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Abstract. In this paper, we consider the iterative properties of positive solutions for a general
Hadamard-type singular fractional turbulent flow model involving a nonlinear operator. By
developing a double monotone iterative technique we firstly establish the uniqueness of positive
solutions for the corresponding model. Then we carry out the iterative analysis for the unique
solution including the iterative schemes converging to the unique solution, error estimates,
convergence rate and entire asymptotic behavior. In addition, we also give an example to illuminate
our results.
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1 Introduction

In recent years, many researchers were interested in the study of turbulent flow in which
the fluid undergoes irregular fluctuations or mixing. For example, Leibenson [17] intro-
duced a p-Laplacian differential equation (ϕp(u

′(t)))′ = f(t, u(t)), t ∈ (0, 1), to model
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turbulent flow in a porous medium, where ϕp(s) = |s|p−2s, p > 1. However, the transport
of solute in highly heterogeneous porous media often exhibits anomalous diffusion phe-
nomenon [14], and laboratory data and numerical experiments [2, 8] have indicated that
solutes moving through a highly heterogeneous porous media violate the basic Fick’s first
law of Brownian motion. Thus the works [2, 8] indicated that the fractional differential
equation is more suitable for describing the convection–dispersion process of solutes in
porous media.

On the other hand, since fractional-order derivative possesses a nonlocal character-
istics, so it can provide a possibility to represent the memory occurring in viscoelas-
tic dynamical process [4, 10, 13], blood flow [3], quantum mechanics [7], advection–
dispersion process in anomalous diffusion [22, 23, 25] and bioprocesses with genetic
attribute [5, 20, 26]. As a powerful tool of modeling the above many abnormal phe-
nomena, in the last few decades, the fractional calculus theory has been enriched, and
several different derivatives and integrals such as Caputo, Atangana, Riemann–Liouville,
Hadamard, Caputo–Fabrizio, Hilfer, Riesz derivative and so on have been developed.
In comparison, the Hadamard derivative is a nonlocal fractional derivative with singular
logarithmic kernel. So the study for Hadamard-type fractional differential equations is
relatively difficult [9, 21, 27, 28].

Thus, in this paper, we choose a general Hadamard-type singular fractional differential
equation involving a nonlinear operator from turbulent flow to study, more specifically,
we consider the iterative properties of positive solutions for the equation
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βu(t)
)(
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))
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(
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)
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(
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(
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(
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βu(e)
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(1)

where α, β ∈ (2, 3], Dt
α, Dt

β are α- and β-order Hadamard fractional derivatives, S is
a differential operator denoted by t(d/dt), that is, Su(t) = t(d/dt)u(t), f ∈ ((1, e) ×
(0,+∞), [0,+∞)) is a continuous function with singularities at t = 0, 1 and u = 0.
R(s) = sF (s), and F is a nonlinear operator satisfying

χ =
{
F ∈ C2

(
[0,+∞), [0,+∞)

)
: there exists a constant p > 0 such that

for any 0 < k < 1, F (kx) 6 kpF (x)
}
, (2)

which possesses the following properties:

Proposition 1. (See [24].) If F ∈ χ, then

(i) R(s) has a nonnegative increasing inverse mapping R−1(s);
(ii) For 0 < l < 1, R−1(ls) > l1/(p+1)R−1(s);

(iii) For l > 1, R−1(ls) 6 l1/(p+1)R−1(s).

Equation (1) involves a nonlinear operator F , which implies that Eq. (1) covers many
interesting and important cases, in particular, if F (x) ≡ 1 and then R(x) = xF (x) = x,
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in this case, Eq. (1) reduces to the following form:

Dt
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where α, β ∈ (2, 3], Dt
α, Dt

β are the α- and β-order Hadamard fractional derivatives,
S is a differential operator denoted by t(d/dt), that is, Su(t) = t(d/dt)u(t). By using
the fixed point index and the properties of nonnegative matrices Ding et al. [9] considered
the existence of positive solutions for a system of the above Hadamard-type fractional
differential equations with semipositone nonlinearities. If F (x) = |x|p−2, p > 1, Eq. (1)
takes the form
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Dt

βu(e)
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= 0,

(3)

which is a p-Poisson turbulent flow equation in highly heterogeneous porous media. By
using the fixed point theorem of the mixed monotone operator Zhang et al. [22] studied the
uniqueness of positive solution for a fractional-order model of turbulent flow in a porous
medium. In addition, on fractional differential equations, some significant work by using
fixed theorems has been made by Karapinar and his collaborators [1,11,12]. Thus Eq. (1)
is a more generalized p-Poisson turbulent flow equation in highly heterogeneous porous
media (3). To the best of our knowledge, no results have been reported on the iterative
analysis of positive solutions for Eq. (1) involving a nonlinear operator under singular
case.

In addition, a fluid in highly heterogeneous porous media may push the transmission
process from a phase into another different phase or state. At absolute zero, this change
always leads to transformation process losing continuity and further forms some singular
points or singular domains. Normally, near singular points and domains, the “bad” prop-
erties such as blow-up properties [24], impulse interference [19], chaotic influence [6]
obstruct people’s apperceiving for the essence of related natural phenomena. Thus it
is important and interesting to explore the properties of dynamic process governed by
singular differential equations, which can deepen people’s comprehension for the natural
law of dynamic system.

Thus, to overcome the difficult associated with singular logarithmic kernel and singu-
lar nonlinearity of Eq. (1) and follow the work Nieto [18] and Ladde, Lakshmikantham
and Vatsala [16], a new double monotone iterative technique will be developed, and more
new estimates are given. This paper is organized as follows. In Section 2, we firstly give
the definition of Hadamard fractional integral and differential operators and then claim
the properties of Green function. The main results are summarized in Section 3.
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2 Preliminaries and lemmas

In this section, we firstly review the definitions of the Hadamard-type fractional integrals
and derivatives; for details, see [15].

Let α ∈ C, Reα > 0, n = [Reα], and let (a, b) be a finite or infinite interval of R+.
The α-order left Hadamard fractional integral is defined by

(
Iαa x

)
(t) =

1

Γ(α)

t∫
a

(
ln
t

s

)α−1
x(s)

s
ds, t ∈ (a, b),

and the α-order left Hadamard fractional derivative is defined by

(
Dt

α
)
x(t) =

1

Γ(n− α)

(
t

d

dt

)n t∫
a

(
ln
t

s

)n−α−1
x(s)

s
ds, t ∈ (a, b).

In the following, we firstly consider the linear Hadamard fractional equation

−Dt
αv(t) = h(t), t ∈ (1, e),

v(1) = Sv(1) = Sv(e) = 0.
(4)

Equation (4) is equivalent to the following Hammerstein-type integral equation [9]:

v(t) =

e∫
1

G(t, s)h(s)
ds

s
, t ∈ [1, e], (5)

and

G(t, s) =
1

Γ(α)

{
(ln t)α−1(1− ln s)α−2 − (ln t− ln s)α−1, 1 6 s 6 t 6 e,

(ln t)α−1(1− ln s)α−2, 1 6 t 6 s 6 e.

is the Green’s function of Eq. (4).
Let

H(t, s) =
1

Γ(β)

{
(ln t)β−1(1− ln s)β−2 − (ln t− ln s)β−1, 1 6 s 6 t 6 e,

(ln t)β−1(1− ln s)β−2, 1 6 t 6 s 6 e,

for h ∈ L1[0, 1], and then we consider the associated linear boundary value problem
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(6)

We have the following lemma.
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Lemma 1. The associated linear boundary value problem (6) has a unique solution if
and only if it solves the Hammerstein-type integral equation

u(t) =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)h(τ)
dτ

τ

)
ds

s
.

Proof. Let y(t) = −Dt
βu(t), v(t) = F (y(t))y(t), then the associated linear boundary

value problem (6) reduces to

−Dt
αv(t) = h(t), t ∈ (1, e),

v(1) = Sv(1) = Sv(e) = 0.

By (4) it is equivalent to the Hammerstein-type integral equation

v(t) =

e∫
1

G(t, s)h(s)
ds

s
, t ∈ [1, e].

Noting that −Dt
βu(t) = y, y = R−1(v) as well as (5) and Proposition 1, the

associated linear boundary value problem (6) is equivalent to the following equation:

−Dt
βu(t) = R−1

( e∫
1

G(t, s)h(s)
ds

s

)
, t ∈ (1, e),

u(1) = S
(
u(1)

)
= S

(
u(e)

)
= 0,

and it follows from [9] that if and only if it solves the following Hammerstein-type integral
equation

u(t) =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)h(τ)
dτ

τ

)
ds

s
, t ∈ [1, e],

the proof is completed.

Lemma 2. (See [9].) Let ψi(t) = ln t(1− ln t)i−2, i = α, β, t ∈ [1, e]. Then the Green’s
functions H and G has the following properties:

(i) H,G ∈ C([1, e]× [1, e],R+).
(ii) For all t, s ∈ [1, e], the following inequalities hold:

1

Γ(β)
(ln t)β−1ψβ(s) 6 H(t, s) 6

1

Γ(β)
(ln t)β−1(1− ln s)β−2,

1

Γ(α)
(ln t)α−1ψα(s) 6 G(t, s) 6

1

Γ(α)
(ln t)α−1(1− ln s)α−2.
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Our work space of this paper is Banach space E = C[1, e] equipped with the norm
‖u‖ = maxt∈[1,e] |u(t)|. Let P = {u ∈ E: u(t) > 0, t ∈ [1, e]}, then P is a normal
cone of E with normality constant 1. Now let us define a subset of P by

Λ =
{
u(x) ∈ P : there exists a positive number 0 < lu < 1 such that

lu(ln t)β−1 6 u(x) 6 l−1u (ln t)β−1, x ∈ [1, e]
}

and a nonlinear operator T : E → E:

(Tu)(x) =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, u(τ)

)dτ

τ

)
ds

s
, x ∈ [1, e].

It follows from Lemma 1 that u ∈ C[1, e] is a solution of the Hadamard-type fractional
turbulent flow model (1) if and only if u ∈ C[1, e] is a fixed point of the nonlinear
operator T .

3 Main results

In order to carry out the iterative analysis of positive solution for the singular Hadamard-
type fractional turbulent flow equation (1), we need the following assumption:

(H1) f : (1, e) × (0,+∞) → [0,+∞) is continuous and decreasing with regard to
second variable, and for any c ∈ (0, 1), there exists a constant 0 < µ < p + 1,
where p is defined by (2), such that for all (t, u) ∈ (1, e)× (0,+∞),

f(t, cu) 6 c−µf(t, u). (7)

Remark 1. Assumption (7) allows f to have a singularity at t = 1, e, and u = 0. For
example, f(t, u) = (t− 1)−1(e− t)−1/3u−p satisfies assumption (H1).

Remark 2. Suppose that condition (H1) holds. It is easy to prove that for any c > 1 and
for all (t, u) ∈ (1, e)× (0,+∞), the following formula is also valid:

f(t, cu) > c−µf(t, u). (8)

Now we give our main results as follows:

Theorem 1. Suppose that (H1) holds, and the following condition is satisfied:

0 < R−1

( e∫
1

(1− ln τ)α−2f
(
τ, (ln τ)β−1

)dτ

τ

)
< +∞.

Then

(i) The singular Hadamard-type fractional turbulent flow equation (1) has a unique
positive solution u∗ ∈ Λ;
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(ii) For any initial value v0 ∈ Λ, we construct the iterative sequence

vn =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, vn−1(τ)

)dτ

τ

)
ds

s
, n = 1, 2, . . . ,

then {vn}n>1 converges uniformly to the unique positive solution u∗ of Eq. (1)
on [1, e];

(iii) The error of the iterative value vn and the exact solution u∗ can be estimated by
the following formula:

‖vn − u∗‖ 6
(
1− ζ2(µ/(p+1))2n

)
ζ−1

with an exact convergence rate

‖vn − u∗‖ = o
(
1− ζ2(µ/(p+1))2n

)
,

where 0 < ζ < 1 is a positive constant, which is determined by u0 = ρκ lnβ−1(t)
and some ρ ∈ (0, 1);

(iv) The exact solution u∗ of Eq. (1) has an entire asymptotic estimate

l(ln t)β−1 6 u∗(t) 6 l−1(ln t)β−1, t ∈ [1, e], 0 < l < 1.

Proof. Firstly, we show that T : Λ→ Λ is a compact operator.
To do this, for any u ∈ Λ, by the definition of the set Λ there exists a constant 0 <

lu < 1 such that

lu(ln t)β−1 6 u(t) 6 l−1u (ln t)β−1, t ∈ [1, e]. (9)

Notice that f(t, x) is decreasing in x, it follows from Lemma 2, (7), (9) and Proposition 1
that

T (u)(t) =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, u(τ)

)dτ

τ

)
ds

s

6

e∫
1

(ln t)β−1

Γ(β)
R−1

(
1

Γ(α)

e∫
1

(1− ln τ)α−2f
(
τ, lu(ln τ)β−1

)dτ

τ

)
ds

s

6
l
−µ/(p+1)
u

Γ(β)

(
1

Γ(α)
+ 1

)1/(p+1)

R−1

( e∫
1

(1− ln τ)α−2f
(
τ, (ln τ)β−1

)dτ

τ

)
< +∞. (10)

So T is well defined and uniformly bounded.
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On the other hand, notice that H(s, t) is uniformly continuous on [1, e] × [1, e], and
let 1 6 t1 < t2 6 e for all u ∈ Λ. Then we have∣∣(Tu)(t1)− (Tu)(t2)

∣∣
6

1∫
0

∣∣H(t1, s)−H(t2, s)
∣∣R−1( e∫

1

G(s, τ)f
(
τ, u(τ)

)dτ

τ

)
ds

s

6

1∫
0

∣∣H(t1, s)−H(t2, s)
∣∣R−1( 1

Γ(α)

e∫
1

(1− ln τ)α−2f
(
τ, lu(ln τ)β−1

)dτ

τ

)
ds

s

6 l−µ/(p+1)
u

(
1

Γ(α)
+ 1

)1/(p+1)

R−1

( e∫
1

(1− ln τ)α−2f
(
τ, (ln τ)β−1

)dτ

τ

)

×
1∫

0

∣∣H(t1, s)−H(t2, s)
∣∣ds
s
,

that is, T (Λ) is equicontinuous, and then T is a compact operator in Λ.
Now we show that T (Λ) ⊂ Λ. In fact, similar to (10), for any u ∈ Λ, one has

T (u)(t) =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, u(τ)

)dτ

τ

)
ds

s

6

e∫
1

(ln t)β−1

Γ(β)
R−1

(
1

Γ(α)

e∫
1

(1− ln τ)α−2f
(
τ, lu(ln τ)β−1

)dτ

τ

)
ds

s

6
l
−µ/(p+1)
u

Γ(β)

(
1

Γ(α)
+ 1

)1/(p+1)

×R−1
( e∫

1

(1− ln τ)α−2f
(
τ, (ln τ)β−1

)dτ

τ

)
(ln t)β−1

< l̃−1Tu
(ln t)β−1 (11)

and

(Tu)(t) =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, u(τ)

)dτ

τ

)
ds

s

> (ln t)β−1
e∫

1

1

Γ(β)
ψβ(s)R−1

( e∫
1

G(s, τ)f
(
τ, l−1u (ln τ)β−1

)dτ

τ

)
ds

s
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>
l
−µ/(p+1)
u

Γ(β)

e∫
1

ψβ(s)R−1

( e∫
1

G(s, τ)f
(
τ, (ln τ)β−1

)dτ

τ

)
ds

s
(ln t)β−1

> (ln t)β−1
l
−µ/(p+1)
u

Γ(β)

(
1

Γ(α)

)1/(p+1)
e∫

1

ψβ(s)(ln s)(α−1)/(p+1) ds

s

×R−1
( e∫

1

ψα(τ)f
(
τ, (ln τ)β−1

)dτ

τ

)

> (ln t)β−1
l
−µ/(p+1)
u Γ(α−1p+1 + 2)

Γ(β + α−1
p+1 + 2)

(
1

Γ(α)

)1/(p+1)

×R−1
( e∫

1

ψα(τ)f
(
τ, (ln τ)β−1

)dτ

τ

)

> l̃Tu(ln t)β−1, (12)

where l̃Tu
satisfies

0 < l̃Tu

< min

{
1

2
,

{
l
−µ/(p+1)
u

Γ(β)

(
1

Γ(α)
+ 1

)1/(p+1)

×R−1
( e∫

1

(1− ln τ)α−2f
(
τ, (ln τ)β−1

)dτ

τ

)}−1
,

l
−µ/(p+1)
u Γ(α−1p+1 + 2)

Γ(β + α−1
p+1 + 2)

(
1

Γ(α)

)1/(p+1)

×R−1
( e∫

1

ψα(τ)f
(
τ, (ln τ)β−1

)dτ

τ

)}
. (13)

Hence we have T (Λ) ⊂ Λ from (11) and (12).
Next, by developing the double monotone iterative technique we will show that Eq. (1)

has a unique positive solution u∗ in Λ.
Taking ω(t) = (ln t)β−1, we have ω ∈ Λ, and then Tω ∈ Λ, which implies that there

exists a constant 0 < lTω < 1 such that

lTω
ω(t) 6 Tω(t) 6 l−1Tω

ω(t), (14)

where lTω
is chosen according to (13). Notice that 0 < µ/(p+1) < 1 for some ρ ∈ (0, 1)

and take a sufficiently large positive constant κ such that[
ρ1−µ/(p+1)

]κ
6 lTω . (15)
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Now we construct an iterative sequence with initial value u0(t) = ρκω(t)

un(t) = Tun−1(t), t ∈ [1, e], n = 1, 2, . . . . (16)

Then we assert

u0 6 u2 6 · · · 6 u2n 6 · · · 6 u2n+1 6 · · · 6 u3 6 u1. (17)

In fact, noticing that T is a decreasing operator in u, by (14)–(16) we have

u0(t) = ρκω(t) 6 ω(t),

u1(t) = Tu0(t) > Tω(t) > lTωω(t) >
(
ρ−µ/(p+1)+1

)κ
ω(t)

=
(
ρµ/(p+1)

)−κ
ρκω(t) =

(
ρµ/(p+1)

)−κ
u0(t) > u0(t),

(18)

and then
u2(t) = Tu1(t) 6 Tu0(t) = u1(t). (19)

On the other hand, from (7) and (14) we have the following estimates:

u1(t) = Tu0(t)

=

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, ρκω(τ)

)dτ

τ

)
ds

s

6 ρ−µκ/(p+1)

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, ω(τ)

)dτ

τ

)
ds

s

= ρ−µκ/(p+1)Tω 6 ρ−µκ/(p+1)l−1Tω
ω(t) 6 ρ−κω(t). (20)

By using (8), (14), (20) and the monotonicity of T we get

u2(t) = Tu1(t)

> T
(
ρ−κω(t)

)
=

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, ρ−κω(τ)

)dτ

τ

)
ds

s

> ρκµ/(p+1)Tω(t) > ρκµ/(p+1)lTω
ω(t) > ρκω(t) = u0(t). (21)

Thus it follows from (18), (19) and (21) that

u0(t) 6 u2(t) 6 u1(t).

So by mathematical induction the conclusion (17) holds.
On the other hand, for any c ∈ (0, 1), it follows from Proposition 1, (7) and (8) that

T 2(cu) > c(µ/(p+1))2T 2u. (22)
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Since T 2 is increasing operator with respect to u, thus let us apply (22) repeatedly, one
gets

u2n(t) = Tu2n−1(t) = T 2nu0(t) = T 2n
(
ρκω(t)

)
= T 2n

(
ρ2κρ−κω(t)

)
> T 2n−2(T 2

(
ρ2κu1(t)

))
> T 2n−2((ρ2κ)(µ/(p+1))2

T 2u1(t)
)

= T 2n−4T 2
((
ρ2κ
)(µ/(p+1))2

T 2u1(u)
)
> T 2n−4((ρ2κ)(µ/(p+1))4

T 4u1(u)
)

> · · · >
(
ρ2κ
)(µ/(p+1))2n

T 2nu1(u) =
(
ρ2κ
)(µ/(p+1))2n

T 2n+1u0(t)

=
(
ρ2κ
)(µ/(p+1))2n

u2n+1(t),

that is, (
ρ2κ
)(µ/(p+1))2n

u2n+1(t) 6 u2n(t) 6 u2n+1(t).

So for any natural numbers n and m, we have

0 6 u2(n+m)(t)− u2n(t) 6 u2n+1(t)− u2n(t)

6
(
1−

(
ρ2κ
)(µ/(p+1))2n)

u2n+1 6
(
1−

(
ρ2κ
)(µ/(p+1))2n)

u1(t)

6
(
1−

(
ρ2κ
)(µ/(p+1))2n)

ρ−κω(t) (23)

and

0 6 u2n+1(t)− u2(n+m)+1(t) 6 u2n+1(t)− u2n(t)

6
(
1−

(
ρ2κ
)(µ/(p+1))2n)

ρ−κω(t). (24)

Notice that P is a normal cone with normality constant 1, thus it follows from (23), (24)
that

‖un+m − un‖ 6
(
1−

(
ρ2κ
)(µ/(p+1))2n)

ρ−κ → 0, n→ +∞,

which implies that {un} is a Cauchy sequence of compact set. Since {un} ∈ Λ and
T (Λ) ⊂ Λ is compact, consequently, {un} converges to some u∗ ∈ Λ with

u2n 6 u∗ 6 u2n+1,

and then

u2n+2 = Tu2n+1 6 Tu∗ 6 Tu2n = u2n+1. (25)

Let n→∞ in (25), one has u∗(t) = Tu∗(t), that is, u∗ is a positive solution of Eq. (1).
In the end, we show the uniqueness of u∗ in Λ and the asymptotic properties of

solution for Eq. (1). Suppose that ũ is another positive solution u∗. Let r1 = sup{r > 0:
ũ > ru∗}. Clearly, 0 < r1 < +∞. We claim that r1 > 1. Otherwise, we have 0 < r1 < 1,
which as well as (22) implies

ũ = T ũ = T 2ũ > T 2(r1u
∗) > r

(µ/(p+1))2

1 T 2u∗ = r
(µ/(p+1))2

1 u∗.
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Since r(µ/(p+1))2

1 > r1, this contradicts with the definition of r1. So we have r1 > 1, and
then ũ > u∗. In the same way, we have ũ 6 u∗. Consequently, ũ = u∗, so the positive
solution of Eq. (1) in Λ is unique.

On the other hand, for any initial value v0 ∈ Λ, there exists a constant lv0 ∈ (0, 1)
such that

lv0ω(t) 6 v0(t) 6 l−1v0 ω(t), t ∈ [1, e].

Let

vn =

e∫
1

H(t, s)R−1

( e∫
1

G(s, τ)f
(
τ, vn−1(τ)

)dτ

τ

)
ds

s
, n = 1, 2, . . . .

Since T (Λ) ⊂ Λ, there still exists a constant lv1 ∈ (0, 1) such that

lv1ω(t) 6 v1 = Tv0 6 l−1v1 ω(t), t ∈ [1, e].

As (15), let us choose a sufficiently large κ > 0 such that[
ρ(1−µ/(p+1))

]κ
6 min{lv0 , lv1 , lTω},

where ρ ∈ (0, 1). Thus

u0 = ρκω(t) 6
[
ρ1−µ/(p+1)

]κ
ω(t) 6 lv0ω(t) 6 v0,

u0 = ρκω(t) 6
[
ρ1−µ/(p+1)

]κ
ω(t) 6 lv1ω(t) 6 v1,

which implies that v1 = Tv0 6 Tu0 = u1, and then

u0 6 v1 6 u1, u2 6 v2 6 u1. (26)

According to the fact that T 2 is increasing operator with respect to u and (26), we have

u2n(t) 6 v2n+1(t) 6 u2n+1(t), u2n+2(t) 6 v2n+2(t) 6 u2n+1(t). (27)

Letting n→∞ in (27), we get that vn uniformly converges to the unique positive solution
u∗ of Eq. (1).

Moreover it follows from (24) and (27) that the unique positive solution u∗ satisfies
the following estimate of error:

‖vn − u∗‖ 6
(
1−

(
ρ2κ
)(µ/(p+1))2n)

ρ−κ =
(
1− ζ2(µ/(p+1))2n

)
ζ−1

with a exact convergence rate

‖vn − u∗‖ = o
(
1− ζ2(µ/(p+1))2n

)
,

where 0 < ζ = ρκ < 1 is a positive constant, which is determined by u0 = ρκω(t).
Finally, since u∗ ∈ Λ, we have the following entire asymptotic analysis, that is, there

exists a constant 0 < l < 1 such that

l(ln t)β−1 6 u∗(t) 6 l−1(ln t)β−1.

The proof is completed.
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4 Example

The following example shows that conditions of Theorem 1 are easily verified.
Consider the following singular Hadamard-type fractional turbulent flow model:

−D5/2
t

(
F
(
−D9/4

t u(t)
)(
−D9/4

t u(t)
))

=
(1− ln t)−3/4

u1/2(t)
+ ln t,

1 < t < e,

u(1) = S
(
u(1)

)
= S

(
u(e)

)
= 0,

R
(
−Dt

9/4u(1)
)

= S
(
R
(
−Dt

9/4u(1)
))

= S
(
R
(
−Dt

9/4u(e)
))

= 0

(28)

with a nonlinear operator F (x) = x1/2, where R(x) = x3/2.
Then we have the following conclusions:

(i) The singular Hadamard-type fractional turbulent flow equation (28) has a unique
positive solution u∗ ∈ Λ;

(ii) For any initial value v0 ∈ Λ, we construct the iterative sequence

vn(t) =

e∫
1

H(t, s)

( e∫
1

G(s, τ)
[
(1− ln τ)−3/4v

−1/2
n−1 (τ) + ln τ

]dτ
τ

)3/2
ds

s
,

t ∈ [1, e], n = 1, 2, . . . ,

then {vn}n>1 converges uniformly to the unique positive solution u∗ of Eq. (28)
on [1, e];

(iii) The error of the iterative value vn and the exact solution u∗ can be estimated by
the following formula:

‖vn − u∗‖ 6
(
1− ζ2(1/2)

2n)
ζ−1,

and the convergence rate is

‖vn − u∗‖ = o
(
1− ζ2(1/2)

2n)
,

where 0 < ζ < 1 is a positive constant;
(iv) The exact solution u∗ of Eq. (28) has an entire asymptotic estimate

l(ln t)5/4 6 u∗(t) 6 l−1(ln t)5/4, t ∈ [1, e], 0 < l < 1.

First, we define a set as

Λ =
{
u(x) ∈ P : there exists a positive number 0 < lu < 1 such that

lu(ln t)5/4 6 u(x) 6 l−1u (ln t)5/4, x ∈ [1, e]
}
.

Let α = 5/2, β = 9/4, p = 1/2, µ = 5/4,

f(t, u) = (1− ln t)−3/4u−1/2,
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then we have

G(t, s) =
1

Γ( 5
2 )

{
(ln t)3/2(1− ln s)1/2 − (ln t− ln s)3/2, 1 6 s 6 t 6 e,

(ln t)3/2(1− ln s)1/2, 1 6 t 6 s 6 e,

and

H(t, s) =
1

Γ( 9
4 )

{
(ln t)5/4(1− ln s)1/4 − (ln t− ln s)5/4, 1 6 s 6 t 6 e,

(ln t)5/4(1− ln s)1/4, 1 6 t 6 s 6 e.

Clearly, f : (1, e) × (0,+∞) → [0,+∞) is continuous and decreasing with respect
to variable u, and for any c ∈ (0, 1), there exists a constant 0 < µ < p + 1 such that for
all (t, u) ∈ (1, e)× (0,+∞),

f(t, cu) = (1− ln t)−3/4(cu)−1/2 + ln t

6 c−1/2
[
(1− ln t)−3/4u−1/2 + ln t

]
6 c−3/4f(t, u).

Moreover, we also have

0 <

e∫
1

(1− ln τ)α−2f
(
τ, (ln τ)β−1

)dτ

τ

=

e∫
1

(1− ln τ)−1/4
[
(ln τ)−5/8 + ln τ

]dτ
τ

=
Γ( 3

4 )Γ( 3
8 )

Γ( 9
8 )

+
Γ( 3

4 )

Γ( 11
4 )

= 3.8469 < +∞,

and then

0 < R−1

( e∫
1

(1− ln τ)α−2f
(
τ, (ln τ)β−1

)dτ

τ

)

=

( e∫
1

(1− ln τ)−1/4(ln τ)−5/8
dτ

τ

)2/3

< +∞.

Thus all conditions of Theorem 1 are satisfied. From Theorem 1 it follows that all of
the conclusions hold.

Now we give the graphical illustration of the iterative process to show the effectiveness
of approximate solution converging to the exact solution.

Figure 1 shows that the convergence speed of iterative sequence is fairly fast, espe-
cially when n = 4, the iterative solution has almost approximated exact solution of
Eq. (28). Tables 1 and 2 give a numerical approximation to exact solution, which also
shows that iterative process is very effective and the iterative convergence speed is robust.
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Figure 1. The sequence series vn(t) converges when n > 4.

Table 1. The numerical approximation of the solution for Eq. (28) in [1.0859, 1.8591].

n t

1.0859 1.1718 1.2577 1.3437 1.4296 1.5155 1.6014 1.6873 1.7732 1.8591

n = 1 0.0085 0.019 0.0297 0.0399 0.0495 0.058 0.0657 0.0723 0.0781 0.0829
n = 2 0.0585 0.13 0.2023 0.2669 0.3277 0.3748 0.4191 0.447 0.475 0.4848
n = 3 0.0205 0.0464 0.0731 0.0998 0.1249 0.1495 0.1714 0.1931 0.2112 0.2299
n = 4 0.0273 0.0611 0.0956 0.1279 0.1583 0.1849 0.2092 0.2293 0.2474 0.2617
n = 5 0.0263 0.0589 0.0924 0.1242 0.1542 0.1811 0.2054 0.2265 0.2451 0.2606
n = 6 0.0263 0.0589 0.0923 0.1241 0.1539 0.1807 0.2049 0.2259 0.2443 0.2598
n = 7 0.0263 0.059 0.0924 0.1242 0.1541 0.1809 0.2051 0.2261 0.2445 0.2599
n = 8 0.0263 0.0589 0.0924 0.1242 0.1541 0.1809 0.2051 0.2261 0.2445 0.2599
n = 9 0.0263 0.0589 0.0924 0.1242 0.1541 0.1809 0.2051 0.2261 0.2445 0.2599
n = 10 0.0263 0.0589 0.0924 0.1242 0.1541 0.1809 0.2051 0.2261 0.2445 0.2599

Table 2. The numerical approximation of the solution for Eq. (28) in [1.9451, 2.7183].

m t

1.9451 2.031 2.1169 2.2028 2.2887 2.3746 2.4605 2.5465 2.6324 2.7183

m = 1 0.087 0.0904 0.0931 0.0952 0.0968 0.098 0.0988 0.0993 0.0995 0.0996
m = 2 0.4984 0.4923 0.4937 0.4738 0.4652 0.4324 0.4147 0.3663 0.3367 0.2465
n = 3 0.2444 0.2603 0.2715 0.2848 0.2932 0.3041 0.3101 0.3187 0.3219 0.3247
n = 4 0.2744 0.2838 0.2921 0.2978 0.3027 0.3059 0.3084 0.3102 0.3115 0.3136
n = 5 0.2738 0.2845 0.2933 0.3 0.3052 0.3088 0.3114 0.3127 0.3134 0.3133
n = 6 0.273 0.2836 0.2924 0.2992 0.3045 0.3083 0.3109 0.3126 0.3134 0.3136
n = 7 0.2731 0.2838 0.2925 0.2993 0.3045 0.3083 0.3109 0.3125 0.3134 0.3136
n = 8 0.2731 0.2838 0.2925 0.2993 0.3045 0.3083 0.3109 0.3125 0.3134 0.3136
n = 9 0.2731 0.2838 0.2925 0.2993 0.3045 0.3083 0.3109 0.3125 0.3134 0.3136
n = 10 0.2731 0.2838 0.2925 0.2993 0.3045 0.3083 0.3109 0.3125 0.3134 0.3136

5 Conclusion

In this paper, we study the uniqueness and iterative properties of solutions for a general
Hadamard-type singular fractional turbulent flow model involving a nonlinear operator.
The singularities and nonlinear operator lead to some difficulties of study. To overcome
these difficulties, we introduce a new double monotone iterative technique and give some
useful estimations. Then we establish some new results of positive solutions including
the uniqueness, the iterative sequence converging to the unique solution, error estimates,
convergence rate and entire asymptotic behavior. These properties can describe nicely the
dynamic behaviour of the turbulent flow. The example also indicates that the conditions
of theorem are easy to be verified, the graphic and numerical approximation show that the
convergence speed of iterative sequence is robust and effective.

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


The uniqueness and iterative properties of solutions for Hadamard FTF 443

References

1. T. Abdeljawad, R.P. Agarwal, E. Karapınar, P.S. Kumari, Solutions of the nonlinear
integral equation and fractional differential equation using the technique of a fixed point with
a numerical experiment in extended b-metric space, Symmetry, 11(5):686, 2019, https:
//doi.org/10.3390/sym11050686.

2. E.E. Adams, L.W. Gelhar, Field study of dispersion in a heterogeneous aquifer: 2. Spatial
moments analysis, Water Resour. Res., 28(12):3293–3307, 1992, https://doi.org/10.
1029/92WR01757.
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