 → U∗1 is
the adjoint operator of ψ. If ϕ : U → R is a locally Lipschitz functional satisfying
‖∂ϕ(u)‖U∗

1
6 cϕ(1 + ‖u‖U1) for all u ∈ U1, where cϕ > 0 is a constant, then the set-

valued operator W : U1 → P (U∗1 ), defined by W (u) = ψ∗∂ϕ(ψ(u)) for all u ∈ U1, is
pseudomonotone.

Lemma 2. (See [30, Cor. 7].) Assume that U0 is a reflexive Banach spaces, and let the
following conditions hold:

(i) T : U0 → U∗0 is pseudomomotone and strong monotone with constant cT > 0;
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(ii) G : U0 → P (U∗0 ) is pseudomomotone, and there exist two constants cG, c∗ > 0
satisfying ‖G(u)‖U∗

0
6 cG‖u‖U0

+ c∗ for all u ∈ U0;
(iii) cG < cT .

Then T +G is surjective in U∗0 .

According to [18, Prop. 3.37], we can rewrite FIDHVI as follows.

Problem 1. Find z : Q→ Z1 and y : Q→ Z2 such that

CDκ
0 z(t) = f

(
t, z(t), y(t)

)
, t ∈ Q, t 6= τj , j = 1, 2, . . . ,m,

z(0) = z0, Λz(τj) = Θj
(
z(τ−j )

)
, j = 1, 2, . . . ,m,

A
(
t, y(t)

)
+N∗∂J

(
t,Ny(t)

)
3 g
(
t, z(t)

)
∀t ∈ Q.

To study Problem 1, we consider the following fractional impulsive Cauchy problem

CDκ
0 z(t) = u(t), t ∈ Q, t 6= τj , j = 1, 2, . . . ,m,

z(0) = z0, Λz(τj) = Θj
(
z(τ−j )

)
, j = 1, 2, . . . ,m.

Noting the fact that

z(t) = z0 −
1

Γ(κ)

a∫
0

(a− s)κ−1u(s) ds+
1

Γ(κ)

t∫
0

(t− s)κ−1u(s) ds, a > 0

solves the Cauchy problem

CDκ
0 z(t) = u(t), z(0) = z0 −

1

Γ(κ)

a∫
0

(a− s)κ−1u(s) ds, t ∈ Q,

we have the following result immediately.

Lemma 3. Let κ ∈ (0, 1) and u ∈ C(Q;Z1). Then the Cauchy problem

CDκ
0 z(t) = u(t), t ∈ Q, z(a) = z0, a > 0,

is equivalent to the integral equation

z(t) = z0 −
1

Γ(κ)

a∫
0

(a− s)κ−1u(s) ds+
1

Γ(κ)

t∫
0

(t− s)κ−1u(s) ds.

Lemma 4. For κ ∈ (0, 1) and u ∈ C(Q;Z1), the Cauchy problem

CDκ
0 z(t) = u(t), t ∈ Q, t 6= τj , j = 1, 2, . . . ,m,

z(0) = z0, Λz(τj) = Θj
(
z(τ−j )

)
, j = 1, 2, . . . ,m,

(1)

Nonlinear Anal. Model. Control, 27(2):199–220, 2022
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is equivalent to the integral equation

z(t) = z0 +

j∑
i=1

Θi
(
z(τ−i )

)
+

1

Γ(κ)

t∫
0

(t− s)κ−1u(s) ds ∀t ∈ (tj , tj+1]. (2)

Proof. Assume that (1) holds. If t ∈ [0, τ1], then CDκ
0 z(t) = u(t) for all t ∈ [0, τ1] with

z(0) = z0. Clearly,

z(t) = z0 +
1

Γ(κ)

t∫
0

(t− s)κ−1u(s) ds.

If t ∈ (τ1, τ2], then

CDκ
0 z(t) = u(t), t ∈ (τ1, τ2], with z(τ+

1 ) = z(τ−1 ) +Θ1

(
z(τ−j )

)
,

and so Lemma 3 implies that

z(t) = z(τ+
1 )− 1

Γ(κ)

τ1∫
0

(τ1−s)κ−1u(s) ds+
1

Γ(κ)

t∫
0

(t−s)κ−1u(s) ds

= z(τ−1 ) +Θ1

(
z(τ−1 )

)
− 1

Γ(κ)

τ1∫
0

(τ1−s)κ−1u(s) ds+
1

Γ(κ)

t∫
0

t−sκ−1u(s) ds

= z0 +Θ1(z(τ−1 )) +
1

Γ(κ)

t∫
0

(t−s)κ−1u(s) ds.

If t ∈ (τ2, τ3], then using Lemma 3 again, we have

z(t) = z
(
τ+
2

)
− 1

Γ(κ)

τ2∫
0

(τ1−s)κ−1u(s) ds+
1

Γ(κ)

t∫
0

(t−s)κ−1u(s) ds

= z(τ−2 ) +Θ2

(
z(τ−2 )

)
− 1

Γ(κ)

τ2∫
0

(τ1−s)κ−1u(s) ds+
1

Γ(κ)

t∫
0

(t−s)κ−1u(s) ds

= z0 +Θ1

(
z(τ−1 )

)
+Θ2

(
z(τ−2 )

)
+

1

Γ(κ)

t∫
0

(t−s)κ−1u(s) ds.

Similarly, if t ∈ (τj , τj+1], then we can show that

z(t) = z0 +

j∑
i=1

Θi
(
z(τ−i )

)
+

1

Γ(κ)

t∫
0

(t− s)κ−1u(s) ds ∀t ∈ (tj , tj+1].
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Conversely, suppose that (2) holds. If t ∈ (0, τ1], then we know that (1) holds by the
fact that CDκ

0 is the inverse of D−κ0 . If t ∈ (τj , τj+1], j = 1, 2, . . . ,m, since the Caputo
fractional derivative for a constant is zero, one has CDκ

0 z(t) = u(t), t ∈ (τj , τj+1] and
Λz(τj) = Θj(z(τ

−
j )).

From Lemma 4 we have the following definition.

Definition 6. A pair (z, y) ∈ IC(Q;Z1) × IC(Q;Z2) is said to be a solution of Prob-
lem 1 if it satisfies the following system:

z(t) = z0 +

j∑
i=1

Θi
(
z(τ−i )

)
+

1

Γ(κ)

t∫
0

(t− s)κ−1f
(
s, z(s), y(s)

)
ds ∀t ∈ (tj , tj+1], (3)

A
(
t, y(t)

)
+ η = g

(
t, z(t)

)
, η ∈ N∗∂J

(
t,Ny(t)

)
∀t ∈ Q. (4)

Finally, we recall the following nonlinear impulsive Gronwall inequality.

Lemma 5. (See [24, Lemma 3.4].) Let z ∈ IC(Q;Z1) satisfy the following inequality:

∥∥z(t)∥∥ 6 k1 + k2

t∫
0

(t− s)κ−1
∥∥z(s)∥∥ds+

∑
0<τj<t

dj
∥∥z(τ−j )

∥∥,
where k1, k2, dj > 0 are constants. Then∥∥z(t)∥∥ 6 k1

[
1 +D∗Eκ(k2Γ(κ)tκ)

]j
Eκ
(
k2Γ(κ)tκ

)
∀t ∈ (tj , tj+1],

where D∗ = max{dj , j = 1, . . . ,m}, and Eγ is the Mittag-Leffler function [9] defined
by Eγ(h) =

∑∞
j=0 h

j/Γ(γh+ 1) for all h ∈ C with Re(γ) > 0.

3 Existence and uniqueness

To study the solvability of Problem 1, we need the following assumptions.

(Hf ) f : Q× Z1 × Z2 → Z1 is a map such that

(i) for any given (z, y) ∈ Z1 × Z2, f(·, z, y) is continuous;
(ii) for any (t, zi, yi) ∈ Q×Z1×Z2, i = 1, 2, there exists M1 > 0 satisfying
‖f(t, z1, y1)− f(t, z2, y2)‖Z1 6M1(‖z1 − z2‖Z1 + ‖y1 − y2‖Z2);

(iii) there exists φ ∈ L1/p
+ [0, T ] (0 < p < κ < 1) satisfying ‖f(t, z, y)‖Z1

6
φ(t) for all (t, z, y) ∈ Q× Z1 × Z2.

(HI ) For each j ∈ {1, 2, . . . ,m}, Θj : Z1 → Z1 is bounded, and there exists dj > 0
satisfying ‖Θj(z1)−Θj(z1)‖Z1 6 dj‖z1 − z2‖Z1 for all z1, z2 ∈ Z1.

Nonlinear Anal. Model. Control, 27(2):199–220, 2022
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(HA) A : Q× Z2 → Z∗2 is a map such that

(i) for any given y ∈ Z2, A(·, y) is continuous;
(ii) for any given t ∈ Q, A(t, ·) is bounded, demicontinuous, and strongly

monotone with the constant mA.

(HN ) N ∈ L(Z2, Y ) is a compact operator.
(HJ ) J : Q× Y → R is a functional satisfying

(i) for any given x ∈ Y , J(·, x) is continuous;
(ii) for any given t ∈ Q, J(t, ·) is locally Lipschitz;

(iii) there exists mJ > 0 satisfying ‖∂J(t, x)‖Z∗
2
6 mJ(‖x‖Y + 1) for all

(t, x) ∈ Q× Y ;
(iv) there exists cJ > 0 satisfying 〈θ1 − θ2, y1 − y2〉 > −cJ‖y1 − y2‖2Y for

all θi ∈ ∂J(t, yi), (t, yi) ∈ Q× Y , i = 1, 2.

(Hg) g : Q× Z1 → Z∗2 is a map such that

(i) for any given z ∈ Z1, g(·, z) is continuous;
(ii) there exists mg > 0 satisfying ‖g(t, z1)− g(t, z2)‖Z∗

2
6 mg‖z1 − z2‖Z1

for all (t, zi) ∈ Q× Z1, i = 1, 2.

(H0) (i) mA > cJ‖N‖2, where ‖N‖ = ‖N‖L(Z2,Y );
(ii) TκM1mg/(κ(mA − cJ‖N‖2)Γ(κ)) < 1.

We first consider nonlinear inclusion (4).

Lemma 6. For any given z ∈ IC(Q;Z1), nonlinear inclusion (4) has a unique solution
y ∈ IC(Q;Z2) providing that assumptions (HA), (HN ), (HJ ), (Hg), and (H0) hold.
Moreover, for any z1, z2 ∈ IC(Q;Z1), one has∥∥y1(t)− y2(t)

∥∥
Z2

6
mg

mA − cJ‖N‖2
∥∥z1(t)− z2(t)

∥∥
Z1
∀t ∈ Q, (5)

where y1, y2 ∈ IC(Q;Z2) are the solutions of (4) with respect to z1 and z2, respectively.

Proof. For given z ∈ IC(Q;Z1) and t ∈ Q, define two operators Â : Z2 → Z∗2 and
N̂ : Z2 → P (Z∗2 ) as Ây = A(t, y), N̂y = N∗∂J(t,Ny) for all (t, y) ∈ Q × Z2.
For simplicity, we do not indicate their dependence t. Using (HA), (HN ), (HJ ), (H0),
Lemma 1, and [22, Lemma 3], we deduce that the operators Â and N̂ are pseudomomo-
tone and

‖N̂x‖E∗
2
6 ‖N∗‖

∥∥∂J(t,Nx)
∥∥ 6 ‖N∗‖

(
mJ1‖Nx‖X +mJ2

)
6 mJ1‖N‖2‖x‖Z2

+mJ2‖N‖ ∀x ∈ Z2.

By applying Lemma 2 with B = Â and A = N̂ we know that inclusion (4) has a solution
y(t) for all t ∈ Q. Next, we show that the solution y(t) is unique. Let y1, y2 ∈ Z2 be
solutions to (4). Then there exist η1, η2 ∈ N∗∂J(t,Nyi(t)) satisfying A(t, yi) + ηi =

https://www.journals.vu.lt/nonlinear-analysis
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g(t, z(t)) for all t ∈ Q, i = 1, 2. Subtracting the two equations and taking the result in
duality with y1 − y2, we have〈

A(t, y1)−A(t, y1), y1 − y2

〉
Z∗

2×Z2
= 〈η2 − η1, y1 − y2〉Z∗

2×Z2
.

By assumptions (HA) and (HJ ) one has(
mA − cJ‖N‖2

)
‖y1 − y2‖2Z2

6 0,

and so assumption (H0) implies that y1 = y2, which is our claim.
In what follows, we start by showing that (5) holds. Let zi(t) ∈ Z1 (i = 1, 2) and

denote zi(t) = zi, yi(t) = yi, g(t, zi(t)) = gi with i = 1, 2. It follows from (4) that
A(t, yi) + ςi = gi, ςi ∈ N∗∂J(t,Nyi) (i = 1, 2). Subtracting the two equations and
taking the result in duality with y1 − y2, we have〈

A(t, y1)−A(t, y1), y1 − y2

〉
Z∗

2×Z2
+ 〈ς1 − ς2, y1 − y2〉Z∗

2×Z2

= 〈g1 − g2, y1 − y2〉Z∗
2×Z2 .

By assumptions (HJ ), (HA), and (Hg) one has(
mA − cJ‖N‖2

)
‖y1 − y2‖2Z2

6 ‖g1 − g2‖Z∗
2
‖y1 − y2‖Z2 6 mg‖z1 − z2‖Z1‖y1 − y2‖Z2 .

Thus, assumption (H0) implies that

‖y1 − y2‖Z2
6

mg

mA − cJ‖N‖2
‖z1 − z2‖Z1

. (6)

It follows from (6) that the map Z1 3 z(t) 7→ y(t) ∈ Z2 is continuous for all t ∈ Q.
Since z ∈ IC(Q;Z1), we know that y ∈ IC(Q;Z2). By (6) we conclude that, for any
given z ∈ IC(Q;Z1), nonlinear inclusion (4) has a unique solution y ∈ IC(Q;Z2).
Moreover, for any given z1, z2 ∈ IC(Q;Z1), (5) holds due to (6).

Theorem 1. Problem 1 admits a unique solution (z, y) ∈ IC(Q;Z1) × IC(Q;Z2)
providing that assumptions (HA), (Hf ), (HI ), (HN ), (HJ ), (Hg), and (H0) hold.

Proof. For any given z ∈ IC(Q;Z1), Lemma 6 shows that nonlinear inclusions (4)
admits a unique solution yz . Define an operator Σ : IC(Q;Z1)→ IC(Q;Z1) by setting

Σz(t) = z0 +

j∑
i=1

Θi
(
z(τ−i )

)
+

1

Γ(κ)

t∫
0

(t− s)κ−1f
(
s, z(s), yz(s)

)
ds.

Then assumption (Hf ) implies that Σ is well defined. To prove Theorem 1, we only need
to show that Σ admits a unique fixed point in IC(Q;Z1).
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To this end, we first show that Σz ∈ IC(Q;Z1) for any z ∈ IC(Q;Z1). In fact, let
z ∈ C([0, τ1], Z1) and ι > 0 be given. When t ∈ [0, τ1], by the Hölder inequality and
assumption (Hf ) we have∥∥(Σz)(t+ ι)− (Σz)(t)

∥∥
Z1

6
1

Γ(κ)

t∫
0

(
(t− s)κ−1 − (t+ ι− s)κ−1

)∥∥f(s, z(s), yz(s))‖Z1
ds

+
1

Γ(κ)

t+ι∫
t

(t+ ι− s)κ−1
∥∥f(s, z(s), yz(s))∥∥Z1

ds

6
1

Γ(κ)

t∫
0

(
(t− s)κ−1 − (t+ ι− s)κ−1

)
φ(s) ds+

1

Γ(κ)

t+ι∫
t

(t+ ι− s)β−1φ(s) ds

6
M

Γ(κ)

( t∫
0

(
(t− s)κ − (t+ ι− s)α

)
ds

)1−p

+
M

Γ(κ)

( t+ι∫
t

(t+ ι− s)α ds

)1−p

6
M

Γ(κ)(1 + α)1−p

(
|(t+ ι)1+α − t1+α|+ ι1+α

)1−p
+

M

Γ(κ)(1 + α)1−p ι
(1+α)(1−p)

6
2M

Γ(κ)(1 + α)1−p ι
(1+α)(1−p) +

M

Γ(κ)(1 + α)1−p ι
(1+α)(1−p)

6
3M

Γ(κ)(1 + α)1−p ι
(1+α)(1−p) → 0

as ι→ 0, where M = ‖φ‖L1/p[0,T ] and α = (κ− 1)/(1− p) ∈ (−1, 0). This shows that
Σz ∈ C([0, τ1], Z1). When t ∈ (τ1, τ2], using the same argument, one has

∥∥(Σz)(t+ ι)− (Σz)(t)
∥∥
Z1

6
3M

Γ(κ)(1 + α)1−p ι
(1+α)(1−p) → 0 as ι→ 0,

which implies that Σz ∈ C((τ1, τ2], Z1). Similarly, when t ∈ (τj , τj+1], j = 1, 2, . . . ,m,
we can show that

∥∥(Σz)(t+ ι)− (Σz)(t)
∥∥
Z1

6
3M

Γ(κ)(1 + α)1−p ι
(1+α)(1−p) → 0 as ι→ 0

and so Σz ∈ C((τj , τj+1], Z1).

Combining all the above, we see that Σz ∈ IC(Q;Z1) for any z ∈ IC(Q;Z1).
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Next, we prove that Σ is a contractive map. For given z1, z2 ∈ IC(Q;Z1), by
assumption (Hf ) it follows from (5) that∥∥(Σz1)(t)− (Σz2)(t)

∥∥
Z1

6
M1

Γ(κ)

t∫
0

(t− s)κ−1
(∥∥z1(s)− z2(s)

∥∥
Z1

+
∥∥yz1(s)− yz2(s)

∥∥
Z2

)
ds

6
M1mg

(mA − cJ‖N‖2)Γ(κ)

t∫
0

(t− s)κ−1
∥∥z1(s)− z2(s)

∥∥
Z1

ds

6
T βM1mg

β(mA − cJ‖N‖2)Γ(κ)
‖z1 − z2‖IC(Q;Z1),

and so

‖Σz1 − Σz2‖IC(Q;Z1) 6
T βM1mg

β(mA − cJ‖N‖2)Γ(κ)
‖z1 − z2‖IC(Q;Z1).

Now assumption (H0) implies that Σ is a contractive map, and so Σ admits a unique
solution z ∈ IC(Q;Z1) by employing the Banach fixed point theorem.

4 A convergence result

We investigate the perturbation problem of Problem 1 to prove a convergence result,
which describes the stability of the solution in relation to perturbation data. To this end,
let δ > 0 and Jδ be the perturbed data of J such that Jδ satisfies assumptions (HJ ) and
(H0). More precisely, we examine the following perturbation problem: find a pair of
functions (zδ, yδ) ∈ IC(Q;Z1)× IC(Q;Z2) such that

CDκ
0 zδ(t) = f

(
t, zδ(t), yδ(t)

)
, t ∈ Q, t 6= τj , j = 1, 2, . . . ,m,

z(0) = z0, Λzδ(τj) = Θj
(
zδ(τ

−
j )
)
, j = 1, 2, . . . ,m,〈

A
(
t, yδ(t)

)
, x
〉

+ J◦δ
(
t, yδ(t), Nyδ(t);Nx

)
>
〈
g
(
t, zδ(t)

)
, x
〉
∀(t, x) ∈ Q× Z2.

(7)

We denote the constants involved in assumption (HJ ) by mJδ and cJδ . Furthermore,
we introduce the following assumptions.

(HJ∗ ) Jδ : Q× Y → R is a functional satisfying

(i) there exists a function V : R+ → R+ satisfying, for any (t, y) ∈ Q× Z2

and δ > 0, ‖ζ − ζδ‖Z∗
2

6 V (δ) for all (ζ, ζδ) ∈ N∗∂J(t,Ny(t)) ×
N∗∂Jδ(t,Ny(t));

(ii) limδ→0 V (δ) = 0.

(H0∗ ) There exists mA0 > 0 such that
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(i) mA > mA0 > cJδ‖N‖2, where ‖N‖ = ‖N‖L(Z2,Y );
(ii) TκM1mg/(κ(mA − cJδ‖N‖2)Γ(κ)) < 1.

The following example indicates that assumption (HJ∗ ) can be satisfied for some
functions.

Example 1. Let 0 < m < n. Consider the functions J : R×R→ R and Jδ : R×R→ R
defined by

J(b, a) =

{
m−n
m a+ n, a 6 m,

ma+ m(n−m)
2 , a > m,

Jδ(b, a) =

{
m−n
2m (a+ δ)2 + n(a+ δ), a 6 m,

m(a+ δ) + m(n−m)
2 , a > m.

Then it is easy to check that J(b, ·) and Jδ(b, ·) are locally Lipschitz and nonconvex for
all b ∈ R+. Moreover, their Clarke subgradients are given by

∂J(b, a) =

{
m−n
m a+ n, a 6 m,

a, a > m,

∂Jδ(b, a) =

{
m−n
m (a+ δ) + n, a 6 m,

a+ δ, a > m.

Thus, we can see that condition (HJ∗ ) holds with V (δ) = δ.

Next, we show the stability result for FDQHVI as follows.

Theorem 2. Suppose that assumptions (HA), (Hf ), (HI ), (HN ), (HJ ), (Hg), (H0), (H0∗ ),
and (HJ∗ ) hold. Then

(i) for each δ > 0, the perturbation problem (7) has a unique solution (zδ, yδ) ∈
IC(Q;Z1)× IC(Q;Z2);

(ii) (zδ, yδ) converges to (z(t), y(t)), the solution of Problem 1.

Proof. (i) In view of Theorem 1, the proof is obvious.

(ii) By Definition 6 we consider the problem

zδ(t) = z0 +

j∑
i=1

Θi
(
zδ(τ

−
i )
)

+
1

Γ(κ)

t∫
0

(t− s)κ−1f
(
s, zδ(s), yδ(s)

)
ds

∀t ∈ (tj , tj+1], j = 1, 2, . . . ,m, (8)

A
(
t, yδ(t)

)
+ ηδ 3 g

(
t, zδ(t)

)
, ηδ ∈ N∗∂Jδ

(
t,Nyδ(t)

)
∀(t, x) ∈ Q× Z2. (9)
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Subtracting (9) from (4) and multiplying the result by y(t)− yδ(t), we have〈
A
(
t, y(t)

)
−A

(
t, yδ(t)

)
, y(t)− yδ(t)

〉
Z∗

2×Z2
+
〈
η − ηδ, y(t)− yδ(t)

〉
Z∗

2×Z2

=
〈
g
(
t, z(t)

)
− g
(
t, zδ(t)

)
, y(t)− yδ(t)

〉
Z∗

2×Z2

∀(t, η, ηδ) ∈ Q×N∗∂J
(
t,Ny(t)

)
×N∗∂Jδ

(
t,Nyδ(t)

)
.

Since〈
η − ηδ, y(t)− yδ(t)

〉
Z∗

2×Z2

=
〈
η − ξδ, y(t)− yδ(t)

〉
Z∗

2×Z2
+ 〈ξδ − ηδ, y(t)− yδ(t)〉Z∗

2×Z2

∀(t, η, ξδ, ηδ) ∈ Q×N∗∂J
(
t,Ny(t)

)
×N∗∂J

(
t,Nyδ(t)

)
×N∗∂Jδ

(
t,Nyδ(t)

)
,

one has〈
A
(
t, y(t)

)
−A

(
t, yδ(t)

)
, y(t)− yδ(t)

〉
Z∗

2×Z2
+
〈
η − ξδ, y(t)− yδ(t)

〉
Z∗

2×Z2

=
〈
ηδ − ξδ, y(t)− yδ(t)

〉
Z∗

2×Z2
+
〈
g
(
t, z(t)

)
− g
(
t, zδ(t)

)
, y(t)− yδ(t)

〉
Z∗

2×Z2

∀(t, η, ξδ, ηδ) ∈ Q×N∗∂J
(
t,Ny(t)

)
×N∗∂J

(
t,Nyδ(t)

)
×N∗∂Jδ

(
t,Nyδ(t)

)
.

Note that assumption (HA) implies〈
A
(
t, y(t)

)
−A

(
t, yδ(t)

)
, y(t)− yδ(t)

〉
Z∗

2×Z2

> mA

∥∥y(t)− yδ(t)
∥∥2

Z2
∀t ∈ Q. (10)

Using assumptions (HJ ) and (HJ∗ ), for any

(t, η, ξδ) ∈ Q×N∗∂J
(
t,Ny(t)

)
×N∗∂J

(
t,Nyδ(t)

)
and

(t, ξδ, ηδ) ∈ Q×N∗∂J
(
t,Nyδ(t)

)
×N∗∂Jδ

(
t,Nyδ(t)

)
,

we have 〈
η − ξδ, y(t)− yδ(t)

〉
Z∗

2×Z2
> −cJ‖N‖2

∥∥y(t)− yδ(t)
∥∥2

Z2
(11)

and 〈
ηδ − ξδ, y(t)− yδ(t)

〉
Z∗

2×Z2
6 V (δ)

∥∥y(t)− yδ(t)
∥∥
Z2
. (12)

We conclude from assumption (Hg) that, for any t ∈ Q,〈
g
(
t, z(t)

)
− g
(
t, zδ(t)

)
, y(t)− yδ(t)

〉
Z∗

2×Z2

6 mg

∥∥y(t)− yδ(t)
∥∥
Z2

∥∥z(t)− zδ(t)∥∥Z1
.
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Combining (10)–(12), one has(
mA − cJ‖N‖2

)∥∥y(t)− yδ(t)
∥∥2

Z2

6 V (δ)
∥∥y(t)− yδ(t)

∥∥
Z2

+mg

∥∥y(t)− yδ(t)
∥∥
Z2

∥∥z(t)− zδ(t)∥∥Z1
.

Thus, assumption (H0) yields that

∥∥y(t)− yδ(t)
∥∥
Z2

6
V (δ)

mA − cJ‖N‖2
+

mg

mA − cJ‖N‖2
∥∥z(t)− zδ(t)∥∥Z1

. (13)

Subtracting (8) from (3), by assumptions (Hf ), (HI ) and estimation (13) one has∥∥zδ(t)− z(t)∥∥Z1

6
M1

Γ(κ)

t∫
0

(t− s)κ−1
(∥∥z(t)− zδ(t)∥∥Z1

+
∥∥y(t)− yδ(t)

∥∥
Z2

)
ds

+

j∑
i=1

dj
∥∥zδ(τ−i )− z(τ−i )

∥∥
Z1

6
M1

Γ(κ)

t∫
0

(t− s)κ−1

[
V (δ)

mA−cJ‖N‖2
+

(
mg

mA−cJ‖N‖2
+ 1

)∥∥z(t)−zδ(t)∥∥Z1

]
ds

+

j∑
i=1

dj
∥∥zδ(τ−i )− z(τ−i )

∥∥
Z1

6
TκM1

κΓ(κ)(mA − cJ‖N‖2)
V (δ)

+
M1

Γ(κ)

(
mg

mA − cJ‖N‖2
+ 1

) t∫
0

(t− s)κ−1
∥∥z(t)− zδ(t)∥∥Z1

ds

+

j∑
i=1

dj
∥∥zδ(τ−i )− z(τ−i )

∥∥
Z1
.

By Lemma 5 with

k1 =
TκM1

κΓ(κ)(mA − cJ‖N‖2)
V (δ) and k2 =

M1

Γ(κ)

(
mg

mA − cJ‖N‖2
+ 1

)
there exists H∗ > 0 such that ‖zλ(t)− z(t)‖Z1

6 H∗V (δ), where H∗ is independent of
z, zλ, y, yλ and t. By assumption (HJ∗ ) we assert that ‖zλ(t) − z(t)‖Z1 → 0 as δ → 0.
It follows from (13) and (HJ∗ ) that ‖y(t)− yδ(t)‖Z2 → 0 as δ → 0.
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5 An application

In this section, we show that the results obtained in Sections 3 and 4 can be applied to
study the frictional contact problem (Problem 2) between an elastic body and a foundation
over time intervalQ. We suppose that the surface traction may change suddenly in a short
time, such as shocks, and consequently, which can be described by a fractional impulsive
differential equations. We show that the weak form of Problem 2 leads to Problem 1
analyzed in Sections 3 and 4. Then Theorems 1 and 2 are applied to obtain the unique
solvability of the frictional contact problem mentioned above as well as the convergence
result of the perturbation problem.

We shortly review the basic notations and its mechanical interpretations. A deformable
elastic body occupies a regular Lipschitz domain V ⊆ Rn(n = 2, 3) with the boundary
∂V . The boundary ∂V consists of three measurable disjoint parts Σ1, Σ2, and Σ3 with
meas Σ1 > 0. The body is clamped on Σ1 and subjected to the action of volume force
with density f0. An unknown surface traction (for convenience, we denote by f2 its
density) with impulsive effect is applied on Σ2. On Σ3, the body may contact with an
obstacle. We do not show expressly the relation of various functions and y.

Let ν be unit outward normal vector, Sn be the space of symmetric matrix of order
two on Rn. Sn and Rn are equipped with, respectively, the following inner products and
norms: ξ · ζ = ξijζij with ‖ξ‖ = (ξ · ξ)1/2 for all ξ, ζ ∈ Sn and m · n = mini with
‖m‖ = (m ·m)1/2 for all m,n ∈ Rn. Here the summation convention is adopted.
For any η ∈ Rn and σ ∈ Sn, we denote by ην = η · ν the normal components of η,
ητ = η− ηνν the tangential components of η, σν = (σν) · ν the normal components of
σ, στ = σν − σνν the tangential components of σ. We also denote by u = (ui) ∈ Rn,
σ ∈ Sn, and ε(u) = (εij(u)) ∈ Sn, respectively, the displacement vector, the stress
tensor, and the linearized (small) strain tensor, where

εij(u) =
1

2
(ui,j + uj,i), ui,j =

∂ui
∂yi

, y = (yi) ∈ V ∪ ∂V, i, j = 1, . . . , n.

For more details, we refer the reader to [17, 18]. We now turn to present a new contact
problem with the surface traction governed by a fractional impulsive differential equation.

Problem 2. Find a stress σ : V ×Q→ Sn, a surface traction density f2 : Σ2×Q→ Rn,
and a displacement field u : V ×Q→ Rn such that

σ(t) = Aε
(
u(t)

)
in V ×Q, (14)

divσ(t) + f0(t) = 0 in V ×Q, (15)

u(t) = 0 on Σ1 ×Q, (16)

σ(t)ν = f2(t), C
0D

κ
t f2(t) = F

(
t,f2(t),u(t)

)
on Σ2 ×Q, (17)

f2(0) = f0
2 , Λf2(τj) = Θj

(
f2(τ−j )

)
on Σ2 ×Q, (18)

−στ (t) ∈ ∂jτ
(
uτ (t)

)
, −σν(t) ∈ ∂jν

(
uν(t)

)
on Σ3 ×Q, (19)
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t ∈ Q, 0 < κ < 1, t 6= τj , j = 1, 2, . . . ,m. Here relation (14) presents an elastic
constitutive law with A being the elasticity operator. Equation (15) is the equilibrium
equation, and equation (16) implies that the body is clamped on Σ1. Equalities (17)–(18)
show that the traction is acted on Σ2, and the density of the surface traction is governed
by a fractional impulsive differential equation, where F is a function to be specified later.
The set-valued relations in (19) denote the friction and contact conditions, respectively,
where jτ and jν are locally Lipschitz functionals.

To deduce the weak formulation of Problem 2, we consider spacesH = L2(V ;Sn)n×n

and V = {v ∈ H1(V ;Rn) | v = 0 on Σ1} equipped with the inner products

(σ, τ )H =

∫
V

σijτij dx, (u,v)V =
(
ε(u), ε(v)

)
H

and corresponding norms ‖·‖H and ‖·‖V , respectively. We denote by V∗ the dual space
of V , 〈·, ·〉V∗×V the duality pairing between V∗ and V . The trace theorem states

‖γv‖L2(Σ3;Rn) 6 ‖γ‖‖v‖V ∀v ∈ V,

where γ is the trace operator defined by γ : V → L2(Σ3;Rn). In order to study Problem 2,
we impose some hypotheses on the relevant data.

(H̃A) The elasticity operator A = (Aijkl) : V × Sn → Sn satisfies the conditions:

(i) Aijkl = Aklij = Ajikl ∈ L∞(V ), i.e., A(y, ·) is symmetric and linear for
a.e. y ∈ V ;

(ii) there exists LA > 0 such that ‖A(y, ζ1)− A(y, ζ2)‖ 6 LA‖ζ1 − ζ2‖ for
all ζ1, ζ2 ∈ Sn, a.e. y ∈ V ;

(iii) there exists mA > 0 such that (A(y, ζ1) − A(y, ζ2))(ζ1 − ζ2) >
mA‖ζ1−ζ2‖2 for all ζ1, ζ2 ∈ Sn.

(H̃F ) The function F : Q× Σ2 × L2(Σ2;Rn)× V → L2(Σ2;Rn) is such that

(i) F (·,x,y, z) is continuous for all (y, z)∈L2(Σ2;Rn)× V , a.e. x∈Σ2;
(ii) there exists M1 > 0 such that ‖F (t,x, z1,y1) − F (t,x, z2,y2)‖ 6

M1(‖z1 − z2‖ + ‖y1 − y2‖) for all (t, zi,yi) ∈ Q × L2(Σ2;Rn) × V
(i = 1, 2), a.e. x ∈ Σ2;

(iii) there exists φ ∈ L1/p
+ [0, T ] (0 < p < κ < 1) satisfying ‖F (t,x, z,y)‖ 6

φ(t) for all (t, z,y) ∈ Q× L2(Σ2;Rn)× V , a.e. x ∈ Σ2.

(H̃I ) Θj : L2(Σ2;Rn) → L2(Σ2;Rn) (j = 1, 2, . . . ,m) is bounded, and there exist
dj > 0 satisfying ‖Θj(z1) − Θj(z1)‖L2(Σ2;Rn) 6 dj‖z1 − z2‖L2(Σ2;Rn) for
all z1, z2 ∈ L2(Σ2;Rn).

(H̃jν ) The function jν : Σ3 × R→ R is such that

(i) For a.e. y ∈ Σ3, jν(y, ·) is locally Lipschitz on R;
(ii) For all r ∈ R, jν(·, r) is measurable on Σ3 ;
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(iii) For all r ∈ R and a.e. y ∈ Σ3, there exist c0 > 0 such that |∂jν(y, r)| 6
c0(1 + |r|);

(iv) For all si ∈ R (i = 1, 2) and a.e. y ∈ Σ3, there exist αν1 > 0 such that
j◦ν(y, s1; s2 − s1) + j◦ν(y, s2; s1 − s2) 6 αν1|s1 − s2|2.

(H̃jτ ) The function jτ : Σ3 × Rn → R is such that

(i) jτ (y, ·) is locally Lipschitz on R for a.e. y ∈ Σ3;
(ii) jτ (·, r) is measurable on Σ3 for all r ∈ Rn;

(iii) there exist c1 > 0 such that |∂jτ (y, r)| 6 c1(1 + ‖r‖) for all r ∈ Rn,
a.e. y ∈ Σ3;

(iv) there exist αν2 > 0 such that j◦τ (y, s1; s2 − s1) + j◦τ (y, s2; s1 − s2) 6
αν2‖s1 − s2‖2 for all si ∈ R (i = 1, 2), a.e. y ∈ Σ3.

(H̃f ) The densities of body force satisfies f0 ∈ IC(Q;L2(V ;Rn)).
(H̃0) (i) mA > (αν1 + αν2)c20;

(ii) TκM1c0/(κ[mA − (αν1 + αν2)c20]Γ(κ)) < 1.

Utilizing the Green formula, we get the variational form of Problem 2.

Problem 3. Find a displacement field u : Q → V and a surface traction density f2 :
Q→ L2(Σ2;Rn) such that

C
0D

κ
t f2(t) = F

(
t,f2(t),u(t)

)
, t ∈ Q, 0 < κ < 1, t 6= τj , j = 1, 2, . . . ,m,

f2(0) = f0
2 , Λf2(τj) = Θj

(
f2(τ−j )

)
, j = 1, 2, . . . ,m,(

Aε
(
u(t)

)
, ε(v)

)
H +

∫
L3

(
j◦ν
(
uν(t); vν

)
+ j◦τ (uτ (t);vτ )

)
da

>
∫
L2

f2(t)v da+

∫
V

f0(t)v dx ∀(t,v) ∈ Q× V.

5.1 Existence and uniqueness for the contact problem

We define the maps A : V → V∗, f : Q× L2(Σ2;Rn)× V → L2(Σ2;Rn), J : V → R,
and g : L2(Σ2;Rn)→ V∗ by setting〈

Au,v
〉
V∗×V =

(
Aε(u), ε(v)

)
H, f(t,f2,v) = F

(
t,f2(t),v(t)

)
,

J(u) =

∫
Σ3

(
jν
(
uν(t)

)
+ jτ

(
uτ (t)

))
da, (20)

〈
g(t),v

〉
V∗×V =

∫
V

f0(t) · v dx+

∫
Σ2

f2(t) · v da (21)

for all (t,f2,u,v) ∈ Q× Rn × V × V .
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Then Problem 3 is equivalent to the problem:

Problem 4. Find a displacement vector u : Q → V and a surface traction density f2 :
Q→ L2(Σ2;Rn) such that

C
0D

κ
t f2(t) = f

(
t,f2(t),u(t)

)
, t ∈ Q, 0 < κ < 1, t 6= τj , j = 1, 2, . . . ,m,

f2(0) = f0
2 , Λf2(τj) = Θj

(
f2(τ−j )

)
, j = 1, 2, . . . ,m,〈

Au(t),v
〉
V∗×V + J◦(u;v) >

〈
g(t),v

〉
V∗×V ∀(t,v) ∈ t× V.

Clearly, Problem 4 is the form of Problem 1 with Z1 = L2(Σ2;Rn), Z2 = V , Y =
L2(Σ3;Rn).

Theorem 3. Problem 4 has a unique solution (f2,u(t)) ∈ IC(Q;L2(Σ2;Rn)) ×
IC(Q;V) providing that hypotheses (H̃A), (H̃F ), (H̃I ), (H̃jν ), (H̃jτ ), (H̃f ), and (H̃0) hold.

Proof. To prove Theorem 3, we only need to check the validity of assumptions (HA),
(Hf ), (HI ), (HN ), (HJ ), (Hg), and (H0).

Firstly, conditions (H̃A), (H̃F ), and (H̃I ) indicate that assumptions (HA), (Hf ), and
(HI ) are fulfilled with mA = mA. Since the trace operator is compact and surjective, we
see that assumption (HN ) holds. Clearly, (21) implies that assumption (Hg) holds with
mg = ‖γ‖. By hypotheses (H̃jν ), (H̃jτ ) and Lemma 14 in [19] it follows from Lemma 14
in [19] that the functional J in (20) is locally Lipschitz on V , and

J◦(u;w) =

∫
L3

(
j◦ν
(
uν(t);wν

)
+ j◦τ

(
uτ (t);wτ

))
da ∀u,w ∈ V

is the generalized directional derivative of J at u in the directionalw. Moreover, assump-
tion (HJ ) holds with cJ = αν1 + αν2 and mJ = max{c0, c1}. Combining Theorem 1
with hypothesis (H̃0), we see that Theorem 3 holds.

5.2 A convergence result for the contact problem

The above analysis reveals that the solution of Problem 4 relies on the data jν and jτ .
In what follows, we present a continuous dependence result of the solution in relation to
these data. We consider the perturbation data jνδ and jτδ of jν and jτ , respectively, which
satisfy hypotheses (H̃jν ) and (H̃jτ ). For each δ > 0, define a function Jδ : V → R by
setting

Jδ(u) =

∫
Σ3

(
jνδ
(
uν(t)

)
+ jτδ

(
uτ (t)

))
da ∀u ∈ V.

The perturbation problem of Problem 4 can be formulated as follows.
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Problem 5. Find a displacement vector uδ : Q → V and a surface traction density
f2δ : Q→ L2(Σ2;Rn) such that

C
0D

κ
t f2δ(t) = f

(
t,f2δ(t),uδ(t)

)
, t ∈ Q, 0 < κ < 1, t 6= τj , j = 1, 2, . . . ,m,

f2δ(0) = f0
2 , Λf2δ(τj) = Θj

(
f2δ(τ

−
j )
)
, j = 1, 2, . . . ,m,〈

Auδ(t),v
〉

+ J◦δ (uδ;v) >
〈
g(t),v

〉
∀(t,v) ∈ t× V.

Denote the constants involved in hypotheses (H̃jνδ)(iv) and (H̃jτδ)(iv) by αν1δ and
αν2δ , respectively. In addition, we impose the following hypotheses on the data.

(H̃j∗ ) There exists a function V : R+ → R+ satisfying

(i) |∂jν(x, r)−∂jνδ(x, r)|6V (δ)|r| for all (δ, r) ∈ R+ × R, a.e. x ∈ Σ3;
(ii) ‖∂jτ (x, b)− ∂jτδ(x, b)‖ 6 V (δ)‖b‖ for all (x, b) ∈ Σ3 × Rn;

(iii) limδ→0 V (δ) = 0.

(H̃0∗ ) There exists mA0
> 0 such that

(i) mA > mA0
> (αν1δ + αν2δ)c

2
0;

(ii) TκM1c0/(κ[mA − (αν1δ + αν2δ)c
2
0]Γ(κ)) < 1.

Remark 1. Assumption (H̃j∗ ) means that the perturbations of jν and jτ must satisfy
the locally Lipschitz conditions. Moreover, it is easy to see that the functions given in
Example 1 satisfy condition (H̃j∗ ).

Theorem 4. Assume that hypotheses (H̃A), (H̃F ), (H̃I ), (H̃jν ), (H̃jτ ), (H̃f ), (H̃j∗ ), (H̃0),
and (H̃0∗ ) hold. Then

(i) Problem 5 has a unique solution (f2δ,uδ(t)) ∈ IC(Q;L2(Σ2;Rn))×IC(Q;V)
for each δ > 0;

(ii) (f2δ,uδ(t)) converges to (f2,u(t)), the solution of Problem 4.

Proof. (i) In view of Theorem 3, the proof is obvious.
(ii) We employ Theorem 2 to prove the conclusion. To this end, we only need to

check the validity of assumptions (H0∗ ) and (HJ∗ ). Clearly, hypothesis (H∗0) implies that
assumption (H0∗ ) holds. By Proposition 3.35 of [18], Corollary 4.15 in [18], and hypoth-
esis (H̃j∗ ), for any (u, ξ, ξδ) ∈ V × γ∗∂J(γu) × γ∗∂Jδ(γu) and (ξν , ξνδ, ξτ , ξτδ) ∈
∂jν(uν(t))× ∂jνδ(uν(t))× ∂jτ (uτ (t))× ∂jτδ(uτ (t)), we have

‖ξ − ξδ‖ 6 ‖γ∗‖
∫
L3

(
|ξν − ξνδ|+ ‖ξτ − ξτδ‖

)
da

6 ‖γ∗‖V (δ)

∫
L3

(
|uν |+ ‖uτ‖

)
da 6

(
‖γ‖2 meas Σ3‖u‖

)
V (δ),

which shows that assumption (HJ∗ ) holds with V (δ) = (‖γ‖2 meas Σ3‖u‖)V (δ). The
convergence result now follows from Theorem 2.
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Remark 2. It is worth noting that the results in this paper are local in time thanks to
(H0)(ii), and (H̃0)(ii) provide some constraints on the length T .

Acknowledgment. The authors are grateful to the editor and the referees for their valu-
able comments and suggestions.
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