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Abstract. In this paper, we consider the existence of infinitely many sign-changing solutions for an
elliptic equation involving double critical Hardy–Sobolev–Maz’ya terms. By using a compactness
result obtained in [C.H. Wang, J. Yang, Infinitely many solutions for an elliptic problem with double
Hardy–Sobolev–Maz’ya terms, Discrete Contin. Dyn. Syst., 36(3):1603–1628, 2016], we prove the
existence of these solutions by a combination of invariant sets method and Ljusternik–Schnirelman-
type minimax method.

Keywords: Hardy–Sobolev–Maz’ya exponents, invariant sets, sign-changing solutions, minimax
method.

1 Introduction and main results

Let N > 3, µ > 0, 0 6 t < s < 2, 2∗(t) = 2(N − t)/(N − 2) and 2∗(s) = 2(N − s)/
(N−2) are the critical Hardy–Sobolev–Maz’ya exponents,Ω is an open bounded domain
in RN . We study the following equation:

−∆u = µ
|u|2∗(t)−2u

|y|t
+
|u|2∗(s)−2u

|y|s
+ a(x)u in Ω,

u = 0 on ∂Ω,
(1)

where a(x) is a positive function, x = (y, z) ∈ Rk×RN−k, 2 6 k < N . It is well known
that solutions of (1) are critical points of the corresponding functional J : H1

0 (Ω) → R

*This research was supported by Scientific Research Program of Tianjin Education Commission (grant
No. 2020KJ045).

© 2022 Authors. Published by Vilnius University Press
This is an Open Access article distributed under the terms of the Creative Commons Attribution Licence, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source
are credited.

https://orcid.org/0000-0003-0424-6094
mailto:wanglixia0311@126.com
https://www.vu.lt/leidyba/en/
https://creativecommons.org/licenses/by/4.0/


864 L. Wang et al.

given by

J(u) =
1

2

∫
Ω

(
|∇u|2−a(x)u2

)
dx− µ

2∗(t)

∫
Ω

|u|2∗(t)

|y|t
dx− 1

2∗(s)

∫
Ω

|u|2∗(s)

|y|s
dx. (2)

By using the following Hardy–Sobolev–Maz’ya inequality (Lemma 1), we know that J is
well defined and C1 functional on H1

0 (Ω) for any open subset of RN .
Since (1) involves the double critical Hardy–Sobolev–Maz’ya exponents, we can

use the pioneering idea of Brézis and Nirenberg [5], or the concentration compactness
principle of Lions [16, 17], or the global compactness of Struwe [23] to show that (2) has
a critical point, then get a positive solution to (1).

When s = µ = 0, a(x) = λ and k = N , (1) is related to the well-known Brézis–
Nirenberg problem [5]

−∆u = λu+ |u|2
∗−2u in Ω,

u = 0 on∂Ω,
(3)

where 2∗ = 2N/(N − 2) is the critical Sobolev exponent. Since the pioneering work
of [5], there are some important results on this problem. See, e.g., [6, 8, 9, 11, 25]. Here
we would like to point out [10]. In this paper, Devillanova and Solimini proved that when
N > 7, (3) has infinitely many solutions for each λ > 0. Let us now briefly recall the
main results concerning the sign-changing solutions of (3) obtained before. If N > 4 and
Ω is a ball, then for any λ > 0, (3) has infinitely many nodal solutions, which are built
by using particular symmetries of the domain Ω (see [12]). In [22], Solimini proved that
if Ω is a ball and N > 7, for each λ > 0, (3) has infinitely many sign-changing radial
solutions. When Ω is a ball and 4 6 N 6 6, there is a λ∗ > 0 such that (3) has no radial
solutions, which change sign if λ ∈ (0, λ∗) (see [2]). In [12,22], the symmetry of the ball
plays an essential role, hence their methods are invalid for general domains.

When t = 2, a(x) = λ, k = N , (1) is becoming Hardy–Sobolev–Maz’ya equation

−∆u− µu

|y|2
= λu+

|u|2∗(s)−2u

|y|s
in Ω,

u = 0 on ∂Ω.

By using the idea of [10], the authors of [26] obtained infinitely many solutions for Hardy–
Sobolev–Maz’ya equation. Ganguly [13] and Wang [29] used different methods to get
infinitely many sign-changing solutions. For the existence of infinitely many solutions
or infinitely many sign-changing solutions for the related equations, see [14, 24, 30, 32]
and the references therein. Very recently, Wang and Yang [27] proved the existence of
infinitely many sign-changing solutions for (1).

Theorem 1. Suppose that a((0, z∗)) > 0 and Ω is a bounded domain. If (0, z∗) ∈ ∂Ω,
(x− (0, z∗)) · ν 6 0 in a neighborhood of (0, z∗), where ν is the outward normal of ∂Ω.
If N > 6 + t when µ > 0 and if N > 6 + s when µ = 0, then (1) has infinitely many
sign-changing solutions.
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Wang and Yang also considered the following nonexistence theorem.

Theorem 2. (See [27].) Suppose thatN > 3, a(x) ∈ C1(Ω̄) and (a(x)+(x/2)·∇a) 6 0
for every x ∈ Ω. Then (1) does not have nontrivial solution in a domain, which is star
shaped domain with respect to the origin.

Remark 1. Let λ1 be the first eigenvalue of

−∆u = λa(x)u in Ω
u = 0 on ∂Ω.

(4)

Since a(x) ∈ C1(Ω̄) and is strictly positive, system (4) has infinitely many eigenvalues
{λ1, λ2, . . . } such that 0 < λ1(Ω) < λ2(Ω) 6 λ3(Ω) 6 · · · 6 λm(Ω) 6 · · · . It is
characterized by the following variational principle:

λ1(Ω) = inf
u∈H1

0 (Ω), u 6=0

∫
Ω
|∇u|2∫

Ω
a(x)u2

. (5)

Let em be the orthonormal eigenfunction corresponding to λm and em > 0. Denote

Hm := span{e1, e2, . . . , em}.

Then Hm ⊂ Hm+1 and H1
0 (Ω) = ∪∞m=1Hm. It is easy to know that if λ1 6 1,

equation (1) has infinitely many sign-changing solutions. Indeed, by multiplying the first
eigenfunction e1 and integrating both sides, then we can check that if λ1 6 1, any
nontrivial solution of (1) has to change sign. Therefore, by the result of [28], to prove
Theorem 1 it suffices to consider the case of λ1 > 1.

Remark 2. When s = 0, t = 2 and k = N , Cao and Peng [6] considered the following
system:

−∆u = |u|2
∗−2u+ µ

u

|x|2
+ λu in Ω,

u = 0 on ∂Ω.
(6)

They obtained a pair of sign-changing solutions to (6). In [8,32], the authors get infinitely
many sign-changing solutions for (6). They only considered the case 0 ∈ Ω. In another
case, 0 ∈ ∂Ω, the mean curvature of ∂Ω at 0 plays an important role in the existence of
mountain pass solutions, see [3,6,14]. As it is pointed in [4,31], there are some differences
between the case t = 2 and t ∈ (0, 2). When t = 2, solutions of (6) have a singularity at
0, and the authors of [8, 32] impose the condition µ ∈ [0, (N − 2)2/4− 4). If t ∈ (0, 2),
no such condition is needed. So the estimates for the case t ∈ (0, 2) and the case t = 2
are very different. Therefore we have generalize the results in [32] to the case 0 ∈ ∂Ω.

Remark 3. In order to prove the results, Wang and Yang [27] first used an abstract theo-
rem, which is introduced by Schechter and Zou [21]. Then by combining with the uniform
bounded theorem due to [28], the authors of [27] obtained infinitely many sign-changing
solutions. The methods introduced in [4, 8, 13, 21, 31] sometimes are limited because,
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by general minimax procedure to get the Morse indices of sign-changing critical points,
sometimes are not clear. Another limited condition is that the corresponding functional is
also needed to be C2.

Before giving our main results, we give some notations first. We will always denote
0 < t < 2. Let E = H1

0 (Ω) be endowed with the standard scalar and norm

(u, v) =

∫
Ω

∇u∇v dx; ‖u‖ =

(∫
Ω

|∇u|2 dx

)1/2

.

The norm on Ls = Ls(Ω) with 1 6 s < ∞ is given by |u|s = (
∫
Ω
|u|s dx)1/s. Lqt (Ω)

(1 6 q <∞, 0 6 t < 2) with the norm |u|q,t,Ω = (
∫
Ω
|u|q/|x|t dx)1/q , where dx denote

the Lebesgue measure in RN . Denote Br = {u ∈ E: ‖u‖ 6 r} and Bcr := E \Br.
We will use the usual Ljusternik–Schnirelman-type minimax method and invariant

set method to prove Theorem 1. Our method is much simpler than the proof of [27].
In fact, our approach also works for the Brézis–Nirenberg problem involving subcritical
perturbation term f(x, u), which is not C1. However, the techniques developed by Wang
and Yang [27] or Schechter and Zou [21] cannot be applied directly. Let us outline the
proof of Theorem 1 and explain the difficulties we will encounter.

In general, by using the combination of invariant sets method and minimax method
to obtain infinitely many nodal critical points, we need the energy functional satisfies the
Palais–Smale condition in all energy level. This fact prevents us from using the variational
methods directly to prove the existence of infinitely many sign-changing solutions for (1)
because J(u) does not satisfy the Palais–Smale condition for large energy level due to the
double critical Hardy–Sobolev–Maz’ya exponents 2∗(t) and 2∗(s).

In order to overcome the difficulty, we will adopt the idea in [10, 24] and [4, 31]. We
first study the following perturbed problem:

−∆u =
µ|u|2∗(t)−2−εu

|y|t
+
|u|2∗(s)−2−εu

|y|s
+ a(x)u in Ω,

u = 0 on ∂Ω,
(7)

where ε > 0 is a small constant. The corresponding energy functional is

Jε(u) =
1

2

∫
Ω

(
|∇u|2 − a(x)u2

)
− µ

2∗(t)− ε

∫
Ω

|u|2∗(t)−ε

|y|t

− 1

2∗(s)− ε

∫
Ω

|u|2∗(s)−ε

|y|s
. (8)

By the following lemmas, we will know Jε(u) is a C1 function on H1
0 (Ω) and satisfies

the Palais–Smale condition. It follows from [1, 20] that Jε(u) has infinitely many critical
points. More precisely, there are positive numbers cε,l, l = 2, 3, . . . , with cε,l → +∞ as
l→∞. Moreover, a critical point uε,l for Jε(u) satisfies Jε(uε,l) = cε,l.
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Next, we will show that for any fixed l > 2, ‖uε,l‖ are uniformly bounded with
respect to ε, then we can apply the following compactness result Proposition 1 (see
[28, Thm. 1.3]), which essentially follows from the uniform bounded theorem due to
Devillanova and Solimini [10], to show that uε,l converges strongly to ul in E as ε → 0.
Therefore it is easy to prove that ul is a solution of (1) with J(ul) = cl := limε→0 cε,l.

Proposition 1. (See [28].) Suppose that a((0, z∗)) > 0 and Ω satisfies the conditions in
Theorem 1. If N > 6 + t when µ > 0 and N > 6 + s when µ = 0, then for any sequence
un, which is a solution of (7) with ε = εn → 0 satisfying ‖un‖ 6 C for some constant
independent of n, un has a sequence, which converges strongly in H1

0 (Ω) as n→∞.

In the end, we will distinguish two cases to prove that J(u) has infinitely many sign-
changing critical points.

Case I. There are 2 6 l1 < · · · < li < · · · satisfying cl1 < · · · < cli < · · · .
Case II. There is a positive integer L such that cl = c for all l > L.

The central task in this procedure is to deal with case II. In fact, we can prove that the
usual Krasnoselskii genus of Kc \W (W is denoted in Section 2) is at least two, where
Kc := {u ∈ E: J(u) = c, J ′(u) = 0}. Then our result is obtained.

Throughout this paper, the letters C,C1, C2, . . . will be used to denote various pos-
itive constants, which may vary from line to line and are not essential to the problem.
The closure and the boundary of set G are denoted by Ḡ and ∂G, respectively. We denote
“⇀” weak convergence and by “→” strong convergence. Also if we take a subsequence
of a sequence {un}, we shall denote it again {un}.

The paper is organized as follows. In Section 2, we introduce some notations and
Hardy–Sobolev–Maz’ya inequality. In Section 3, we give an auxiliary operator Aε and
construct the invariant sets. We give the proof of Theorem 1 in Section 4.

2 Preliminaries

Now we give some integrals inequalities, for details we refer to [19].

Lemma 1 [Hardy–Sobolev–Maz’ya inequality]. Let N > 3, 0 6 t < 2, then there
exist a positive constant S = S(Ω, s) such that(∫

Ω

|u|2∗(s)

|y|s
dx

)2/(2∗(s))

6 S−1

∫
Ω

|∇u|2 dx (9)

for all u ∈ H1
0 (Ω).

Lemma 2. (See [13].) If Ω is a bounded subset of RN , 0 6 t < 2, N > 3, then

Lpt (Ω) ⊂ Lqt (Ω)

with the inclusion being continuous whenever 1 6 q 6 p <∞.
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Remark 4. If f ∈ Lpt (Ω) for 1 6 p <∞, then f ∈ Lp(Ω) with

|f |p 6 C|f |p,t,Ω .

For each ε and u ∈ E, we define

‖u‖∗ = µ

(∫
Ω

|u|2∗(t)−ε

|y|t
dx

)1/(2∗(t)−ε)

+

(∫
Ω

|u|2∗(s)−ε

|y|s
dx

)1/(2∗(s)−ε)

.

Lemma 3. (See [13].) Let 1 6 q < 2∗(t), 0 6 t < 2 and N > 3, then the embedding
H1

0 (Ω) ↪→ Lqt (Ω) is compact.

By Lemmas 2, 3 and Hardy–Sobolev–Maz’ya inequality, we know that the singular
term

∫
Ω
|u|2∗(t)−ε/|y|t and

∫
Ω
|u|2∗(s)−ε/|y|s are finite and ‖u‖∗ 6 C‖u‖, where C is

independent of ε. Therefore Jε is a C1 function on H1
0 (Ω). By Lemma 3, Jε satisfies the

Palais–Smale condition. In order to prove Theorem 1, it is enough to obtain sign-changing
critical points for the functional Jε.

Fix ξ ∈ (2, 2∗(s)). In the following, we will always assume that ε ∈ (0, 2∗(s)−ξ). In
order to construct the minimax values for the perturbed functional Jε, the following two
technique lemmas are needed.

Lemma 4. Assume m > 1. Then there exists R = R(Hm) > 0 such that for all ε ∈
(0, 2∗(s)− ξ),

sup
BcR∩Hm

Jε(u) < 0,

where BcR := E \BR.

Proof. Since Hm is finite dimensional, by Lemma 2, we know that ‖·‖∗ is defined as the
norm on H1

0 (Ω). There is a constant C > 0 such that ‖u‖2∗−ε 6 C‖u‖2∗−ε
∗ for all

u ∈ Hm. Therefore

Jε(u) 6
1

2
‖u‖2 − µ

2∗(t)− ε

∫
Ω

|u|2∗(t)−ε

|y|t
− 1

2∗(s)− ε

∫
Ω

|u|2∗(s)−ε

|y|s

6
1

2
‖u‖2 − C‖u‖2

∗(s)−ε.

Since 2∗(s)−ε > 2 and λ1 > 1, we have that lim‖u‖→∞, u∈Hm Jε(u) = −∞. The proof
is complete.

Lemma 5. For any ε ∈ (0, 2∗(s)− ξ), λ1 > 1, there exists ρ = ρ(ε), α = α(ε) > 0 such
that

inf
∂Bρ

Jε(u) > α.
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Proof.

Jε(u) =
1

2

∫
Ω

(
|∇u|2 − a(x)u2

)
− µ

2∗(t)− ε

∫
Ω

|u|2∗(t)−ε

|y|t
− 1

2∗(s)− ε

∫
Ω

|u|2∗(s)−ε

|y|s

>
1

2
(λ1 − 1)

∫
Ω

a(x)u2 − C1|u|2
∗(t)−ε

2∗(t)−ε − C2|u|2
∗(s)−ε

2∗(s)−ε.

Since 2∗ − ε > 2∗(t) − ε > 2∗(s) − ε > ξ > 2 and λ1 > 1, there exists ρ = ρ(ε),
α = α(ε) > 0 such that inf∂Bρ Jε(u) > α. The proof is complete.

Lemma 5 implies that 0 is a strict local minimum critical point. Then we can construct
invariant sets containing all the positive and negative solutions of (1) for the gradient flow
of Jε. Therefore nodal solutions can be found outside of these sets.

3 Auxiliary operator and invariant subsets of descending flow

For any ε ∈ (0, 2∗(s)− ξ), let Aε : E → E be given by

Aε(u) := (−∆)−1

(
µ
|u|2∗(t)−2−εu

|y|t
+
|u|2∗(s)−2−εu

|y|s
+ a(x)u

)
for u ∈ E. Then the gradient of Jε has the form

∇Jε(u) = u−Aε(u).

Note that the set of fixed points of Aε is the same as the set of critical points of Jε,
which is K := {u ∈ E: ∇Jε(u) = 0}. It is easy to check that ∇Jε is locally Lipschitz
continuous.

We consider the negative gradient flow φε of Jε defined by

d

dt
φε(t, u) = −∇Jε(φε(t, u)) for t > 0,

φε(0, u) = u.

Here and in the sequel, for u ∈ E, denote u±(x) := max{±u(x), 0}, the convex cones

+P = {u ∈ E: u > 0}, −P = {u ∈ E: − u > 0}.

For θ > 0, we define

(±P )θ :=
{
u ∈ E: dist(u,±P ) < θ

}
.

In the following, we will show that there exists θ0 > 0 such that (±P )θ is an invariant
set under the descending flow for all 0 < θ 6 θ0. Note that E \W contains only sign-
changing functions, where

W := (+P )θ ∪ (−P )θ,

Nonlinear Anal. Model. Control, 27(5):863–878, 2022
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since E \W contains only sign-changing functions. By a version of the symmetric moun-
tain pass theorem, which provides the minimax critical values on E \W , we can prove
that (6) has infinitely many sign-changing solutions.

For any N ⊂ E and δ > 0, Nδ denotes the open δ-neighborhood of N , i.e.,

Nδ :=
{
u ∈ E: dist(u,N) < δ

}
,

whose closure and boundary are denoted by Nδ and ∂Nδ . By the following result, we can
know that a neighborhood of ±P is an invariant set. We can use similar way as Lemma 2
in [9] and Lemma 3.1 in [3] to get the following lemma.

Lemma 6. There exists θ0 > 0 such that for any θ ∈ (0, θ0], there holds

Aε
(
∂(±P )θ

)
⊂ (±P )θ,

and

φε(t, u) ∈ (±P )θ for all t > 0 and u ∈ (±P )θ.

Moreover, every nontrivial solutions u ∈ (+P )θ and u ∈ (−P )θ of (5) are positive and
negative, respectively.

By using the combination of invariant sets method and minimax method, we can
construct a nodal solution first, then to prove our main result. We need a deformation
lemma in the presence of invariant sets.

Definition 1. A subset W ⊂ E is an invariant set with respect to φε if, for any u ∈ W ,
φε(t, u) ∈W for all t > 0.

From Lemma 6 we may choose an θ > 0 sufficiently small such that (±P )θ are
invariant set. SetW := (+P )θ∪(−P )θ. Note that φε(t, ∂W ) ⊂ int(W ) andQ := E\W
only contains sign-changing functions.

Since Jε satisfies the Palais–Smale condition, we have the following deformation
lemma, which follows from Lemma 5.1 in [18] (also see Lemma 2.4 in [15]).

Define K1
ε,c := Kε,c ∩W , K2

ε,c := Kε,c ∩ Q, where Kε,c := {u ∈ E: Jε(u) = c,
J ′ε(u) = 0}. Let ρ > 0 be such that (K1

ε,c)ρ ⊂ W , where (K1
ε,c)ρ := {u ∈ E:

dist(u,K1
ε,c) < ρ}.

We can use the similar method to the proof of Lemma 5.1 [18] and Lemma 2.4 [15]
to prove the following lemma.

Lemma 7. Assume that Jε satisfies Palais–Smale condition, then there exists an δ0 > 0
such that for any 0 < δ < δ0, there exists η ∈ C([0, 1]× E,E) satisfying:

(i) η(t, u) = u for t = 0 or u /∈ J−1
ε ([c− δ0, c+ δ0]) \ (K2

ε,c)ρ.
(ii) η(1, Jc+δε ∪W \ (K2

ε,c)3ρ) ⊂ Jc−δε ∪W and η(1, Jc+δε ∪W ) ⊂ Jc−δε ∪W if
K2
ε,c = ∅. Here Jdε = {u ∈ E: Jε(u) 6 d} for any d ∈ R.

(iii) η(t, ·) is odd and a homeomorphism of E for t ∈ [0, 1].
(iv) Jε(η(·, u)) is nonincreasing.
(v) η(t,W ) ⊂W for any t ∈ [0, 1].
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4 The proof of Theorem 1

In the following, we assume that λ1 > 1. For any ε ∈ (0, 2∗(s)− ξ) small, we define the
minimax value cε,l for the perturbed functional Jε(u) with l = 2, 3, . . . . We now define
a family of sets for the minimax procedure here. We essentially follow [3], also see [18]
and [20]. Define

Gm :=
{
h ∈ C(BR ∩Hm, E): h is odd and h = id on ∂BR ∩Hm

}
,

where R > 0 is given by Lemma 4. Note that Gm 6= ∅ since id ∈ Gm. Set

Γl :=
{
h(BR ∩Hm \ Y ): h ∈ Gm, m > l, Y = −Y is open and γ(Y ) 6 m− l

}
for k > 2. From [20] Γl possess the following properties:

(i) Γl 6= ∅ and Γl+1 ⊂ Γl for all l > 2.
(ii) If φ ∈ C(E,E) is odd and φ = id on ∂BR ∩Hm, then φ(A) ∈ Γl if A ∈ Γl for

all l > 2.
(iii) IfA ∈ Γl, Z = −Z is open and γ(Z) 6 s < l and l−s > 2, thenA\Z ∈ Γl−s.

Now, for l > 2, we can define the minimax value cε,l by

cε,l := inf
A∈Γl

sup
u∈A∩Q

Jε(u).

Lemma 8. For any A ∈ Γl and l > 2, A ∩ Q 6= ∅, then cε,l is well defined, and
cε,l > α > 0, where α is given by Lemma 5.

Proof. Consider the attracting domain of 0 in E:

D :=
{
u ∈ E: φε(t, u)→ 0, as t→∞

}
.

Note that D is open since 0 is a local minimum of Jε and by the continuous dependence
of ODE on initial data. Moreover, ∂D is an invariant set, and (+P )δ ∩ (−P )δ ⊂ D. In
particular, the following holds

Jε(u) > 0

for every u ∈ (+P )δ ∩ (−P )δ \ {0} (see [3, Lemma 3.4]). Now we claim that for any
A ∈ Γl with l > 2, it holds

A ∩Q ∩ ∂D 6= ∅. (10)

If this is true, then we have A ∩ Q 6= ∅ and cε,2 > α > 0 because ∂Bρ ⊂ D and
supA∩Q Jε(u) > inf∂D Jε(u) > inf∂Bρ Jε(u) > α > 0 by Lemma 5.

To prove (10), let
A = h(BR ∩Hm \ Y )

with γ(Y ) 6 m− l and l > 2. Define

O :=
{
u ∈ BR ∩Hm: h(u) ∈ D

}
.
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Then O is a bounded open symmetric set with 0 ∈ O and O ⊂ BR ∩ Hm. Thus, it
follows from the Borsuk–Ulam theorem that γ(∂O) = m and, by the continuity of h,
h(∂O) ⊂ ∂D. As a consequence,

h(∂O \ Y ) ⊂ A ∩ ∂D,
and therefore

γ(A ∩ ∂D) > γ
(
h(∂O \ Y )

)
> γ(∂O \ Y ) > γ(∂O)− γ(Y ) > l

by the “monotone, subadditive and supervariant” property of the genus [23, Prop. 5.4].
Since (+P )δ ∩ (−P )δ ∩ ∂D = ∅,

γ(W ∩ ∂D) 6 1.

Thus for l > 2, we conclude that

γ(A ∩Q ∩ ∂D) > γ(A ∩ ∂D)− γ(W ∩ ∂D) > l − 1 > 1,

which proves (10).
Thus cε,l is well defined for all l > 2 and 0 < α 6 cε,2 6 cε,3 6 · · · 6 cε,l 6 · · · .

The proof is complete.

Lemma 9.
Kε,cε,l ∩Q 6= ∅. (11)

Proof. If not, we assume that
Kε,cε,l ∩Q = ∅.

By Lemma 7, for the functional Jε, there exist δ > 0 and a map η ∈ C([0, 1] × E,E)

such that η(1, ·) is odd, η(1, u) = u for u ∈ Jcε,l−2δ
ε and

η
(
1, J

cε,l+δ
ε ∪W

)
⊂ Jcε,l−δε ∪W. (12)

By the definition of cε,l, there exists A ∈ Γl such that supA∩Q Jε(u) 6 cε,l + δ. Let
B = η(1, A). It follows from (14) that

sup
B∩Q

Jε(u) 6 cε,l − δ.

On the other hand, it is easy to show that B ∈ Γl by Lemma 4 and the property (ii) of Γl
above. As a result, cε,l 6 cε,l−δ. This contradicts with δ > 0. The proof is complete.

Lemma 9 implies that there exists a sign-changing critical point uε,l such that

Jε
(
uε,l
)

= cε,l.

As a consequence of Lemma 8, we have that cε,l is well defined for all l > 2 and 0 <
α 6 cε,2 6 cε,3 6 · · · 6 cε,l 6 · · · . Now we can show the following lemma.
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Lemma 10. cε,l →∞ as l→∞.

Proof. Here we deduce by a negation. Suppose cε,l → c̄ε < ∞ as l → ∞. Since Jε
satisfies Palais–Smale condition, it follows that Kε,c̄ε 6= ∅ and is compact. Moreover, we
have

K2
ε,c̄ε := Kε,c̄ε ∩Q 6= ∅.

Indeed, assume {uε,li}i∈N is a sequence of sign-changing solutions to (6) with Jε(uε,li) =
cε,li , and we have∫

Ω

∣∣∇u±ε,li∣∣2 − a(x)
∣∣u±ε,li∣∣2 = µ

∫
Ω

|u±ε,li |
2∗(t)−ε

|y|t
+

∫
Ω

|u±ε,li |
2∗(s)−ε

|y|s
.

By using the variantional principle of (5), we obtain(
1− 1

λ1

)
‖u±ε,li‖

2 6 µ

∫
Ω

|u±ε,li |
2∗(t)−ε

|y|t
+

∫
Ω

|u±ε,li |
2∗(s)−ε

|y|s
.

It follows that, by Sobolev embedding theorem, ‖u±ε,li‖ > c0 > 0, where c0 is a constant
independent of i. This implies that the limit ūε ∈ Kε,c̄ε of the subsequence of {uε,li}i∈N
is still sign-changing.

Assume γ(K2
ε,c̄ε) = τ . Since 0 /∈ K2

ε,c̄ε and K2
ε,c̄ε is compact, by the “continuous”

property of the genus [23, Prop. 5.4], there exists an open neighborhood N in E with
K2
ε,c̄ε ⊂ N such that γ(N) = τ . Now using Lemma 7 for the functional Jε, there exist

δ > 0 and a map η ∈ C([0, 1]×E,E) such that η(1, ·) is odd, η(1, u) = u for u ∈ J c̄ε−2δ
ε

and
η
(
1, J c̄ε+δε ∪W \N

)
⊂ J c̄ε−δε ∪W. (13)

Since cε,l → c̄ε as l→∞, we can choose l sufficiently large such that cε,l > c̄ε−δ/2.
Clearly, cε, l+τ > cε,l > c̄ε−δ/2. By the definition of cε, l+τ , we can find a setA ∈ Γl+τ ,
that is, A = h(BR ∩Hm \ Y ), where h ∈ Gm, m > l + τ , γ(Y ) 6 m − (l + τ), such
that

Jε(u) 6 cε,l+τ +
1

4
δ < c̄ε + δ

for any u ∈ A ∩Q, which implies A ⊂ J c̄ε+δε ∪W . It follows from (13) that

η(1, A \N) ⊂ J c̄ε−δε ∪W. (14)

Let Y1 = Y ∪ h−1(N). Then Y1 is symmetric and open, and

γ(Y1) 6 γ(Y ) + γ
(
h−1(N)

)
6 m− (l + τ) + τ = m− l.

Then it is easy to check Ã := η(1, h(BR ∩ Hm \ Y1)) ∈ Γl by (ii) and (iii) above. As
a result, by (14),

cε,l 6 sup
Ã∩Q

Jε(u) 6 sup
η(1, A\N)∩Q

Jε(u) 6 c̄ε − δ.

This is a contradiction to cε,l > c̄ε − δ/2. The proof is complete.
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Lemma 11. For any fixed l > 2, ‖uε,l‖ is uniformly bounded with respect to ε, and then
uε,l converges strongly to ul in E as ε→ 0.

Proof. Indeed, by using the same Γl above, we can also define the minimax value for the
following auxiliary function:

J∗(u) =
1

2

∫
Ω

(
|∇u|2 − a(x)|u|2

)
− µ

2∗

∫
Ω

|u|ξ

|y|t
− 1

2∗

∫
Ω

|u|ξ

|y|s
,

αl := inf
A∈Γl

sup
u∈A

J∗(u), l = 2, 3, . . . .

Here we choose R > 0 sufficiently large if necessary such that Lemma 4 also holds
for J∗. Then by a Z2 version of the mountain pass theorem [20, Thm. 9.2], for each l > 2,
αl > 0 is well defined, and αl →∞ as l→∞ because

Jε(u) 6
1

2

∫
Ω

(
|∇u|2 − a(x)|u|2

)
− µ

2∗

∫
Ω

(
|u|ξ − 1

|y|t

)
− 1

2∗

∫
Ω

|u|ξ − 1

|y|s

= J∗(u) + d0,

where

d0 =
µ

2∗

∫
Ω

1

|y|t
+

1

2∗

∫
Ω

1

|y|s
.

Therefore, for any fixed l > 2, cε,l is uniformly bounded for ε ∈ (0, 2∗(s) − ξ),
that is, there is C = C(αl, Ω) > 0 independent on ε such that cε,l 6 C uniformly for ε
because uε,l is a nodal solution of (6) and Jε(uε,l) = cε,l. By the definition of λ1, we can
obtain the following:

C > cε,l = Jε(uε,l) = Jε(uε,l)−
1

2∗(s)− ε
〈
J ′ε(uε,l), uε,l

〉
=

(
1

2
− 1

2∗(s)− ε

)∫
Ω

(
|∇uε,l|2 − a(x)u2

ε,l

)
+ µ

(
1

2∗(s)− ε
− 1

2∗(t)− ε

)∫
Ω

|uε,l|2
∗−ε

|y|t

>

(
1

2
− 1

2∗(s)− ε

)∫
Ω

(
|∇uε,l|2 − a(x)u2

ε,l

)
>

(
1

2
− 1

ξ

)(
1− 1

λ1

)
‖uε,l‖2 > 0,

where λ1 > 1, ε ∈ (0, 2∗(s) − ξ) and 2 < ξ < 2∗(s). Therefore ‖uε,l‖ is uniformly
with respect to ε. So we can apply Proposition 1 and obtain a subsequence {uεl,l}l∈N
such that uεl,l → ul strongly in E for some ul and also cεl,l → cl. Thus ul is a solution
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of (5), and Jε(ul) = cl. Moreover, since uεl,l is sign-changing, similar to Lemma 10,
by Sobolev embedding theorem, we can prove that ul is still sign-changing. The proof is
complete.

Proof. Proof of Theorem 1 Noting that cl is nondecreasing with respect to l, we have the
following two cases:

Case I. There are 2 6 l1 < · · · < li < · · · satisfying cl1 < · · · < cli < · · · .
Obviously, in this case, equation (1) has infinitely many sign solutions such that
J(ui) = cli .

Case II. There is a positive integer L such that cl = c for all l > L.

From now on we assume that there exists a δ > 0 such that J(u) has no sign-changing
critical point u with

J(u) ∈ [c− δ, c) ∪ (c, c+ δ].

Otherwise, we are done. In this case, we claim that γ(K2
c ) > 2, where Kc := {u ∈

E: J(u) = c, J ′(u) = 0} andK2
c = Kc∩Q. Then as a consequence, J(u) has infinitely

many sign-changing critical points.
Now we adopt a technique in the proof of Theorem 1.1 in [7]. Suppose, on the

contrary, that γ(K2
c ) = 1 (note that K2

c 6= ∅). Moreover, we assume K2
c contains only

finitely many critical points, otherwise, we are done. Then it follows that K2
c is compact.

Obviously, 0 /∈ K2
c . Then there exists a open neighborhood N in E with K2

c ⊂ N such
that γ(N) = γ(K2

c ).
Define

Vε :=
(
Jc+δε \ Jc−δε

)
\N.

We now claim that if ε > 0 small, Jε has no sign-changing critical point u ∈ Vε. Indeed,
arguing indirectly, suppose that there exist ε→ 0 and uε ∈ Vε satisfying J ′ε(uε) = 0 with
u±ε 6= 0 and uε /∈ N.

Then, by Proposition 1, up to a subsequence, un converges strongly to u in E. There-
fore J ′(u) = 0,

J(u) ∈ [c− δ, c+ δ]

and u /∈ K2
c .

This is a contradiction to our assumption and the fact that u is still sign-changing. The
following proof is similar to that of Lemma 9. By using Lemma 7, for the functional Jε,
there exist δ > 0 and a map η ∈ C([0, 1]×E,E) such that η(1, ·) is odd, η(1, u) = u for
u ∈ Jc−2δ

ε and

η
(
1, Jc+δε ∪W \N

)
⊂ Jc−δε ∪W. (15)

Now fix l > L. Since cε,l, cε, l+1 → c as ε→ 0, we can find an ε > 0 small such that
cε,l, cε, l+1 ∈ (c− δ/2, c+ δ/2). By the definition of cε, l+1, we can find a set A ∈ Γl+1,
that is,

A = h(BR ∩Hm \ Y ),
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where h ∈ Gm, m > l + 1, γ(Y ) 6 m− (l + 1) such that

Jε(u) 6 cε, l+1 +
1

4
δ < c+ δ

for any u ∈ A ∩Q, which implies A ⊂ Jc+δε ∪W . Then by (15), we have

η(1, A \N) ⊂ Jc−δε ∪W. (16)

Let Ỹ = Y ∪ h−1(N). Then Ỹ is symmetric and open, and

γ(Ỹ ) 6 γ(Y ) + γ
(
h−1(N)

)
6 m− (l + 1) + 1 = m− l.

Then it is easy to check Â := η(1, h(BR ∩ Hm \ Ỹ )) ∈ Γl by (ii) and (iii) above. As
a result, by (16),

cε,l 6 sup
Â∩Q

Jε(u) 6 sup
η(1, A\N)∩Q

Jε(u) 6 c− δ.

This contradicts to cε,l > c − δ/2. Then the proof for case II is finished. The proof is
complete.
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