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Abstract. In this study, we focus on designing a robust piecewise adaptive controller to globally
asymptotically stabilize a semilinear parabolic distributed parameter systems (DPSs) with external
disturbance, whose nonlinearities are bounded by unknown functions. Firstly, a robust piecewise
adaptive control is designed against the unknown nonlinearity and the external disturbance. Then,
by constructing an appropriate Lyapunov–Krasovskii functional candidate (LKFC) and using the
Wiritinger’s inequality and a variant of the Agmon’s inequality, it is shown that the proposed robust
piecewise adaptive controller not only ensures the globally asymptotic stability of the closed-loop
system, but also guarantees a given performance. Finally, two simulation examples are given to
verify the validity of the design method.

Keywords: semilinear parabolic distributed parameter systems, robust piecewise adaptive control,
globally asymptotic stabilization, spatial L∞ norm.

1 Introduction

In actual engineering applications, most physical models are widely distributed in space,
continuously changing in time, and have the characteristics of spatiotemporal dynamics.
Therefore, they cannot be modeled by ordinary differential equations (ODEs), which are
precisely determined by partial differential equations (PDEs). The parabolic DPSs has
the typical characteristics of a DPSs, so the research of the parabolic DPSs has important
theoretical significance and practical value. The parabolic DPSs has been widely used in
reaction diffusion problems, such as chemical reaction control, heat conduction control
[24] and tube flow control [3].

Over a long period in the past, a large number of literatures about the design of
efficient controller for parabolic DPSs have emerged. Generally speaking, according to
the control effect, the control models of DPSs mainly includes intradomain control and
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boundary control [22], where Roffel and Betlem discussed the design methods of in-
tradomain control and boundary control for a class of linear/nonlinear parabolic DPSs
in [22], and Krstic further introduced the boundary control problem of DPSs in [18].
At present, there are a lot of literatures about the boundary control of PDEs. At first,
inspired by the fact that the main dynamics of the parabolic PDEs can be roughly de-
scribed by a low-dimensional ODE systems, for linear parabolic PDEs, a design method
of predictive boundary control and a design method of sampling data boundary control
were introduced in [11] and [8], respectively. In [19], a method of boundary control was
proposed for semilinear parabolic DPSs with noncollocated observations in which the
low-dimensional ordinary differential equation model was obtained by using the Galerkin
method, and a finite-dimensional controller was designed based on the model. Simi-
larly, for intradomain control researches, the main idea in literatures [31–33] was that
the order of the systems was reduced by using the Galerkin method to obtain the low-
dimensional nonlinear ODEs firstly, and then the appropriate controller was designed
for the obtained low-dimensional nonlinear ODEs by using the existing fuzzy control
technology. This method is generally applicable only to high-dissipation PDE systems
with low-dimensional dominant dynamic behavior. The essential defect of the results in
references [8, 11, 19, 31–33] is that the method of designing after truncation may cause
inherent loss of important information.

In order to achieve a better control effect, it is necessary to directly study the control
design method of the original PDEs model. So far, many scholars have made great efforts
to study the fuzzy control design method of parabolic DPSs based on the fuzzy PDEs
model. In [29, 30], based on the fuzzy PDEs model, the problem of distributed fuzzy
control method for a type of nonlinear parabolic DPSs was solved. In [34], a design
method of fuzzy boundary control for a type of nonlinear DPSs was introduced, and it
could be realized by only a few controllers, but the control design method was conser-
vative and suitable only for weak semilinear parabolic DPSs with small sector bound
of nonlinear term. To overcome this defect in [34], a pointwise control design method
based on finite dimensional fuzzy observer for a class of parabolic PDEs was proposed
in [6]. However, the design method introduced in [6] belongs to the so-called “reduce-
then-design” approach of PDEs system control. Then, in [20, 26], the output feedback
control design methods of linear and semilinear parabolic PDEs models were studied,
respectively. Recently, in [28], for semilinear parabolic PDEs, the author proposed a de-
sign method of sampled data output feedback control, which could not only guaranteeH2

performance, but also ensure H∞ performance index in the sense of L∞ norm. However,
the existing literatures on the control problems of semilinear parabolic DPSs based on
fuzzy PDEs models are all local stability results, which is one of the motivations of this
study.

It is well known that parabolic PDEs are widely used in many important engineering,
medical and other control problems. However, in most situations, some parameters in
the equations cannot be obtained accurately, and these parameters are very important for
practical engineering applications and biomedical applications. Therefore, the research
on adaptive control of parabolic PDEs is of great practical value. Recently, adaptive
control method has been widely used in systems modeled by ODEs [7, 35]. In [7, 35],
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adaptive fuzzy practical fixed-time tracking control and finite-time adaptive fault-tolerant
control for nonlinear systems were proposed, respectively. However, in [7,35], fuzzy logic
systems and radial basis function neural networks were used to approximate nonlinear
terms, respectively, so the semiglobal results were obtained in these cases. Adaptive
controller has also been widely used in hyperbolic PDEs [1,2,4,5]. The existing adaptive
control design methods for parabolic PDEs mainly include [15]: Lyapunov-based design,
design with passive identifiers and design with swapping identifiers (see [16, 17, 23]).
Recently, a simple deterministic equivalent adaptive controller was proposed in [14],
which was suitable for more general systems. On the basis of [14], a new adaptive scheme
for a specific Dirichlet driving benchmark problem was proposed in [15] in which only the
response coefficient and high-frequency gain are unknown parameters. Most of the litera-
tures above basically use the adaptive boundary control method for the PDEs. In addition,
for the linear parabolic DPSs, the collocated and noncollocated piecewise control were
given in [27]. The piecewise control is that the controllers are placed in different spatial
segmented areas, and the controllers do not affect each other. Compared with a system
controlled by a boundary controller, the piecewise control reduces its conservativeness.
As far as the authors know, there are very few literatures about the piecewise adaptive
controller designed in the spatial domain that makes the uncertain nonlinear parabolic
system globally asymptotically stabilized, which is the other motivation of this study.

In this paper, we mainly focus on studying the globally asymptotic stabilization for an
uncertain semilinear parabolic PDEs with external disturbance under the designed robust
piecewise adaptive controller. The main contributions of this research are listed as follows:

1. By using the theory of contraction semigroup theory we give a detailed analysis of
the well-posedness of the solutions of the open-loop system and the closed-loop
system.

2. A robust piecewise adaptive controller designed in this study guarantees the glob-
ally asymptotic stability of the uncertain semilinear parabolic DPSs, which over-
comes the defects of the existing semiglobal results. Moreover, the designed con-
troller can ensure a given performance in the sense of |·|∞.

3. A robust piecewise adaptive control is designed against the unknown nonlinearity
and the external disturbance in the system. The designed controller meets the
requirements of designing different controllers in different spatial segmented areas,
and the controllers do not affect each other. Compared with a system controlled by
a boundary controller, the controller designed in this study reduces its conserva-
tiveness and improves its effectiveness.

The other parts of the study are arranged as follows. Section 2 introduces the system to
be studied and some preliminaries. In Section 3, the main results are given. Section 4 gives
an actual numerical simulation example to prove the validity of the theoretical design.
Finally, a conclusion is given.

Notations. |·| is the absolute value sign of scalars. R is the set of real numbers, Rm rep-
resents m-dimensional Euclidean space, H , (L2[0, L];R) is a Hilbert space of square
integrable vector functions %(y) : [0, L] → R with 〈%1(·), %2(·)〉 =

∫ L
0
%1(y)%2(y) dy
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and |%1|2 =
√
〈%1(·), %1(·)〉. For any %(·) ∈ H, its L∞ norm is defined as |%(·)|∞ ,

maxy∈[0,L] |%(y)|, and its Hm norm is defined as |%|Hm = (
∑

06|α|6m |Dα%|22)1/2. The
superscript T is used for the transpose of a vector or a matrix, and ηt(y, t) = ∂η(y, t)/∂t,
ηy(y, t) = ∂η(y, t)/∂y, ηyy(y, t) = ∂2η(y, t)/∂y2.

2 System description and some preliminaries

In this study, we consider a second-order semilinear parabolic DPSs described as

ηt(y, t) =
(
α(y)ηy(y, t)

)
y

+ h
(
η(y, t)

)
+ ST(y)u(t) + c(y, t),

η(y, 0) = η0(y), ηy(y, t)|y=0 = η(y, t)|y=L = 0,
(1)

where η(·, t) is the state variable, which belongs to H. t > 0 represents time, y ∈
[0, L] ⊂ R stands for the spatial position. α(y) belongs toH1, and suppose that it satisfies
α∗ > α(y) > α∗ > 0 and α(0) < 2α(L), where α∗ and α∗ are known constants.
h(η(y, t)) is the unknown nonlinear function, which belongs to the class C1 and satisfies
h(0) = 0. c(y, t) indicates an external disturbance and satisfies

∫∞
0
|c(·, t)|2∞ dt < ∞.

u(t) , [u1(t), u2(t), . . . , um(t)]T ∈ Rm is the control input provided by m controllers,
where m is a finite positive integer. S(y) , [s1(y), s2(y), . . . , sm(y)]T ∈ Rm is a known
integrable function of y, and si(y) represents the ith controller’s distribution over the
domain (0, L). In this study, we choose

si(y) =

{
1, y ∈ [yi, yi+1],

0, others,
(2)

where 0 = y1 < y2 < · · · < ym < ym+1 = L, i ∈M , {1, 2, . . . ,m}.

Remark 1. Note that the system described in (1) has a wide range of applications in
practical engineering, such as heat and mass transfer, combustion theory and chemistry
[10]. Firstly, it can be used to describe the spatiotemporal evolution dynamics of neutron
concentration in nuclear reactor when (α(y)ηy(y, t))y = νηyy(y, t) and h(η(y, t)) =
ζ1(ζ2η(y, t)−η2(y, t)), where η(y, t) represents the neutron concentration profile of a nu-
clear reactor. Secondly, it can describe the mass transfer in a two-component medium at
rest with a volume chemical reaction of the quasi-first order when h(η(y, t)) = ζ3η(y, t)×
(1 − η(y, t)). In addition, the kinetic function ζ3η(y, t)(1 − η(y, t)) can also model an
autocatalytic chain in combustion theory.

Assumption 1. The nonlinearity h(η(y, t)) is a C1 function, and it is Lipschitz continu-
ous, i.e., ∣∣h(η(y, t)

)
− h
(
η∗(y, t)

)∣∣ 6 β∣∣η(y, t)− η∗(y, t)
∣∣ ∀η, η∗ ∈ H,

for β > 0 and β ∈ R.
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Lemma 1 [Wirtinger’s inequality]. (See [28].) Let η(·, t) ∈ H(0, L), and it satisfies
η(0) = 0 or η(L) = 0. Then we get

L∫
0

η2(y, t) dy 6 4L2π−2
L∫

0

η2y(y, t) dy, t > 0. (3)

Similarly, with the property ηy(0) = 0 or ηy(L) = 0, we can get

L∫
0

η2y(y, t) dy 6 4L2π−2
L∫

0

η2yy(y, t) dy, t > 0, (4)

for η(·, t) ∈ H2(0, L).

Lemma 2 [Lumer–Phillips theorem]. (See [13,25].) For any operator Γ , the following
statements are equivalent:

(i) Operator Γ is the generator of a contraction semigroup on spaceH;
(ii) Operator Γ is the maximum-dissipative.

Lemma 3 [A variant of Agmon’s inequality]. (See [28].) Suppose η(·, t) ∈ H(0, L) is
a scalar function and satisfies η(0, t) = 0 or η(L, t) = 0, t > 0. Then one has∣∣η(·, t)

∣∣2
∞ 6 2

∣∣η(·, t)
∣∣
2

∣∣ηy(·, t)
∣∣
2
6
∣∣η(·, t)

∣∣2
H1 , t > 0. (5)

Based on (5), as |η(·, t)|22 6 |η(·, t)|2∞, for all y ∈ [0, L] and t > 0, we further obtain∣∣η(·, t)
∣∣2
2
6 2
∣∣η(·, t)

∣∣
2

∣∣ηy(·, t)
∣∣
2
6
∣∣η(·, t)

∣∣2
H1 , t > 0. (6)

From (3)–(6) we derive∣∣η(·, t)
∣∣2
2
6 L

∣∣η(·, t)
∣∣2
∞,

∣∣ηy(·, t)
∣∣2
2
6 L

∣∣ηy(·, t)
∣∣2
∞,∣∣η(·, t)

∣∣2
∞ 6 2

∣∣η(·, t)
∣∣
2

∣∣ηy(·, t)
∣∣
2
6 4Lπ−1

∣∣ηy(·, t)
∣∣2
2

6 16L3π−3
∣∣ηyy(·, t)

∣∣2
2
∀y ∈ [0, L], ∀t > 0. (7)

Lemma 4 [Young’s inequality]. (See [12].) Suppose a, b > 0 ∈ R, ε1 > 1, 1/ε1 +
1/ε2 = 1, then

ab 6
aε1

ε1
+
bε2

ε2
.

If and only if aε1 = bε2 , the equality ab = aε1/ε1 + bε2/ε2 holds.

Based on the above preliminaries, our goal is to design a robust piecewise adaptive
controller to make the system globally asymptotically stable and guarantee a given per-
formance.
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3 Main results

In this part, we first give the well-posedness analysis of the system solution, and then
give the stability analysis of the system under the designed robust piecewise adaptive
controller.

Firstly, we introduce the robust piecewise adaptive controller for the semilinear parabolic
DPSs as follows:

ui(t) = −
β̂(t)

∫ L
0

(η2(y, t) + α∗η2y(y, t)) dy +
∫ L
0
η2(y, t) dy∫ yi+1

yi
(η(y, t)− (α∗ηy(y, t))y) dy

, i ∈M, (8)

where β̂(t) is defined as the estimated value of the unknown constant β at time t.

Remark 2. In (8), we can guarantee that η(y, t) − (α∗ηy(y, t))y 6= 0. When η(y, t) −
(α∗ηy(y, t))y = 0, the obtained η(y, t) is no longer the solution of the second-order
semilinear parabolic DPSs (1). Moreover, if η(y, t)− (α∗ηy(y, t))y = 0, the form of the
parabolic DPSs becomes

ηt(y, t) = η(y, t) + h
(
η(y, t)

)
+ ST(y)u(t) + c(y, t), t > 0, y ∈ [0, L]. (9)

When α∗ = α(y), from (9) it is easy to see that its form does not satisfy the form of the
second-order parabolic DPSs. However, we focus on studying the second-order parabolic
DPSs in this study. According to the above analysis, we can obtain the result η(y, t) −
(α∗ηy(y, t))y 6= 0.

Then, substituting (8) into (1), we can obtain

ηt(y, t) =
(
α(y)ηy(y, t)

)
y

+ h
(
η(y, t)

)
+ c(y, t)

−
m∑
i=1

si(y)
β̂(t)

∫ L
0

(η2(y, t) + α∗η2y(y, t)) dy +
∫ L
0
η2(y, t) dy∫ yi+1

yi
(η(y, t)− (α∗ηy(y, t))y) dy

,

η(y, 0) = η0(y), y ∈ [0, L], ηy(y, t)|y=0 = η(y, t)|y=L = 0, t > 0.

(10)

The chosen adaptive law is

˙̂
β(t) =

L∫
0

η2(y, t) dy +

L∫
0

α∗η2y(y, t) dy. (11)

3.1 Well-posed analysis of system solution

In this part, we focus on the well-posedness analyses of open-loop system and closed-
loop system, respectively. The open-loop system (1) can be expressed as the abstract
differential equation

ηt(t) = Γη(t) + h
(
η(t)

)
+ sTu(t) + c(t), η(0) = η0(·), (12)
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where the state variable η(t) , η(y, t), y ∈ [0, L], and Γ is defined as follows:

Γ η̄(y) ,
d

dy

(
α(y)

dη̄(y)

dy

)
.

The domain of the differential operator Γ is

D(Γ ) ,

{
η̄ ∈ H2(0, L):

dη̄(y)

dy
|y=0 = η̄(y)|y=L = 0

}
,

h(η(t)) , h(η(y, t)), (sTu(t))(y) , ST(y)u(t), s ∈ L(Rm;L2([0, L])), u(t) ∈
L2([0,∞);Rm), and c(t) , c(y, t), y ∈ [0, L]. The following theorem gives the well-
posed analysis of system solutions.

Theorem 1. The open-loop system (1) has well-posed solution. What is more, the closed-
loop system (10) with (11) also has well-posed solution.

Proof. Firstly, we discuss the well-posed solution of system (1). From the definition of
inner product 〈·, ·〉 and the integration by parts technology we can get

〈η̃, Γ η̃〉 = −
L∫

0

α(y)

(
dη̃(y)

dy

)2

dy ∀η̃(y) ∈ D(Γ ). (13)

From α(y) > α∗ > 0 and (13) we obtain

〈η̃, Γ η̃〉 6 −α∗

L∫
0

η̃2y(y) dy 6 0.

In addition, according to the definition of Γ , we can easily know that it is a self-adjoint
operator. Though the above analysis, we can know that operator Γ is a dissipative opera-
tor.

Next, we verify that the other necessary condition Ran(σI − Γ ) = H holds, where
σ > 0 is a constant. To prove the condition Ran(σI − Γ ) = H, we firstly introduce its
equivalent condition that the following equation

(σI − Γ )η̃ = η̂, η̂ ∈ H, (14)

has a unique solution. Then, based on the definition of operator Γ , we rewrite (14) as
follows:

ση̃(y)− d

dy

(
α(y)

dη̃(y)

dy

)
= η̂(y), y ∈ [0, L], (15)

with the following boundary condition:

dη̃(y)

dy

∣∣∣∣
y=0

= η̃(y)|y=L = 0. (16)
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By simply deforming equation (15) we can get

d2η̃(y)

d2y
+
α′(y)

α(y)

dη̃(y)

dy
− σ

α(y)
η̃(y) = − 1

α(y)
η̂(y). (17)

Then we can obtain the following general solution to (17):

η̃(y) = exp(ry)

[ y∫
0

exp(−2rγ) exp

(
−

y∫
0

α′(γ)

α(γ)
dγ

)
dγ

×

( y∫
0

− 1

α(γ)
η̂(γ) exp(rγ) exp

( y∫
0

α′(γ)

α(γ)
dγ

)
dγ

)]

+ c1 exp(ry)

y∫
0

exp(−2rγ) exp

(
−

y∫
0

α′(γ)

α(γ)
dγ

)
dγ

+ c2 exp(ry), (18)

where c1, c2 are arbitrary constants, and r ∈ R satisfies the following equality:

r2 +
α′(y)

α(y)
r − σ

α(y)
≡ 0.

By using the boundary condition (16) we deduce

1

2r

α(0)

α(L)

(
exp(rL)− c1 exp(−rL)

)
+ c2 exp(rL) = c̃,

c1 + rc2 = 0,

(19)

where

c̃ = exp(rL)
α2(0)

α2(L)

L∫
0

exp(−2rγ) dγ

L∫
0

− 1

α(γ)
η̂(γ) exp(rγ) dγ.

Then the coefficient matrix of c1 and c2 in (19) is expressed as follows:

c̄ =

(
1
2r

α(0)
α(L) (exp(rL)− exp(−rL)) exp(rL)

1 r

)
, i ∈M.

The determinant of matrix c̄ is

|c̄| =

∣∣∣∣∣ 1
2r

α(0)
α(L) (exp(rL)− exp(−rL)) exp(rL)

1 r

∣∣∣∣∣
=

α(0)

2α(L)
(exp(rL)− exp(−rL))− exp(rL).
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In order to proof |c̄| 6= 0, we define exp(rL) = x. Because of r, L ∈ R, it can be easily
get x ∈ R. Firstly, we assume

|c̄| = α(0)

2α(L)

(
exp(rL)− exp(−rL)

)
− exp(rL) = 0,

namely,
α(0)

2α(L)

(
x− x−1

)
− x = 0. (20)

Because of 0 < α(0) < 2α(L), equation (20) obviously has no real number solution, i.e.,
|c̄| 6= 0. Thus, the matrix c̄ is invertible. Then we obtain that the solution of (19) is unique.
Furthermore, we obtain that the general solution form (18) is unique under the boundary
condition (16). Therefore, (15) with (16) has unique solution for any given σ > 0 and
η̃ ∈ H. Though the above analysis, we obtain the result that Ran(σI − Γ ) = H for all
σ > 0.

From the results that operator Γ is a dissipative operator and Ran(σI − Γ ) = H for
all σ > 0 we obtain that Γ is the maximum-dissipative operator. According to the Lumer–
Philips theorem, it is proved that operator Γ is the generator of the contractive semigroup
exp (Γt) onH. Because of h(η(t)) belongs to the class of C1 and

∫∞
0
|c(·, t)|2∞ dt <∞

and by using Theorem 3.13 in [9] and Theorem 1.5 in [21, Chap. 6] we can obtain that
system (1) has a unique solution for t ∈ [0, tf ], tf > 0 and η(0) ∈ D(Γ ).

Then we further consider the well-posedness of the closed-loop system (10), which
can be expressed as (12). Firstly, from the analysis of the well-posedness on open-loop
system we get that the operator Γ can generate a contraction semigroup exp (Γt) on H.
Then from the definition of si(y), i ∈M , in (2) and the definition of operator s, for t > 0,
u(t) ∈ L2([0,∞);Rm), it follows that∣∣(sTu(t)

)
(y)
∣∣
2

=
∣∣ST(y)u(t)

∣∣
2
6
√
mL
∣∣u(t)

∣∣
2
.

It is clearly that operator s is bounded and s ∈ L(Rm,L2([0, L])). In addition, because of
h(η(t)) belongs to the class of C1 and

∫∞
0
|c(·, t)|2∞ dt <∞ and by using Theorem 3.13

in [9] and Theorem 1.5 in [21, Chap. 6] we can get that system (10) has a unique solution
for t ∈ [0, tf ], tf > 0 and η(0) ∈ D(Γ ).

Remark 3. It can be further shown that system (10) has a unique solution for all η(0) ∈
H, t ∈ [0, tf ], tf > 0. To get the result, it is only to show that system (10) has a unique
solution for all η(0) ∈ D(Γ ), where D(Γ ) is a dense subspace of H. Therefore, we
will first show that D(Γ ) is a dense subspace of H. In D(Γ ), we define a special inner
product (y1, y2)D(Γ ) , (y1, y2) + (Γy1, Γy2) for all y1, y2 ∈ D(Γ ) and with the norm
|η(·)|D(Γ ) , |η(·)|2 + Γ |η(·)|2. In addition, because of Γ is a closed operator, it can be
obtained that D(Γ ) is a complete inner product space. Therefore, D(Γ ) is another inner
product space, which can be continuously embedded in H. Thus, we have that D(Γ ) is
a dense subspace ofH and further obtain that system (10) has a unique solution η(·, t) for
any t ∈ [0, tf ], tf > 0 and η(0) ∈ H.
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3.2 Globally asymptotic stabilization

In this section, we mainly focus on the design of a robust piecewise adaptive controller so
that the semilinear parabolic DPSs with external disturbance achieve globally asymptotic
stability under the action of the controller. Firstly, the parameter estimated error is defined
as β̃(t) = β − β̂(t). Then we choose a LKFC for system (10)

V(t) = V1(t) + V2(t) + V3(t), (21)

where V1(t) =
∫ L
0
η2(y, t) dy/2, V2(t) =

∫ L
0
α(y)η2y(y, t) dy/2, V3(t) = β̃2(t)/2.

From (21) it is obvious that V(t) is continuous in time.
From (21) and α∗ > α(y) > α∗ > 0 it is easy to get

V(t) 6
1

2

L∫
0

η2(y, t) dy +
1

2
α∗

L∫
0

η2y(y, t) dy +
1

2
β̃2(t). (22)

Theorem 2. Consider the semilinear parabolic DPSs described by (1) with c(y, t) = 0,
α∗ > α(y) > α∗ > 0 and α(0) < 2α(L). Suppose Assumption 1 holds, then there exists
a piecewise adaptive controller (8), and a adaptive law (11) ensuing the solution of system
described by (10) is globally asymptotically stable, namely, limt→∞ |η(y, t)|2 = 0.

Proof. Along the solution of the closed-loop system, the derivative of V1(t) with respect
to time t is expressed as

V̇1(t) =

L∫
0

η(y, t)ηt(y, t) dy

=

L∫
0

η(y, t)
(
α(y)ηy(y, t)

)
y

dy +

L∫
0

η(y, t)h
(
η(y, t)

)
dy

+

L∫
0

η(y, t)ST(y)u(t) dy. (23)

For the first item of (23), from the boundary condition and integration by parts we derive
L∫

0

η(y, t)
(
α(y)ηy(y, t)

)
y

dy = −
L∫

0

α(y)η2y(y, t) dy. (24)

For the second item of (23), from Assumption 1 we obtain
L∫

0

η(y, t)h
(
η(y, t)

)
dy 6

L∫
0

∣∣η(y, t)
∣∣∣∣h(η(y, t)

)
− h(0)

∣∣dy
6 β

L∫
0

η2(y, t) dy. (25)
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For the third item of (23), by the definition of function S(y) and (2) we have

L∫
0

η(y, t)ST(y)u(t) dy =

yi+1∫
yi

η(y, t) dy ui(t), i ∈M. (26)

Substituting (24)–(26) into (23) yields

V̇1(t) 6 −α∗

L∫
0

η2y(y, t) dy + β

L∫
0

η2(y, t) dy +

yi+1∫
yi

η(y, t) dy ui(t). (27)

Then, along the solution to the closed-loop system, the derivative of V2(t) and using
the integration by parts, one gets

V̇2(t) =

L∫
0

α(y)ηy(y, t)ηyt(y, t) dy

6 −
L∫

0

(
α∗ηy(y, t)

)2
y

dy + β

L∫
0

(
α∗η2y(y, t)

)
dy

−
yi+1∫
yi

(
α∗ηy(y, t)

)
y

dy ui(t), i ∈M. (28)

Finally, the derivative of V3(t) with respect to time t is given as follows:

V̇3(t) = β̃(t)
˙̃
β(t) = −β̃(t)

˙̂
β(t). (29)

From (27), (28), (29) and (21) we obtain

V̇(t) 6 −α∗

L∫
0

η2y(y, t) dy + β

L∫
0

η2(y, t) dy +

yi+1∫
yi

η(y, t) dy ui(t)

−
L∫

0

(
α∗ηy(y, t)

)2
y

dy + β

L∫
0

(
α∗η2y(y, t)

)
dy

−
yi+1∫
yi

(
α∗ηy(y, t)

)
y

dy ui(t)− β̃(t)
˙̂
β(t), i ∈M. (30)

Substituting (8) and (11) into (30) and using β̃ = β − β̂, we derive

V̇(t) 6 −
L∫

0

η2(y, t) dy − α∗

L∫
0

η2y(y, t) dy −
L∫

0

(
α∗ηy(y, t)

)2
y

dy.
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By LaSalle–Yoshizawa theorem we obtain controller (8), and the adaptive law (11)
ensuing the solution of system (10) is globally asymptotically stable, that is,
limt→∞ |η(y, t)|2 = 0.

Remark 4. si(y) represents the spatial distribution of the ith controller, and ui(t) stands
for the control input of the ith segment domain. Different segmented areas need different
controllers to perform work, and different controllers do not interact with each other.
Therefore, compared with the system controlled by a boundary controller, the controller
designed in this study reduces its conservativeness and improves its effectiveness.

According to the above main results, we will give another main result, that is, the
controller (8) and the adaptive law (11) can ensure the globally asymptotic stability of the
solution of the system with external disturbance and also guarantee a given performance
in |·|∞.

Theorem 3. Consider the semilinear parabolic DPSs (1) with Assumption 1, α∗>α(y)>
α∗ > 0 and α(0) < 2α(L). Given constants µ > 0, p = q + L/2 > 0 such that (8L4 +
16qL3)/π3 − α2

∗/2 < 0 and 1 − µ2/L < 0 hold. Then there exists a robust piecewise
adaptive controller (8), and a adaptive law (11) can not only ensure that system (10) is
globally asymptotically stable, but also guarantee the following given performance:

q

∞∫
0

∣∣η(y, t)
∣∣2
∞ dt 6

L

2

∣∣η0(y)
∣∣2
∞ +

Lα∗

2

∣∣η0,y(y)
∣∣2
∞ +

1

2
β̃2(0)

+ µ2

∞∫
0

∣∣c(·, t)∣∣2∞ dt. (31)

Proof. Based on the process of Theorem 2, we get the time derivative of V(t)

V̇(t) =

L∫
0

η(y, t)ηt(y, t) dy +

L∫
0

α(y)ηy(y, t)ηyt(y, t) dy − β̃(t)
˙̂
β(t)

6 −
L∫

0

η2(y, t) dy − α∗

L∫
0

η2y(y, t) dy − α2
∗

L∫
0

ηyy(y, t)2 dy

+

L∫
0

η(y, t)c(y, t) dy − α∗

L∫
0

ηyy(y, t)c(y, t) dy. (32)

By using Lemmas 3 and 4 the forth and fifth item of (32) become
L∫

0

η(y, t)c(y, t) dy 6
1

2

∣∣η(y, t)
∣∣2
2

+
1

2

∣∣c(y, t)∣∣2
2

6
L

2

∣∣η(y, t)
∣∣2
∞ +

1

2

∣∣c(y, t)∣∣2
2
, (33)
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− α∗

L∫
0

ηyy(y, t)c(y, t) dy 6
α2
∗

2

∣∣ηyy(y, t)
∣∣2
2

+
1

2

∣∣c(y, t)∣∣2
2
. (34)

Substituting (33) and (34) into (32), we derive

V̇(t) 6 −
∣∣η(y, t)

∣∣2
2
− α∗

∣∣ηy(y, t)
∣∣2
2
− α2

∗
∣∣ηyy(y, t)

∣∣2
2

+
L

2

∣∣η(y, t)
∣∣2
∞ +

α2
∗

2

∣∣ηyy(y, t)
∣∣2
2

+
∣∣c(y, t)∣∣2

2
. (35)

Based on (35) and (7), one can have the inequality as follows:

V̇(t) + p
∣∣η(y, t)

∣∣2
∞ − µ

2
∣∣c(y, t)∣∣2∞

6 −
∣∣η(y, t)

∣∣2
2
− α∗

∣∣ηy(y, t)
∣∣2
2
− α2

∗
∣∣ηyy(y, t)

∣∣2
2

+
L

2

∣∣η(y, t)
∣∣2
∞

+
α2
∗

2

∣∣ηyy(y, t)
∣∣2
2

+
∣∣c(y, t)∣∣2

2
+

16pL3

π3

∣∣ηyy(y, t)
∣∣2
2
− µ2

L

∣∣c(y, t)∣∣2
2
. (36)

From the relations p = q+L/2 > 0, (8L4 + 16qL3)/π3 − α2
∗/2 < 0 and 1− µ2/L < 0

(36) becomes

V̇(t) + q
∣∣η(y, t)

∣∣2
∞ − µ

2
∣∣c(y, t)∣∣2∞ 6 −∣∣η(y, t)

∣∣2
2
− α∗

∣∣ηy(y, t)
∣∣2
2
6 0. (37)

For any given N � 1, by integrating (37) from t = 0 to t = tN , using Lemma 3 and
(22), one obtains

q

tN∫
0

∣∣η(y, t)
∣∣2
∞ dt 6 V(0)− V(tN ) + µ2

tN∫
0

∣∣c(y, t)∣∣2∞ dt.

Due to V(tN ) > 0, when N →∞, we further obtain the following result:

q

∞∫
0

∣∣η(y, t)
∣∣2
∞ dt 6

L

2

∣∣η0(y)
∣∣2
∞ +

Lα∗

2

∣∣η0,y(y)
∣∣2
∞ +

1

2
β̃2(0)

+ µ2

∞∫
0

∣∣c(·, t)∣∣2∞ dt.

Thus, we obtain that there exists controller (8), and the adaptive law (11) ensuing the
solution of system (10) is globally asymptotically stable with the given performance. �

Remark 5. To improve the given performance in (31), we can construct the LKFC for
system (10) as follows:

V(t) =
1

2
θ1

L∫
0

η2(y, t) dy +
1

2
θ2

L∫
0

α(y)η2y(y, t) dy +
1

2
θ3β̃

2(t), θj > 0,
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j = 1, 2, 3, and the given performance described by (31) should be changed as

q

∞∫
0

∣∣η(y, t)
∣∣2
∞ dt 6

θ1L

2

∣∣η0(y)
∣∣2
∞ +

θ2Lα
∗

2

∣∣η0,y(y)
∣∣2
∞ +

θ3
2
β̃2(0)

+ µ2

∞∫
0

∣∣c(·, t)∣∣2∞ dt.

Remark 6. The design method proposed in this study is developed for homogeneous
Dirichlet–Neumann mixed boundary condition, but it is also suitable for homogeneous
Dirichlet and Neumann boundary conditions, respectively.

4 Numerical simulation

In this section, a numerical simulation example and a practical example will be given to
illustrate the rationality and effectiveness of the algorithm.

Example 1. Consider the robust piecewise adaptive control problem of the following
system:

ηt(y, t) = ηyy(y, t) + ST(y)u(t) + 3 sin
(
η(y, t)

)
+ c(y, t),

η(y, 0) = η0(y), ηy(y, t)|y=0 = η(y, t)|y=L = 0,
(38)

where η(y, t) ∈ H is the state variable, u(t) , [u1, u2, . . . , um]T ∈ Rm is the control in-
put, and S(y) , [s1(y), s2(y), . . . , sm(y)]T ∈ Rm, where si(y) denotes the distribution
of the ith controller in the spatial domain and satisfies (2). Set L = 1, η0(y) = 5 sin(πy),
y ∈ [0, 1].

Firstly, considering system (38) without control input and external disturbance, the
evolution trend of η(y, t) can be obtained as shown in Fig. 1. It can be seen from Fig. 1
that the equilibrium profile η(·, t) = 0 of system (38) without control input and external
disturbance is unstable.

Next, we will consider the control performance of the adaptive controller in Theo-
rems 2 and 3. In this example, we divide the domain (0, L) into two local spatial regions
(0, 0.5] and (0.5, 1). For the semilinear parabolic PDEs model (38), the adaptive controller
replaced in each segment is expressed as

ui(t) = −
β̂(t)

∫ 1

0
(η2(y, t) + η2y(y, t)) dy +

∫ 1

0
η2(y, t) dy∫ yi+1

yi
(η(y, t)− (ηy(y, t))y) dy

(39)

with the following adaptive law:

˙̂
β(t) =

1∫
0

η2(y, t) dy +

1∫
0

η2y(y, t) dy. (40)
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Figure 1. The evolution trend of the solution
η(y, t) of the open-loop system.

Figure 2. The evolution trend of the solution
η(y, t) of the closed-loop system with c(y, t)=0.

Figure 3. The evolution of the estimated value
of β with c(y, t) = 0.

Figure 4. The evolution of u(t) with c(y, t) = 0.

Using controller (39) with the adaptive law (40) to the system described by (38) with
c(y, t) = 0, we obtain the evolution trend of the solution η(y, t) of the closed-loop system
as shown in Fig. 2. Combined with Figs. 1 and 2, it can be seen that controller (39) with
the adaptive law (40) can stabilize the PDEs system (38) with c(y, t) = 0. In addition, the
result shown in Fig. 3 illustrates that the parameter estimate β̂ is bounded, and the result
shown in Fig. 4 indicates that u(t) is also bounded.

Secondly, consider system (38) with c(y, t) = cos(πy) exp(−t) and u(t) = 0, the
evolution trend of η(y, t) can be obtained as shown in Fig. 5. Similarly, from Fig. 5 we
can see that the equilibrium profile η(·, t) = 0 of the open-loop system described by (38)
with c(y, t) = cos(πy) exp(−t) is still unstable when t ∈ [0, 1].

Next, we further consider the stabilization effect of the robust adaptive controller (39)
with the adaptive law (40) on system (38) when the disturbance c(y, t) = cos(πy) exp(−t).
The trajectories of η(y, t), parameter estimation β̂ and u(t) are shown in Figs. 6, 7 and 8,
respectively.

By comparing the results shown in Figs. 5 and 6, we get that under the action of
the piecewise adaptive robust controller (39) with the adaptive law (40), the equilibrium
profile η(·, t) = 0 of (38) with c(y, t) = cos(πy) exp(−t) is stable before t = 1. Thus,
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Figure 5. The evolution trend of the solution
η(y, t) of the open-loop system with c(y, t) =
cos(πy) exp(−t).

Figure 6. The evolution trend of the solution
η(y, t) of the closed-loop system with c(y, t) =
cos(πy) exp(−t).

Figure 7. The evolution of the estimated value
of β with c(y, t) = cos(πy) exp(−t).

Figure 8. The evolution of u(t) with c(y, t) =
cos(πy) exp(−t).

we obtain the result that the piecewise adaptive robust controller can still stabilize the
PDEs system (38) with the disturbance c(y, t) = cos(πy) exp(−t). Moreover, we obtain
that the result shown in Fig. 7 illustrates that the parameter estimate β̂ is bounded and the
result shown in Fig. 8 indicates that the input information u(t) is also bounded.

Finally, through the following actual calculation, we verify that the controller designed
in this study can guarantee the given performance

0.45

∞∫
0

∣∣η(·, t)
∣∣2
∞ dt 6

1

2

∣∣η0(y)
∣∣2
∞ +

1

2

∣∣η0,y(y)
∣∣2
∞ +

1

2
β̃2(0)

+ (2)2
∞∫
0

∣∣c(·, t)∣∣2∞ dt

≈ 68.1341,

which indicates that the robust piecewise adaptive controller (8) with the adaptive law (11)
proposed in this study can guarantee (31) with q = 0.45 and µ = 2.
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Example 2. Consider the spatiotemporal evolution dynamics of neutron concentration in
nuclear reactor [10], which can be described by the following parabolic nonlinear PDEs
under the piecewise adaptive control architecture:

ηt(y, t) = νηyy(y, t) + β1
(
β2η(y, t)− η2(y, t)

)
+ ST(y)u(t),

η(y, 0) = η0(y), ηy(y, t)|y=0 = η(y, t)|y=L = 0,
(41)

where η(y, t) represents the neutron concentration distribution of a nuclear reactor. The
initial value and process parameters are selected as L = 1, ν = 1, β1 = 1, β2 = 5,
η0(y) = sin(πy), y ∈ [0, 1]. Therefore, the evolution trend of the neutron concentration
distribution of the open-loop system is shown in Fig. 9, which can be clearly seen that
system (41) is unstable at equilibrium point η(y, t) = 0.

Next, we will consider the control performance of the adaptive controller in Theo-
rem 2. Similar to the previous example, the domain (0, L) is also divided into two local
spatial regions (0, 0.5] and (0.5, 1). Then the evolution trend of closed-loop system is
shown in Fig. 10. From Figs. 9 and 10 it can be seen that the controller with the adaptive
law can stabilize the PDEs system (41). In addition, the result shown in Fig. 11 illustrates
that the parameter estimate β̂ is bounded, and the result shown in Fig. 12 indicates that
u(t) is also bounded.

Figure 9. The evolution trend of the solution η(y, t)
of the open-loop system.

Figure 10. The evolution trend of the solution η(y, t)
of the closed-loop system.

Figure 11. The evolution of the estimated value of β. Figure 12. The evolution of u(t).
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5 Conclusion

In this study, we have researched the globally asymptotic stabilization for the semilinear
parabolic DPSs. Firstly, detailed analyses are given for the well-posedness of the solutions
to the open-loop system and the resulting closed-loop system. Then, by constructing an
appropriate LKCF, using integration by parts and the Wirtinger’s inequality, it is proved
that the proposed robust piecewise adaptive controller with the selected adaptive law
cannot only make the semilinear parabolic DPSs globally asymptotic stability, but also
ensure the given performance defined in the sense of |·|∞. Finally, the simulation result
has shown the rationality and effectiveness of the designed controller.

In the future research work, authors may do further research on the following two
aspects. On the one hand, authors will be devoted to the study of more general systems
with complex practical applications, such as systems with time delays or systems with
uncertain disturbances. On the other hand, in this work, an adaptive control method based
on constant parameter estimation is used to design a controller to stabilize the system
and make the adaptive parameter estimation bounded. However, this does not lead to
convergence of the parameter estimate to its real value. Therefore, the convergence of
adaptive parameters is also a research direction of the future work.
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