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Abstract. This paper is concerned with a sixth-order diffusion equation, which describes continuum
evolution of film-free surface. By using the regularity estimates for the semigroups, iteration
technique and the classical existence theorem of global attractors we verified the existence of
global attractor for this surface diffusion equation in the spaces H3(Ω) and fractional-order spaces
Hk(Ω), where 0 6 k <∞.
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1 Introduction

In order to describe the continuum evolution of the film-free surface, the authors in [5]
proposed the following classical surface diffusion equation:

υn = D∆Sµ = D∆S(µγ + µω) = D∆S

(
γ̃αβCαβ + ν∆2u+ µω

)
,

where υn, Ds, S0, Ω0, V0, R and T are the normal surface velocity, the surface dif-
fusivity, the number of atoms per unit area on the surface, the atomic volume, the molar
volume of lattice cites in the film, the universal gas constant and the absolute temperature,
respectively. D = DSS0Ω0V0/(RT )23. Moreover, ∆S is the surface Laplace operator,
ν represents the regularization coefficient that measures the energy of edges and corners,
Cαβ means the surface curvature tensor, and µw being an exponentially decaying function
of u that has a singularity at u→ 0 (see [5]).

Particularly, in the small-slop approximation, the cases of a crystal, which has cubic
symmetry and high-symmetry orientations, arise an evolution equation in the following
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form for the film thickness:

∂u

∂t
= D

{
D5u+D3u−D

[
|Du|2D2u

]
+D

[
w0(u) + w2(u)|Du|2 + w3(u)D2u

]}
, (1)

where (x, t) ∈ QT ≡ Ω×(0, T ),Ω = (0, 1),D = ∂/∂x, and w0,2,3(h) are three smooth
functions, respectively [w3(h0) = 0, 2w2 = dw3/dh]. From the physical consideration,
Eq. (1) is supplemented with the following boundary value conditions:

Du(x, t) = D3u(x, t) = D5u(x, t) = 0, x = 0, 1, (2)

and initial condition
u(x, 0) = u0(x), x ∈ [0, 1]. (3)

We remark that Eq. (1) is related to the formation of quantum dots in epitaxially grown
thin solid films. This formation has been attracting attention as a very promising area
of nanotechnology that can lead to a new generation of electronic devices. According
to the mechanism for the formation, the substrate induces the film growth in a certain
crystallographic orientation. In the absence of wetting interactions with the substrate,
due to a large surface-energy anisotropy, this orientation would be thermodynamically
forbidden, and the surface would undergo a long-wave faceting (spinodal decomposition)
instability. In [5], the authors show that wetting interactions between the film and the
substrate can suppress this instability and qualitatively change its spectrum, leading to the
damping of long-wave perturbations and the selection of the preferred wavelength at the
instability threshold. This creates a possibility for the formation of stable regular arrays
of quantum dots even in the absence of epitaxial stresses.

In [15], on the basis of the Schauder-type estimates and the techniques in Campanato
spaces, the author assumed that the smooth functions w0,2,3(u) satisfy

w3(u0) = 0, 2w2(u) = w′3(u),

W0(u) =

s∫
0

w0(u) ds >
3

4

[
w3(u)

]2
,

(4)

and studied the existence of classical global solutions.
The dynamic properties of diffusion systems such as the global asymptotical behaviors

of solutions and global attractors are important for the study of diffusion models, which
ensure the stability of diffusion phenomena and provide the mathematical foundation for
the study of diffusion dynamics. For the higher-order diffusion equation, there are many
classical results related to its global attractors, see, for example, Dlotko [3], Li and Zhong
[7], Schimperna [10], Alouini [1], Cheskidov and Dai [2], Huang, Yang, Lu and Wang [6],
Duan and Xu [4] and so on. To the best of our knowledge, the existence of the global
attractor for problem (1)–(3) has not been addressed yet, which is the main goal of this
article.
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In this paper, by using the regularity estimates for the semigroups, iteration technique
and the classical existence theorem of global attractors we consider the global attractor
of solutions for the initial boundary value problem for Eq. (1). The main results are
Theorem 1 in the next section and Theorem 2 in Section 3.

This article is organized as follows. In Section 2, we give some preparations for
our consideration and prove the existence of global attractors for problem (1)–(3) in
the Sobolev space H3(Ω). In Section 3, we prove the existence of global attractors for
problem (1)–(3) in the Sobolev space Hk(Ω) with any k > 0.

2 Global attractor in H3

In order to consider the global attractors of problem (1)–(3), we select a closed metric
space U0 and prove the existence of global attractors of problem (1)–(3) in this space,
where U0 = {u: u ∈ H3(Ω), Du|x=0,1 = 0,

∫ 1

0
udx = 0}.

For convenience, we give the following lemma on global existence and uniqueness of
solution to problem (1)–(3).

Lemma 1. Assume that u0 ∈ U0 and the functions w0,2,3(h) satisfy (4). Then (1)–(3)
admits a unique global solution u(x, t), which satisfies

u(x, t) ∈ L∞
(
0, T ;H3(Ω)

)
∩ L2

(
0, T ;H6(Ω)

)
.

The proof of existence and regularity of solutions is based on the Galerkin method and
a priori estimates in the following. Thanks to the above existence lemma, we know that
there exists a continuous operator semigroup {S(t)}t>0 in H3(Ω) satisfying S(t)u0 =
u(t, t0), t > 0.

Then, by the classical existence theorem of global attractors (see [14]), we give the
following theorem on the existence of the global attractor of problem (1)–(3) in H3(Ω).

Theorem 1. Assume u0 ∈ H3(Ω) and the three smooth functions w0,2,3(u) satisfy (4).
Then the solution u of problem (1)–(3) possesses a global attractor A in the space
H3(Ω), which attracts all bounded set in the space H3(Ω).

Similar to [14], we assume that the semigroup S(t)t>0 is generated by the solutions
of Eq. (1) with initial conditions u0 ∈ H3(Ω). Then we give two lemmas to prove
Theorem 1.

Lemma 2. There exists a bounded set B whose size depends only on Ω such that for all
u0 ∈ B ⊂ U , there exists t > t0 = t0(B) > 0 satisfying S(t)u0 ∈ B.

Proof. It suffices to prove that there is a positive constant C such that for large t, there
holds ‖u(t)‖H3 6 C. Now we begin to prove the lemma.

Let

F (t) =

1∫
0

(
1

2

∣∣D2u
∣∣2 − 1

2
|Du|2 +

1

12
|Du|4 +W0(u)− 1

2
w3(u)|Du|2

)
dx.
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Integrating by parts and by (2) we have

d

dt
F (t) =

1∫
0

(
D2uD2ut −DuDut

+
1

3
|Du|3Dut +W0(u)ut −

1

2
w′3(u)ut|Du|2 − w3(u)DuDut

)
dx

=

1∫
0

(
D4u+D2u− |Du|2D2u+W0(u) + w2(u)|Du|2 + w3(u)D2u

)
ut dx

= −
1∫

0

∣∣D5u+D3u−D
[
|Du|2D2u

]
+D

[
w0(u) + w2(u)|Du|2 + w3(u)D2u

]∣∣2 dx

6 0.

Hence, F (t) 6 F (0), then

1∫
0

∣∣D2u
∣∣2 dx+

1

12

1∫
0

|Du|4 dx+

1∫
0

W0(u) dx

6 F (0) +
1

2

1∫
0

|Du|2 dx+
1

2

1∫
0

w3(u)|Du|2 dx. (5)

Then by Poincaré’s inequality and (2) we derive that

1∫
0

|Du|2 dx 6
1

π2

1∫
0

∣∣D2u
∣∣2 dx. (6)

Combining (5) and (6) together gives

1

2

1∫
0

∣∣D2u
∣∣2 dx+

1

12

1∫
0

|Du|4 dx+

1∫
0

W0(u) dx

6 F (0) +
1

2π2

1∫
0

∣∣D2u
∣∣2 dx+

1

12

1∫
0

|Du|4 dx+
3

4

1∫
0

[
w3(u)

]2
dx.

Notice that W0(u) > (3/4)[w3(u)]2, then there exists C = 2π2F (0)/(π2 − 1) such that

1∫
0

∣∣D2u
∣∣2 dx 6 C. (7)
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It then follows from (6) and (7) that

1∫
0

|Du|2 dx 6 C. (8)

Note that u0 ∈ U0. By Poincaré’s inequality and (8) we deduce that for t > t1(B) > 0,

1∫
0

|u|2 dx 6 C ′
1∫

0

|Du|2 dx 6 C. (9)

Hence, by (7), (8) and (9) we get supx∈Ω |u| 6 C and supx∈Ω |Du| 6 C.
Multiplying (1) with D6u and integrating it over Ω, we obtain

1

2

d

dt

1∫
0

∣∣D3u
∣∣2 dx+

1∫
0

∣∣D6u
∣∣2 dx

=

1∫
0

∣∣D5u
∣∣2 dx+

1∫
0

D2
[
|Du|2D2u

]
D6udx

−
1∫

0

D2
[
w0(u) + w2(u)|Du|2 + w3(u)D2u

]
D6udx

6

1∫
0

∣∣D5u
∣∣2 dx+ 2

1∫
0

∣∣D2u
∣∣3D6udx+ 6

1∫
0

DuD2uD3uD6udx

+

1∫
0

[
|Du|2 + w3(u)

]
D4uD6udx

+

1∫
0

[
w′′0 (u)|Du|2 + w′′2 (u)|Du|4

]
D6udx

+

1∫
0

[
w′0(u) +

(
3w′2(u) + 2w′′3 (u)

)
|Du|2

]
D2uD6udx

+ 2

1∫
0

w′3(u)
∣∣D2u

∣∣2D6udx+ 3

1∫
0

w′3(u)DuD3uD6udx

=

1∫
0

∣∣D5u
∣∣2 dx+ I1 + I2 + I3 + I4 + I5 + I6 + I7.
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By Nirenberg’s inequality we have

1∫
0

∣∣D5u
∣∣2 dx 6

[
C1

( 1∫
0

∣∣D6u
∣∣2 dx)3/8( 1∫

0

∣∣D2u
∣∣2 dx)1/8

+ C2

( 1∫
0

∣∣D2u
∣∣2 dx)1/2 ]2

6 ε′
1∫

0

∣∣D6u
∣∣2 dx+ C′

ε,

1∫
0

∣∣D2u
∣∣6 dx 6

[
C1

( 1∫
0

∣∣D6u
∣∣2 dx)1/24( 1∫

0

∣∣D2u
∣∣2 dx)11/24

+ C2

( 1∫
0

∣∣D2u
∣∣2 dx)1/2 ]6

6 ε

1∫
0

∣∣D6u
∣∣2 dx+ Cε,

1∫
0

∣∣D2u
∣∣4 dx 6

[
C1

( 1∫
0

∣∣D6u
∣∣2 dx)1/32( 1∫

0

∣∣D2u
∣∣2 dx)15/32

+ C2

( 1∫
0

∣∣D2u
∣∣2 dx)1/2 ]4

6 ε

1∫
0

∣∣D6u
∣∣2 dx+ Cε,

1∫
0

∣∣D3u
∣∣4 dx 6

[
C1

( 1∫
0

∣∣D6u
∣∣2 dx)5/32( 1∫

0

∣∣D2u
∣∣2 dx)11/32

+ C2

( 1∫
0

∣∣D2u
∣∣2 dx)1/2 ]4

6 ε

1∫
0

∣∣D6u
∣∣2 dx+ Cε,

1∫
0

∣∣D3u
∣∣2 dx 6

[
C1

( 1∫
0

∣∣D6u
∣∣2 dx)1/8( 1∫

0

∣∣D2u
∣∣2 dx)3/8

+ C2

( 1∫
0

∣∣D2u
∣∣2 dx)1/2 ]2

6 ε

1∫
0

∣∣D6u
∣∣2 dx+ Cε,

1∫
0

∣∣D4u
∣∣2 dx 6

[
C1

( 1∫
0

∣∣D6u
∣∣2 dx)1/4( 1∫

0

∣∣D2u
∣∣2 dx)1/4

+ C2

( 1∫
0

∣∣D2u
∣∣2 dx)1/2 ]2

6 ε

1∫
0

∣∣D6u
∣∣2 dx+ Cε.

Then

I1 6 C

1∫
0

∣∣D2u
∣∣6 dx+ C

1∫
0

∣∣D6u
∣∣2 dx 6 ε′

1∫
0

∣∣D6u
∣∣2 dx+ C ′ε,
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I2 6 6 sup
x∈Ω
|Du|

1∫
0

D2uD3uD6udx

6 C

1∫
0

∣∣D2u
∣∣4 dx+ C

1∫
0

∣∣D3u
∣∣4 dx+ C

1∫
0

∣∣D6u
∣∣2 dx 6 ε′

1∫
0

∣∣D6u
∣∣2 dx+ C ′ε,

I3 6 sup
x∈Ω

∣∣(Du)2 + w3(u)
∣∣ 1∫
0

D4uD6udx

6 C

1∫
0

∣∣D4u
∣∣2 dx+ C

1∫
0

∣∣D6u
∣∣2 dx 6 ε′

1∫
0

∣∣D6u
∣∣2 dx+ C ′ε,

I4 6 sup
x∈Ω

∣∣w′′0 (u)(Du)2 + w′′2 (u)(Du)4
∣∣ 1∫
0

D6udx 6 ε′
1∫

0

∣∣D6u
∣∣2 dx+ C ′ε,

I5 6 sup
x∈Ω

∣∣w′0(u) +
(
3w′2(u) + 2w′′3 (u)

)
(Du)2

∣∣ 1∫
0

D2uD6udx

6 C

1∫
0

∣∣D2u
∣∣2 dx+ C

1∫
0

∣∣D6u
∣∣2 dx 6 ε′

1∫
0

∣∣D6u
∣∣2 dx+ C ′ε,

I6 6 2 sup
x∈Ω

∣∣w′3(u)
∣∣ 1∫
0

∣∣D2u
∣∣2D6udx 6 C

1∫
0

∣∣D2u
∣∣4 dx+ C

1∫
0

∣∣D6u
∣∣2 dx

6 ε′
1∫

0

∣∣D6u
∣∣2 dx+ C ′ε,

I7 6 3 sup
x∈Ω

∣∣w′3(u)Du
∣∣ 1∫
0

D3uD6udx 6 C

1∫
0

∣∣D3u
∣∣2 dx+ C

1∫
0

∣∣D6u
∣∣2 dx

6 ε′
1∫

0

∣∣D6u
∣∣2 dx+ C ′ε.

Summing up, we have

1

2

d

dt

1∫
0

∣∣D3u
∣∣2 dx+ (1− 8ε′)

1∫
0

∣∣D6u
∣∣2 dx 6 8C ′ε. (10)
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Assuming that ε′ is small enough and it satisfies 1− 8ε′ > 0, we have

1

2

d

dt

1∫
0

∣∣D3u
∣∣2 dx+ C ′

1∫
0

∣∣D3u
∣∣2 dx 6 C ′′.

Applying Gronwall’s inequality, we have

1∫
0

∣∣D3u
∣∣2 dx 6 e−C

′t

1∫
0

|D3u0|2 dx+
C ′′

C ′
.

Therefore, for initial data in any bounded set B ⊂ H3(Ω), there is a uniform time t2(B)
depending on B such that for t > t2(B) > 0,

1∫
0

∣∣D3u
∣∣2 dx 6

2C ′′

C ′
. (11)

Sobolev embedding theorem gives supx∈Ω |D2u| 6 C. Adding (7), (8), (9) and (10), we
have ‖u(x, t)

∥∥
H3 6 C. Let t0(B) = max{t1(B), t2(B)}, then the lemma is proved.

From the above lemma we know that {S(t)}t>0 has a bounded absorbing set in
H3(Ω). In what follows, we prove the precompactness of the orbit in H3(Ω).

Lemma 3. For any initial data u0 in any bounded set B ⊂ H3(Ω), there is a T (B) > 0
such that ∥∥u(t)

∥∥
H4 6 C ∀t > T > 0.

Proof. The uniform boundedness ofH3(Ω) norm of u(t) has been achieved in Lemma 2.
In what follows, we give the estimate on H4-norm.

Differentiating (1) with respect to x, multiplying the resultant by D7u and integrating
on Ω, using the boundary conditions, we have

1

2

d

dt

1∫
0

∣∣D4u
∣∣2 dx+

1∫
0

∣∣D7u
∣∣2 dx

6

1∫
0

∣∣D6u
∣∣2 dx

+

1∫
0

[
12
∣∣D2u

∣∣2 + w′0(u) +
(
3w′2(u) + 5w′′3 (u)

)
|Du|2

+ 7w′3(u)D2u
]
D3uD7udx

+ 6

1∫
0

Du
∣∣D3u

∣∣2D7udx+

1∫
0

[
8DuD2u+ 4w′3(u)Du

]
D4uD7udx
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+

1∫
0

[
|Du|2 + w3(u)

]
D5uD7udx

+

1∫
0

[
w′′′0 (u)|Du|3 + 3w′′0 (u)DuD2u+ w′′′2 (u)|Du|5

+
(
7w′′2 (u) + 2w′′′3 (u)

)
|Du|3D2u

+ 6
(
w′2(u) + w′′3 (u)

)
Du
∣∣D2u

∣∣2]D7udx

=

1∫
0

∣∣D6u
∣∣2 dx+ J1 + J2 + J3 + J4 + J5. (12)

By Nirenberg’s inequality we have
1∫

0

∣∣D6u
∣∣2 dx 6

[
C3

( 1∫
0

∣∣D7u
∣∣2 dx)3/8( 1∫

0

∣∣D3u
∣∣2 dx)1/8

+ C4

( 1∫
0

∣∣D3u
∣∣2 dx)1/2 ]2

6 ε′
1∫

0

∣∣D7u
∣∣2 dx+ C′

ε,

1∫
0

∣∣D3u
∣∣4 dx 6

[
C3

( 1∫
0

∣∣D7u
∣∣2 dx)1/32( 1∫

0

∣∣D3u
∣∣2 dx)15/32

+ C4

( 1∫
0

∣∣D3u
∣∣2 dx)1/2 ]4

6 ε

1∫
0

∣∣D7u
∣∣2 dx+ Cε,

1∫
0

∣∣D4u
∣∣2 dx 6

[
C3

( 1∫
0

∣∣D7u
∣∣2 dx)1/8( 1∫

0

∣∣D3u
∣∣2 dx)3/8

+ C4

( 1∫
0

∣∣D3u
∣∣2 dx)1/2 ]2

6 ε

1∫
0

∣∣D7u
∣∣2 dx+ Cε,

1∫
0

∣∣D5u
∣∣2 dx 6

[
C3

( 1∫
0

∣∣D7u
∣∣2 dx)1/4( 1∫

0

∣∣D3u
∣∣2 dx)1/4

+ C4

( 1∫
0

∣∣D3u
∣∣2 dx)1/2 ]2

6 ε

1∫
0

∣∣D7u
∣∣2 dx+ Cε.

Hence, we have

J1 6 C

1∫
0

∣∣D3u
∣∣2 dx+ C

1∫
0

∣∣D7u
∣∣2 dx 6 ε′

1∫
0

∣∣D7u
∣∣2 dx+ C ′ε,
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J2 6 6 sup
x∈Ω
|Du|

1∫
0

∣∣D3u
∣∣2D7udx 6 C

1∫
0

∣∣D3u
∣∣4 dx+ C

1∫
0

∣∣D7u
∣∣2 dx

6 ε′
1∫

0

∣∣D7u
∣∣2 dx+ C ′ε,

J3 6 sup
x∈Ω

∣∣8DuD2u+ 4w′3(u)Du
∣∣ 1∫
0

D4uD7udx

6 C

1∫
0

∣∣D4u
∣∣2 dx+ C

1∫
0

∣∣D7u
∣∣2 dx 6 ε′

1∫
0

∣∣D7u
∣∣2 dx+ C ′ε,

J4 6 sup
x∈Ω

∣∣(Du)2 + w3(u)
∣∣ 1∫
0

D5uD7udx 6 C

1∫
0

∣∣D5u
∣∣2 dx+ C

1∫
0

∣∣D7u
∣∣2 dx

6 ε′
1∫

0

∣∣D7u
∣∣2 dx+ C ′ε,

J5 6 sup
x∈Ω

∣∣w′′′0 (u)(Du)3 + 3w′′0 (u)DuD2u+ w′′′2 (u)(Du)5

+
(
7w′′2 (u) + 2w′′′3 (u)

)
(Du)3D2u+ 6

(
w′2(u) + w′′3 (u)

)
Du(D2u)2

∣∣ 1∫
0

D7udx

6 ε′
1∫

0

∣∣D7u
∣∣2 dx+ C ′ε.

Summing up, we derive that

1

2

d

dt

1∫
0

∣∣D4u
∣∣2 dx+ (1− 6ε′)

1∫
0

∣∣D7u
∣∣2 dx 6 6C ′ε.

Assuming that ε′ is small enough and it satisfies 1− 6ε′ > 0, we have

1

2

d

dt

1∫
0

∣∣D4u
∣∣2 dx 6 −C

1∫
0

∣∣D7u
∣∣2 dx+ C ′ 6 C

1∫
0

∣∣D4u
∣∣2 dx+ C ′. (13)

By (10) we have
1

2

d

dt

∥∥D3u
∥∥2 dx+ C

∥∥D6u
∥∥2 6 C ′. (14)
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Integrating (14) between t and t+ 1 and by (11), we have

t+1∫
t

∥∥D6u
∥∥2 dτ 6

∥∥D3u(t)
∥∥2 + C 6 C ′.

By Poincaré’s inequality we have

t+1∫
t

∥∥D4u
∥∥2 dτ 6

t+1∫
t

∥∥D5u
∥∥2 dτ 6

t+1∫
t

∥∥D6u
∥∥2 dτ 6 C. (15)

Therefore, by (13), (15) and the uniform Gronwall inequality we have

1∫
0

∣∣D4u
∣∣2 dx 6 C, t > 1.

The lemma is proved.

Now we give the proof of Theorem 1.

Proof of Theorem 1. Combining Lemma 2 with Lemma 3, by [14] we have completed the
proof of Theorem 1.

3 Global attractor in Hk

In order to consider the global attractors for Eq. (1) in the Hk space, we introduce the
definition as follows:

H =

{
u ∈ L2(Ω):

1∫
0

udx = 0

}
, (16)

H1/2 =

{
u ∈ H3(Ω) ∩H: Du|∂Ω = 0,

1∫
0

udx = 0

}
, (17)

H1 =

{
u ∈ H6(Ω) ∩H: Du|∂Ω = D3u|∂Ω = D5u|∂Ω = 0,

1∫
0

udx = 0

}
. (18)

In this article, we let

G(u) = D4 −D2
[
|Du|2D2u

]
+D2

[
w0(u) + w2(u)|Du|2 + w3(u)D2u

]
be a nonlinear function, and we assume that the linear operator L = D6 : H1 → H
in (16)–(18) is a sectorial operator, which generates an analytic semigroup etL, and
L induces the fractional-power operators and fractional-order spaces as follows:

Lα = (−L)α : Hα → H, α ∈ R, (19)
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where Hα = D(Lα) is the domain of Lα. By the semigroup theory of linear operators,
Hβ ⊂ Hα is a compact inclusion for any β > α.

Now we give the main theorem of this article, which provides the existence of global
attractors of Eq. (1) in any kth space Hk.

Theorem 2. Assume u0 ∈ H3(Ω) and the smooth functions w0,2,3(h) satisfy (4), then
the solution u of problem (1)–(3) possesses a global attractor A in the space Hk, which
attracts all the bounded set of Hk in the Hk-norm, where k ∈ [0,∞).

On the basis of Ma and Wang [9], it is well known that the solution u(t, u0) of
problem (1)–(3) can be expressed as

u(t, u0) = etLu0 +

t∫
0

e(t−τ)LG(u) dτ, (20)

where L = D6 and

G(u) = D2g(u)

= D4 −D2
[
|Du|2D2u

]
+D2

[
w0(u) + w2(u)|Du|2 + w3(u)D2u

]
.

Then (20) means

u(t, u0) = etLu0 +

t∫
0

e(t−τ)LD2g(u) dτ = etLu0 +

t∫
0

(−L)1/3e(t−τ)Lg(u) dτ.

In order to prove Theorem 2, we first prove the following lemma.

Lemma 4. For any bounded set U ∈ Hα, there exists a constant C > 0 such that∥∥u(t, u0)
∥∥
Hα

6 C ∀t > 0, u0 ∈ U ⊂ Hα, α > 0. (21)

Proof. For α = 1/2, this follows from Lemma 2, i.e., for any bounded set U ⊂ H1/2,
there exists a constant C, C > 0, such that∥∥u(t, u0)

∥∥
H1/2

6 C ∀t > 0, u0 ∈ U ⊂ H1/2.

Then we only need to prove (21) for any α > 1/2.

Step 1. We prove that for any bounded set U ⊂ Hα (1/2 6 α < 2/3), there exists
a constant C > 0 such that∥∥u(t, u0)

∥∥
Hα

6 C ∀t > 0, u0 ∈ U,
1

2
6 α <

2

3
. (22)

We claim that g : H1/2 → H is bounded, by Sobolev embedding theorem we have

H1/2 ↪→ H2(Ω), H1/2 ↪→W 1,8(Ω),

H1/2 ↪→W 2,4(Ω), H1/2 ↪→ L∞(Ω).
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Then we obtain

∥∥g(u)
∥∥
H2 6 C

1∫
0

(∣∣D2u
∣∣2 + |Du|8 +

∣∣D2u
∣∣4

+
∣∣w0(u)

∣∣2 +
∣∣w2(u)

∣∣4 + |Du|8 + |w3(u)|4 +
∣∣D2u

∣∣4)dx

6 C
(
‖u‖2H2 + ‖u‖8W 1,8 + ‖w0(u)‖2L∞ +

∥∥w2(u)
∥∥4
L∞

+ ‖u‖8W 1,8 +
∥∥w3(u)

∥∥4
L∞ + ‖u‖4W 2,4

)
6 C

(
‖u‖2H2 + ‖u‖8W 1,8 + ‖u‖4W 2,4 + C

)
6 C

(
‖u‖2H1/2

+ ‖u‖8H1/2
+ ‖u‖4H1/2

+ 1
)
, (23)

which means that g : H1/2 → H is bounded. By (19), (20) and (23) we find that

∥∥u(t, u0)
∥∥
Hα

=

∥∥∥∥∥etLu0 +

t∫
0

(−L)1/3e(t−τ)Lg(u) dτ

∥∥∥∥∥
Hα

6 C‖u0‖Hα +

t∫
0

∥∥(−L)1/3+αe(t−τ)Lg(u)
∥∥
H

dτ

6 C‖u0‖Hα +

t∫
0

∥∥(−L)1/3+αe(t−τ)L
∥∥ · ∥∥g(u)

∥∥
H

dτ

6 C‖u0‖Hα + C

t∫
0

(t− τ)−βe−δ(t−τ) dτ

6 C‖u0‖Hα + C

t∫
0

τ−βe−δτ dτ 6 C ∀t > 0, u0 ∈ U ⊂ Hα,

where β = 1/3 + α (0 < β < 1). Hence, (22) is valid.

Step 2. We prove that for any bounded set U ⊂ Hα (2/3 6 α < 5/6), there exists
a constant C > 0 such that∥∥u(t, u0)

∥∥
Hα

6 C ∀t > 0, u0 ∈ U,
2

3
6 α <

5

6
. (24)

We claim that g : Hα → H1/6 is bounded, by Sobolev embedding theorem we have

Hα ↪→ H3(Ω), Hα ↪→W 1,4(Ω), Hα ↪→W 2,8(Ω), Hα ↪→W 1,8(Ω),

Hα ↪→W 3,4(Ω), Hα ↪→W 1,6(Ω), Hα ↪→W 2,4(Ω), Hα ↪→ L∞(Ω),

where 1/2 6 α < 2/3.
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Then we obtain

∥∥g(u)
∥∥2
H1/6

6 C

1∫
0

(∣∣D3u
∣∣2 + |Du|2

∣∣D2u
∣∣4 + |Du|4

∣∣D3u
∣∣2

+ |w′0(u)|2|Du|2 + |w′2(u)|2|Du|6 + |w2(u)|2|Du|2
∣∣D2u

∣∣2
+ |w′3(u)|2|Du|2

∣∣D2u
∣∣2 + |w3(u)|2

∣∣D3u
∣∣2) dx

6 C
(
‖u‖2H3 + ‖u‖4W 1,4 + ‖u‖8W 2,8 + ‖u‖8W 1,8 + ‖u‖4W 3,4

+ ‖w′0(u)‖2L∞‖u‖2H + ‖w′2(u)‖2L∞‖u‖6W 1,6 + ‖w2(u)‖4L∞‖u‖4W 1,4

+ ‖u‖4W 2,4 + ‖w′3(u)‖4L∞‖u‖4W 1,4 + ‖u‖4W 2,4 + ‖w3(u)‖2L∞‖u‖2H3

)
6 C

(
‖u‖2Hα + ‖u‖4Hα + ‖u‖8Hα + ‖u‖6Hα

)
, (25)

which means that g : Hα → H1/6 is bounded. On the basis of Step 1 and (25), we
deduce that∥∥u(t, u0)

∥∥
Hα

=

∥∥∥∥∥etLu0 +

t∫
0

(−L)1/3e(t−τ)Lg(u) dτ

∥∥∥∥∥
H

α

6 C‖u0‖Hα +

t∫
0

∥∥(−L)1/6+αe(t−τ)Lg(u)
∥∥
H1/6

dτ

6 C‖u0‖Hα +

t∫
0

∥∥(−L)1/6+αe(t−τ)L
∥∥ · ∥∥g(u)

∥∥
H1/6

dτ

6 C‖u0‖Hα + C

t∫
0

(t− τ)−βe−δ(t−τ) dτ

6 C‖u0‖Hα + C

t∫
0

τ−βe−δτ dτ 6 C ∀t > 0, u0 ∈ U ⊂ Hα,

where β = 1/6 + α (0 < β < 1). Hence, (24) is valid.

Step 3. We prove that for any bounded set U ⊂ Hα (5/6 6 α < 1), there exists
a constant C > 0 such that∥∥u(t, u0)

∥∥
Hα

6 C ∀t > 0, u0 ∈ U,
5

6
6 α < 1. (26)

We claim that g : Hα → H1/3 is bounded, by Sobolev embedding theorem we have

Hα ↪→ H4(Ω), Hα ↪→W 2,6(Ω), Hα ↪→W 2,8(Ω), Hα ↪→W 3,4(Ω),

Hα ↪→W 4,4(Ω), Hα ↪→W 1,4(Ω), Hα ↪→W 2,4(Ω), Hα ↪→ L∞(Ω)

where 2/3 6 α < 5/6.
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Then we obtain

∥∥g(u)
∥∥2
H1/3

6 C

1∫
0

(∣∣D4u
∣∣2 +

∣∣D2u
∣∣6 + |DuD2uD3u|2 + |Du|4

∣∣D4u
∣∣2

+ |w′′0 (u)|2|Du|4 + |w′0(u)|2
∣∣D2u

∣∣2
+ |w′2(u)|2|Du|8 + |w′2(u)|2|Du|4

∣∣D2u
∣∣2

+ |w2(u)|2
∣∣D2u

∣∣4 + |w2(u)|2|Du|2
∣∣D3u

∣∣2
+ |w′′3 (u)|2|Du|4

∣∣D2u
∣∣2 + |w′3(u)|2

∣∣D2u
∣∣4

+ |w′3(u)|2|Du|2
∣∣D3u

∣∣2 + |w3(u)|2
∣∣D4u

∣∣2) dx

6 C
(
‖u‖2H4 + ‖u‖6W 2,6 + ‖u‖8W 1,8 + ‖u‖8W 2,8 + ‖u‖4W 3,4 + ‖u‖4W 4,4

+ ‖w′′0 (u)‖2L∞‖u‖4W 1,4 + ‖w′0(u)‖2L∞‖u‖2H2 + ‖w′2(u)‖2L∞‖u‖8W 1,8

+ ‖u‖4W 2,4 + ‖w2(u)‖2L∞‖u‖4W 2,4 + ‖w2(u)‖4L∞‖u‖4W 1,4

+ ‖w′′3 (u)‖4L∞‖u‖8W 1,8 + ‖w′3(u)‖2L∞‖u‖4W 2,4 + ‖w′3(u)‖4L∞‖u‖4W 1,4

)
+ ‖u‖4W 3,4 + ‖w3(u)‖2L∞‖u‖2H4)

6 C
(
‖u‖2Hα + ‖u‖6Hα + ‖u‖8Hα + ‖u‖4Hα

)
, (27)

which means that g : Hα → H1/3 is bounded. On the basis of Step 2 and (27), we
deduce that

∥∥u(t, u0)
∥∥
Hα

=

∥∥∥∥∥etLu0 +

t∫
0

(−L)1/3e(t−τ)Lg(u) dτ

∥∥∥∥∥
Hα

6 C‖u0‖Hα +

t∫
0

∥∥(−L)αe(t−τ)Lg(u)
∥∥
H1/3

dτ

6 C‖u0‖Hα +

t∫
0

∥∥(−L)αe(t−τ)L
∥∥ · ∥∥g(u)

∥∥
H1/3

dτ

6 C‖u0‖Hα + C

t∫
0

τ−αe−δτ dτ 6 C ∀t > 0, u0 ∈ U ⊂ Hα.

Hence, (26) is valid.
In the same fashion as in the proof of (26), by iteration we can prove that for any

bounded set U ⊂ Hα (α > 0), there exists a constant C > 0 such that∥∥u(t, u0)
∥∥
Hα

6 C ∀t > 0, u0 ∈ U ⊂ Hα, α > 0.

That is, for all α > 0, the semigroup S(t) generated by problem (1)–(3) is uniformly
compact in Hα. Lemma 4 is proved.
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Lemma 5. For any α > 0, problem (1)–(3) has a bounded absorbing set in Hα. That is,
for any bounded set U ∈ Hα, there exists T > 0 and a constant C > 0 independent of u0
such that ∥∥u(t, u0)

∥∥
Hα

6 C ∀t > T, u0 ∈ U ⊂ Hα. (28)

Proof. For α = 1/2, this follows from Lemma 3. Then we prove (28) for any α > 1/2.
We proceed in the following steps.

Step 1. We prove that for any 1/2 6 α < 2/3, (1)–(3) has a bounded absorbing set
in Hα.

By (19) we have

u(t, u0) = etLu0 +

t∫
T

(−L)1/3e(t−T )Lg(u) dτ. (29)

Assume that B is the bounded absorbing set of problem (1)–(3) and B satisfies
B ⊂ H1/2. In addition, we also assume the time t0 > 0 such that

u(t, u0) ∈ B ∀t > t0, u0 ∈ U ⊂ Hα, α >
1

2
.

Note that ‖etL‖ 6 Ce−λ
3
1t, where λ1 > 0 is the first eigenvalue of the equation

−∆u = λu,
∂u

∂n
= 0.

Then for any given T > 0 and u0 ∈ U ⊂ Hα (α > 1/2), we can obtain

lim
t→∞

∥∥e(t−T )Lu(T, u0)
∥∥
Hα

= 0. (30)

Adding (23) and (29) together, we have∥∥u(t, u0)
∥∥
Hα

6
∥∥e(t−t0)Lu(t0, u0)

∥∥
Hα

+

t∫
t0

∥∥(−L)1/3+αe(t−T )L
∥∥ · ∥∥g(u)

∥∥
H

dτ

6
∥∥e(t−t0)Lu(t0, u0)

∥∥
Hα

+ C

t∫
t0

∥∥(−L)1/3+αe(t−T )L
∥∥ dτ

6
∥∥e(t−t0)Lu(t0, u0)

∥∥
Hα

+ C

T−t0∫
0

τ−1/3−αe−δτ dτ

6
∥∥e(t−t0)Lu(t0, u0)

∥∥
Hα

+ C, (31)

where C > 0 is a constant independent of u0. Then by (30) and (31) we have that (28)
holds for all 1/2 6 α < 2/3.
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Step 2. We prove that for any 2/3 6 α < 5/6, problem (1)–(3) has a bounded
absorbing set in Hα.

Adding (25) and (29) together, we have∥∥u(t, u0)
∥∥
Hα

6 ‖e(t−t0)Lu(t0, u0)‖Hα +

t∫
t0

‖(−L)1/6+αe(t−T )L‖ ·
∥∥g(u)

∥∥
H1/6

dτ

6
∥∥e(t−t0)Lu(t0, u0)

∥∥
Hα

+ C

t∫
t0

∥∥(−L)1/6+αe(t−T )L
∥∥dτ

6
∥∥e(t−t0)Lu(t0, u0)

∥∥
Hα

+ C

T−t0∫
0

τ−1/6−αe−δτ dτ

6
∥∥e(t−t0)Lu(t0, u0)

∥∥
Hα

+ C, (32)

where C > 0 is a constant independent of u0. Then by (30) and (32) we have that (28)
holds for all 2/3 6 α < 5/6.

Step 3. We can use the same method as the above step to prove that for any 5/6 6
α < 1, problem (1)–(3) has a bounded absorbing set in Hα. By the iteration method we
can obtain that (28) holds for all α > 1/2.

Now we give the proof of Theorem 2.

Proof. Combining Lemmas 4 and 5, we have completed the proof of Theorem 2.

4 Conclusion

In the study of a mechanism for the formation of quantum dots on the surface of thin solid
films, there arise a sixth-order parabolic equation (1) (see [5]). Mathematically, Eq. (1)
is a nonlinear evolution equation. Studying the properties of solutions for Eq. (1) is so
interesting and maybe useful for the study of the surface of thin solid films. Recently,
Zhao [15] studied the existence of classical solutions of the initial boundary value problem
of such equation. In order to study the long-time behavior of solutions, we prove the
existence of global attractor of Eq. (1) with boundary and initial value conditions. The
main idea comes from Temam [14] and Ma and Wang [9]. By using the properties of
sectorial operator we define a semigroup related to the fractional-order Sobolev space
Hk(0, 1) (k ∈ [0,∞)). Then applying Sobolev embedding theorem and iteration tech-
nique, we obtain some useful a priori estimates and prove the existence of absorbing sets
and asymptotic compactness of semigroup, obtain our main result on the existence of
global attractor.
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It is worth pointing out that there are also some other papers that studied the existence
of global attractor for dissipative equations in fractional-order Sobolev spaces (see, e.g.,
semilinear parabolic equation [11], fourth-row Cahn–Hilliard equations [12,16], modified
Swift–Hohenberg equations [13], sixth-row Cahn–Hilliard equations [8] and the reference
cited therein). We also remark that although both [8] and this paper are focus on the sixth-
order diffusion equations, the equation considered in [8] is a sixth-order convective Cahn–
Hilliard equation, which is different from equation (1). Due to the different terms of both
papers, the calculations are different from the paper of Liu and Liu [8].

Acknowledgment. The authors would like to express their deep thanks to the referee’s
valuable suggestions for the revision and improvement of the manuscript.
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