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Abstract. In this paper, we extend a Leslie–Gower-type predator–prey system with ratio-dependent
Holling III functional response considering the cost of antipredator defence due to fear. We study
the impact of the fear effect on the model, and we find that many interesting dynamical properties
of the model can occur when the fear effect is present. Firstly, the relationship between the fear
coefficient K and the positive equilibrium point is introduced. Meanwhile, the existence of the
Turing instability, the Hopf bifurcation, and the Turing–Hopf bifurcation are analyzed by some key
bifurcation parameters. Next, a normal form for the Turing–Hopf bifurcation is calculated. Finally,
numerical simulations are carried out to corroborate our theoretical results.

Keywords: predator–prey system, the fear effect, Turing instability, Turing–Hopf bifurcation,
normal form.

1 Introduction

As one of the most common mutual relationships between two populations in nature,
predator–prey relationship plays a significant role in ecology and mathematical biology
[2]. Since the dynamic behaviours of predator–prey models were formulated by Lotka and
Volterra, many experts and scholars have studied various types of predator–prey models
over the past decades, thus establishing the theoretical basis for interspecific interactions
[1, 4, 12, 14]. In 1948, Leslie and Gower introduced a functional response called Leslie–
Gower, which was based on the Logistic model proposed by Verhulst. This functional
response can be adapted to describe the correlation between a reduction in the number
of predators and the per capita availability of the predator’s preferred food [2, 17]. The
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Leslie–Gower predator–prey system typically takes the following form:

dx

dt
= rx

(
1− x

K

)
− yf(x),

dy

dt
= y

(
1− y

px

)
,

x(0) > 0, y(0) > 0, r, s,K, p > 0,

(1)

where p is the prey-to-predator conversion factor, and the term y/(px) is known as the
Leslie–Gower term, which means the scarcity of prey leads to a loss of predator density.

The functional response is an important component of the predator–prey model de-
scribing the way in which predator–prey interactions occur. In proposing this function, an
essential role is played by the behavior of prey and predator [17,18]. Some common types
of functional responses are listed here. For example, Holling I–III functional response
[20], Beddington–DeAngelis functional response [10], Leslie–Gower functional response
[11], Crowley–Martin functional response [9], and ratio-dependent functional response
[6].

The ratio-dependent functional response, a predator-dependent functional response, is
an important form in characterizing the functional responses of predator and has a better
modeling for a predator–prey system [25]. Based on the existed studies and the above con-
siderations, many experts and scholars have replaced f(x) in (1) with a ratio-dependent
functional response and considered its spatial distribution patterns and dispersal mecha-
nisms. Making a suitable nondimensional scaling, system (1) reduces to

∂u(x, t)

∂t
= d1∆u+ u(1− u)− βu2v

u2 +mv2
,

∂v(x, t)

∂t
= d2∆v + rv

(
1− v

u

)
,

(2)

where u(x, t) and v(x, t) denote, respectively, the densities of the prey and the predator
species at the space location x and time t. ∆ is the Laplacian operator. The positive con-
stants d1 and d2 represent separately the diffusion coefficients of the prey and the predator.
Parameters r, m, and β are all positive constants. The nonlinear term βu2/(u2 +mv2) in
(2) is called ratio-dependent Holling type III functional response [5, 21], and it indicates
the growth rate of predator per capita, which is a function of the ratio of the number of
prey to predator. The term v/u is known as the Leslie–Gower term [8], and it means the
scarcity of prey leads to a loss of predator density [16]. There have been several reports on
the dynamic behavior of this ratio-dependent predator–prey system (2). The Turing and
Turing–Hopf bifurcations of system (2) were investigated and the spatiotemporal patterns
of system (2) in two-dimensional space were discovered by Chen and Wu [3]. In [16],
under homogeneous Neumann boundary conditions, the existence conditions of Hopf
bifurcation, Turing instability of spatial uniformity and Turing–Hopf bifurcation in one-
dimensional space were shown. In Chang and Zhang [2], they used the Leray–Schauder
degree theory and the implicit function theorem to report the nature of the spatially
homogeneous Hopf bifurcation and the nonexistence and existence of nonconstant steady
states.
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In proposing model (2), the fear effect of prey for predator has been neglected. All prey
respond to the risk of predation and then exhibit a variety of antipredator responses. The
common ones are habitat change, foraging, vigilance, and other different physiological
changes [15,19,22–24]. Some previous experimental studies have confirmed this result. In
addition, the fear of predation has immense impact on prey species. The mortality of prey
is directly increased by predation. Moreover, the fear of prey may affect the physiological
condition of juvenile prey, which is harmful to its survival in adulthood, for example,
reducing the reproduction of prey [19, 22]. Furthermore, strong behavioral responses can
be elicited by the fear of predation enough to affect the population and life history of
entire prey populations [13]. According to their ideas [22–24], we extend model (2) by
multiplying the production term by a factor f(K, v) = 1/(1 +Kv) taking in account the
cost of antipredator defence due to fear [22], then model (2) becomes

∂u(x, t)

∂t
= d1∆u+

u

1 +Kv
− u2 − βu2v

u2 +mv2
, x ∈ Ω, t > 0,

∂v(x, t)

∂t
= d2∆v + rv

(
1− v

u

)
, x ∈ Ω, t > 0,

ux(x, t) = vx(x, t) = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x) > 0, v(x, 0) = v0(x) > 0, x ∈ Ω,

(3)

where parameter K > 0 refers to the level of fear.
The organizational structure of this paper is as follows. In Section 2, both the existence

of positive equilibrium state and the linear stability of system (3) are analysed. Further-
more, the bifurcation analysis is investigated in Section 3, where the existence of the
Turing bifurcation, the Hopf bifurcation, and the Turing–Hopf bifurcation are shown by
choosing the d2, r, and K as bifurcation parameters, respectively. Moreover, the normal
form of the Turing–Hopf bifurcation with r and d2 as parameters for system (3) near
the unique positive constant equilibrium is obtained in Section 4. Finally, in Section 5,
numerical simulations are carried out to verify the obtained theoretical conclusions.

2 Existence and stability of equilibria

Firstly, the existence of coexisting equilibrium is analyzed by considering the following
equation:

f(u, v) =
u

1 +Kv
− u2 − βu2v

u2 +mv2
= 0,

g(u, v) = rv

(
1− v

u

)
= 0.

(4)

Obviously, (1, 0) is a boundary equilibrium point of system (3). In this article, we mainly
study the relevant properties of the coexistence equilibrium of system (3). By using the
second equation of (4), we are able to obtain u = v. Substituting this into the first equation
of (4), we obtain the expression h(u) = −K(1+m)u2− (1+m+Kβ)u+(1+m−β).

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Dynamic analysis of a Leslie–Gower-type predator–prey system 907

Theorem 1. The following statements are correct:

(i) Assume that 1 + m − β > 0 holds, then h(u) = 0 must have a positive real
solution.

(ii) The equilibrium of prey u∗ is a strictly decreasing function with respect toK when
1 +m− β > 0.

Proof. (i) Obviously, h(u) is a quadratic function of one variable u with the downward
opening, and its symmetry axis is u = −(1 +m+Kβ)/(2K(1 +m)) < 0. We can also
find h(0) = 1 +m− β. So there must be a positive solution u∗ to meet h(u∗) = 0 when
1 +m− β > 0.

(ii) In the case with the fear factor, i.e., K > 0, for system (3), when 1 +m− β > 0,
we can obtain the equilibrium of prey

u∗ =
−1−m−Kβ +

√
4(K +Km)(1 +m− β) + (1 +m+Kβ)2

2(K +Km)
.

Simple computation shows that

du∗
dK

=
−1−2K−m−2Km+Kβ+

√
4(K+Km)(1+m−β)+(1+m+Kβ)2

2K2
√

4(K+Km)(1+m−β) + (1+m+Kβ)2
< 0,

which indicates that u∗ is a strictly decreasing function with respect to K. That is, in-
creasing the level of K can decrease the value of the prey equilibrium u∗.

Theorem 1 means that system (3) has a positive equilibrium point. We suppose that
(u∗, v∗) is the positive equilibrium point of system (3) for the remainder of the article.
Furthermore, it also means that if the model has a unique positive equilibrium, the fear
coefficient K has an effect on the positive equilibrium point: as the fear coefficient K
increases, the positive equilibrium point of prey u∗ gradually decreases (see Fig. 1). Next,
we conduct a linear stability analysis of system (3). For the positive equilibrium (u∗, v∗),
the linearized system of (3) is(

ut
vt

)
= D

(
∆u
∆v

)
+ L

(
u
v

)
, (5)

where

D =

(
d1 0
0 d2

)
, L =

(
a1 a2

r −r

)
,

and

a1 = −2u∗ +
1

1 +Ku∗
− 2mβ

(1 +m)2
, a2 = − Ku∗

(1 +Ku∗)2
+

(m− 1)β

(1 +m)2
.

It is obvious to know that the characteristic equation of the linearized system (5) is

λ2 − TRn λ+ DETn = 0, n ∈ N0, (6)
where

µn =
n2

l2
, TRn = −(d1 + d2)µn − r + a1,
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Figure 1. Curve of relationship betweenK and u∗. Keeping the other parameters fixed at the values: m=0.35,
β = 1.28.

DETn = d1d2µ
2
n + (d1r − a1d2)µn − (a1 + a2)r, (7)

and the eigenvalues of system (3) are given by

λ
(n)
1,2 =

TRn±
√

TR2
n−4 DETn

2
, n ∈ N0. (8)

Then we make the following hypotheses:

(A1) a1 − r < 0;
(A2) a1 + a2 < 0.

If Assumptions (A1) and (A2) are both valid, then when n = 0, there is TR0 < 0 and
DET0 > 0, that is to say, the real parts of the eigenvalues of system (3) are all less than
zero. Therefore, the following theorem is obtained.

Theorem 2. Suppose that (A1) and (A2) hold. Then the ordinary differential equation
system corresponding to system (3) is locally asymptotically stable at the positive equi-
librium point (u∗, v∗).

3 Bifurcation analysis

3.1 Turing instability

In this section, the existence conditions of the Turing instability are analyzed. Under the
assumptions that (A1) and (A2) are established, it is known from Theorem 2 that there is
TRn < TR0 < 0 for n ∈ N0. Then d2 (see (7)) is selected as the Turing bifurcation line
parameter. Let a1 > 0 and discuss in the following three situations:

Case 1. d2 6 d1r/a1,
Case 2. d2 > d1r/a1, and ∆ < 0, where ∆ = (d1r − a1d2)2 + 4d1d2(a1 + a2)r,
Case 3. d2 > d1r/a1, and ∆ > 0, where ∆ = (d1r − a1d2)2 + 4d1d2(a1 + a2)r.
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After the analysis and discussion of the above three situations, we can get the following
theorem.

Theorem 3. Suppose (A1) and (A2) hold. Then the following statements are correct:

(i) In Case 1 or Case 2, the positive equilibrium point (u∗, v∗) is locally asymptoti-
cally stable.

(ii) In Case 3, if there does not exist a µn(n ∈ N0) such that DETn < 0, then the
positive equilibrium point (u∗, v∗) of system (3) is locally asymptotically stable;
conversely, if there exists at least a µn(n ∈ N0) such that DETn < 0, then the
positive equilibrium point (u∗, v∗) of system (3) is Turing unstable.

Proof. Suppose that (A1) and (A2) hold. Under the condition that the parameters of
Case 1 or Case 2 are satisfied, there is TRn < TR0 < 0 for n ∈ N0, then if DETn > 0
(n ∈ N0), system (3) has the eigenvalue of the negative real part. Then statement (i) is
proved. When the parameter relationship belongs to Case 3 and there is not n ∈ N0 such
that DETn < 0, then a similar method can be used to prove the conclusion. When the pa-
rameter relationship belongs to Case 3 and there is a n1 ∈ N0 such that DETn1 < 0, then
the real part of the eigenvalue λ(n1)

1 = (TRn1 +
√

TR2
n1 −4 DETn1)/2 of system (3)

will be positive, which means that the positive equilibrium point (u∗, v∗) of system (3)
becomes no longer stable. Then the statement (ii) is proved.

Next, we further analyze the necessary conditions and the boundary for the occurrence
of Turing instability. Assume that

(B1) d2 > ε1d1, where ε1 = −(a1r + 2a2r)/a
2
1 + 2

√
(a1a2r2 + a2

2r
2)/a4

1;
(B2) d2 > ε2(d1)d1, where ε2(d1) = l2r/(a1l

2 − d1).

We can find that the curve ε2(d1)d1 increases monotonically with d1 until the first in-
flection point dA, after which the curve ε2(d1)d1 decreases linearly until the second
inflection point dB , and the value of ε2(d1)d1 is less than zero when d1 is greater than
the second inflection point dB (see Fig. 2(a)). To simplify the study, we only study the
part of the curve ε2(d1)d1 before the first inflection point dA. In this part, ε2(d1)d1

is monotonically increasing in d1 and intersects ε1d1 at the point d1 = d0. We take
dB2 (d1) = max0<d16dA {ε1d1, ε2(d1)d1}, then

dB2 (d1) =

{
ε1d1, 0 < d1 6 d0,

ε2(d1)d1, d0 < d1 6 dA.

Hence, we have the following lemma.

Lemma 1. Suppose that (A1) and (A2) hold, then assumptions (B1) and (B2) hold if and
only if d2 > dB2 (d1), 0 < d1 6 dA.

Proof. Let ε = d2/d1 and x = d1n
2/l2 > 0, then we can rewrite DETn as DETn =

εx2 + (r−a1ε)x− (a1 +a2)r. Obviously, the symmetry axis is x = (a1ε− r)/(2ε), and
at this time, DETn can be taken to the minimum (−4ε(a1 + a2)r − (r − a1ε)

2)/(4ε).
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Since x > 0, then a1ε−r > 0. If we want DETnmin < 0 with the condition a1ε−r > 0,
ε must satisfy ε > (−a1r − 2a2r)/a

2
1 + 2

√
(a1a2r2 + a2

2r
2)/(a4

1) = ε1. Then we can
obtain d2 > ε1d1, d1 > 0.

When x takes a value on the axis of symmetry, n can be taken to the minimum, and we
can get nmin =

√
(a1ε− r)/(2ε) · (l2/d1). To ensure that

√
(a1ε− r)/(2ε) · l2/d1 >√

1/2, then ε > l2r/(a1l
2− d1) = ε2(d1) is required. Then we can gain d2 > ε2(d1)d1.

In the part of the curve ε2(d1)d1 before the first inflection point dA, ε2(d1)d1 increases
monotonically with d1 and intersects with ε1d1 at the point d1 = d0, where d0 =
2a1l

2(−a1 − a2 +
√
a2(a1 + a2))/(−a1 − 2a2 + 2

√
a2(a1 + a2)).

Denote

dn2 (d1) =
l2(a1l

2r + a2l
2r − d1n

2r)

n2(−a1l2 + d1n2)
, 0 < d1 < dn,

where dn = (a1l
2 + a2l

2)/n2, then DETn = 0 when d2 = dn2 (d1). We can find that
the curve dn2 (d1) increases monotonically with d1 until the first inflection point dnA, after
which the curve dn2 (d1) decreases linearly until the second inflection point dnB , and the
value of dn2 (d1) is less than zero when d1 is greater than the second inflection point dnB
(see Fig. 2(b)). For simplicity, only the part of the curve dn2 (d1) before the first inflection
point dnA is studied in this section. Since both d1 and d2 are positive parameters, this
qualification makes sense.

Lemma 2. Suppose that (A1) and (A2) hold, function d2 = dn2 (d1), 0 < d1 6 dnA, has
the following properties:

(i) d2 = dn2 (d1) increases monotonically with d1 and intersects ε1d1 at d1 =
dM (n), and d1 = dM (n) decreases monotonically as n increases, where
dM (n) = (a1 + a2 +

√
a2(a1 + a2))l2/n2.

(ii) For n ∈ N , the equation dn2 (d1) = dn+1
2 (d1) only has one root dn,n+1 ∈

(dM (n+ 1), dM (n)), and dn2 (d1) < dn+1
2 (d1) < dn+2

2 (d1) < · · · , d1 > dn,n+1.
(iii) Define d2 = d∗2(d1) = dn2 (d1), d1 ∈ (dn,n+1, dn−1,n), n ∈ N , then d∗2(d1) >

dB2 (d1). Moreover, d∗2(d1) = dB2 (d1) if and only if d1 = dM (n), n ∈ N .

Theorem 4. Suppose that (A1) and (A2) hold.

(i) For any given n1 ∈ N , when d2 = dn1
2 (d1), system (3) occurs Turing bifurcation

at the positive equilibrium point (u∗, v∗).
(ii) d2 = d∗2(d1), 0 < d1 6 dA, is the critical curve of Turing instability.

(a) If 0 < d2 < d∗2(d1), 0 < d1 6 dA, system (3) is asymptotically stable at
(u∗, v∗).

(b) If d2 > d∗2(d1), 0 < d1 6 dA, Turing instability occurs in system (3) at
(u∗, v∗).

In Fig. 3(a), we characterize a graph of functions d2 = ε1d1, d2 = ε2(d1)d1, and
d2 = dn2 (d1), 0 < d1 6 dnA, n = 1, 2, 3, which will help us understand the results of
Lemmas 1 and 2. In Fig. 3(b), we present a graph of the Turing bifurcation line d2 =
d∗2(d1), 0 < d1 6 dA.
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(a) (b)

Figure 2. (a) The curve of d2 = ε2(d1)d1. (b) The curve of d2 = dn2 (d1) at n = 2. Keeping the other
parameters fixed at the values: m = 0.35, β = 1.28, K = 0.01, l = 2.

(a) (b)

Figure 3. (a) The figure of functions d2 = ε1d1, d2 = ε2(d1)d1, and d2 = dn2 (d1), 0 < d1 6 dnA,
n = 1, 2, 3 in d1, d2-plane. (b) The Turing bifurcation line d2 = d∗2(d1) (0 < d1 6 dA). Keeping the other
parameters fixed at the values: m = 0.35, β = 1.28, K = 0.01, l = 2.

3.2 Turing–Hopf bifurcation

3.2.1 Hopf bifurcation and Turing–Hopf bifurcation with r and d2 as parameters

In this section, the existence conditions of the Hopf bifurcation with r as the parameter
are first analyzed. Denote

r = rn = −(d1 + d2)µn + a1, n ∈ N0.

Obviously, DET0(r0) = −a1(a1 + a2) > 0 under hypothesis (A2). Denote

Λ = {n ∈ N0 | DETn > 0 and rn > 0}.

After analysis, we can get the following theorem.
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Theorem 5. Suppose (A2) holds. System (3) undergoes a Hopf bifurcation at (u∗, v∗)
when r = rn for n ∈ Λ. Moreover, the bifurcating periodic solution is spatially ho-
mogeneous when r = r0 and spatially nonhomogeneous when r = rn for n ∈ Λ and
n 6= 0.

Proof. Let λn(rn) = αn(rn)± iηn(rn), n ∈ Λ, be the roots of Eq. (6).
(i) When r = rn, we can get TRn(r) = 0 and DETn(r) > 0 for n ∈ Λ, then Eq. (6)

has a pair of pure imaginary roots λn(rn) = ±i
√

DETn(rn).
(ii) When r is near rn, from Eq. (8) we can get

αn(r)± iηn(r) =
TRn(r)±

√
TR2

n(r)− 4 DETn(r)

2
.

Then we can obtain dαn(r)/dr = −1/2 < 0. That is to say, for each rn, n ∈ Λ, the
transversal condition holds. This completes the proof.

Next, the existence conditions of the Turing–Hopf bifurcation with r and d2 as param-
eters are analyzed. System (3) will undergo a Turing–Hopf bifurcation when the following
conditions are satisfied:

(i) When n = 0, Eq. (6) has a pair of pure imaginary roots ±iω. This phenomenon
can be produced when r = r0 = a1.

(ii) When n > 0, Eq. (6) has a single zero root. This phenomenon can be produced
when DETn = 0.

In this section, we assume (A2) always holds. Denote

dn2 = r

(
d1µn − (a1 + a2)

µn(a1 − d1µn)

)
, S = {n ∈ N | a1 − d1µn > 0}

such that

dn∗
2 = r∗

(
d1µn∗ − (a1 + a2)

µn∗(a1 − d1µn∗)

)
= min

n∈S
r∗
(
d1µn − (a1 + a2)

µn(a1 − d1µn)

)
.

From the Theorem 5 we can know that system (3) will have a Hopf bifurcation at the
positive equilibrium point (u∗, v∗) when r = r0 = a1. Therefore, r∗ = a1 when n = n∗.
dn2 are the Turing bifurcation lines, and r∗ is the Hopf bifurcation line. When n = n∗,
we hope to find the first intersection of these two types of bifurcation lines in the first
quadrant as the Turing–Hopf bifurcation point. After the above analysis, we can get the
following theorem.

Theorem 6. Suppose hypothesis (A2) holds. For system (3), the following statements are
correct:

(i) If S = ∅, system (3) does not undergo Turing–Hopf bifurcation.
(ii) If S 6= ∅, system (3) undergoes Turing–Hopf bifurcation at the point (r, d2) =

(r∗, dn∗
2 ), and the positive equilibrium (u∗, v∗) of system (3) is locally asymptot-
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ically stable when (r, d2) ∈ Q, where

Q :=

{
(r, d2)

∣∣∣ r > r∗, 0 < d2 < r

(
d1µn∗ − (a1 + a2)

µn∗(a1 − d1µn∗)

)}
.

Proof. In r, d2-plane, the Turing bifurcation curves are

Ln: dn2 = r

(
d1µn − (a1 + a2)

µn(a1 − d1µn)

)
, n ∈ S.

The Hopf bifurcation curve isH0: r = r∗.
(i) If S = ∅, then there is no intersection point between Turing bifurcation curves Ln

and the Hopf bifurcation curve H0 in the first quadrant. This indicates that system (3)
does not undergo Turing–Hopf bifurcation.

(ii) If S 6= ∅, then the Turing bifurcation curveLn∗ and the Hopf bifurcation curveH0

intersect at point (r∗, dn∗
2 ). This point is called the Turing–Hopf bifurcation point. In

addition, when (r, d2) ∈ Q, it is easy to prove that TRn < 0 and DETn > 0 for n ∈ N0.
Then the positive equilibrium point (u∗, v∗) is locally asymptotically stable. Next, let
us verify the transversality conditions. Suppose λ1(r, d2) = α1(r, d2) + iη1(r, d2) with
α1(r∗) = 0, η1(r∗) = ω > 0 when n = 0, and λ2(r, d2) = α2(r, d2) + iη2(r, d2) with
α2(r∗, dn∗

2 ) = 0, η2(r∗, dn∗
2 ) = 0 when n = n∗ > 0, then the transversality conditions

are as follows:

d Re(λ1(r, d2))

dr

∣∣∣∣
r=a1,H0

= −1

2
< 0,

d Re(λ2(r, d2))

dr

∣∣∣∣
r=a1,Ln∗

=
d1µn∗ − (a1 + a2)

TRn∗

< 0.

This completes the proof.

3.2.2 Hopf bifurcation and Turing–Hopf bifurcation with K and d2 as parameters

In this section, the existence conditions of the Hopf bifurcation with K as the parameter
are first analyzed. Denote

K = Kn =
KA

KB
, n ∈ N0,

where

KA = (1 +m)2
[
(1 + r)

(
1 + 2m+m2

)
− 2β + (d1 + d2)(1 +m)2µn

]
and

KB = (1 +m)4r2 + (−3 +m)(1 +m)2rβ − 2(−1 +m)β2

+ (d1 + d2)(1 +m)2
(
2(1 +m)2r + (−3 +m)β

)
µn

+ (d1 + d2)2(1 +m)4µ2
n.
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Obviously, DET0(K0) = −r(a1 + a2) > 0 under hypothesis (A2). Denote Λ′ =
{n ∈ N0 | DETn > 0 andKn > 0}. Then we make the following hypotheses:

(C1) 1 +m−Kβ > 0;
(C2) 2 + 4m + 2m2 + Kβ2 6= β +mβ + β

√
C, where C = −4(K + Km) ×

(−1−m+ β) + (1 +m+Kβ)2.

After analysis, we can get the following theorem.

Theorem 7. Suppose (A2), (C1) and (C2) hold. System (3) undergoes a Hopf bifurcation
at (u∗, v∗) when K = Kn > 0 for n ∈ Λ′. Moreover, the bifurcating periodic solution is
spatially homogeneous when K = K0 and spatially nonhomogeneous when K = Kn for
n ∈ Λ′ and n 6= 0.

Next, the existence conditions of the Turing–Hopf bifurcation with K and d2 as
parameters are analyzed. In this section, we assume (A2) always holds. Denote

dn2 = r

(
d1µn − (a1 + a2)

µn(a1 − d1µn)

)
, S = {n ∈ N | a1 − d1µn > 0}

such that

dn∗
2 = r

(
d1µn∗ − (a1 + a2)

µn∗(a1 − d1µn∗)

)∣∣∣∣
K=K0

= min
n∈S

r

(
d1µn − (a1 + a2)

µn(a1 − d1µn)

)∣∣∣∣
K=K0

.

From Theorem 7 we can know that system (3) will have a Hopf bifurcation at (u∗, v∗)
when K = K0. Therefore, K = K0 when n = n∗. dn2 are the Turing bifurcation lines,
and K0 is the Hopf bifurcation line. When n = n∗, we hope to find the first intersection
of these two types of bifurcation lines in the first quadrant as the Turing–Hopf bifurcation
point. After the above analysis, we can get the following theorem.

Theorem 8. Suppose hypothesis (A2), (C1), and (C2) hold. For system (3), the following
statements are correct:

(i) If S = ∅, system (3) does not undergo Turing–Hopf bifurcation.
(ii) If S 6= ∅, system (3) undergoes Turing–Hopf bifurcation at the point (K, d2) =

(K0, d
n∗
2 ).

The proofs of Theorems 7 and 8 are similar to those of Theorems 5 and 6, respectively,
and will not be repeated here.

4 Normal forms for Turing–Hopf bifurcation with r and d2

as parameters

In this section, we calculate the normal forms of the Turing–Hopf bifurcation for the
reaction–diffusion system (3) at the coexistence equilibrium (u∗, v∗). Firstly, we intro-
duce the parameters σ1 and σ2 by letting r = r∗ + σ1 and d2 = dn∗

2 + σ2, which
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satisfy that the reaction–diffusion system (3) will undergo Turing–Hopf bifurcation at the
positive equilibrium point (u∗, v∗) when σ1 = 0 and σ2 = 0. Then system (3) can be
transformed into

∂u

∂t
= d1∆u+

u

1 +Kv
− u2 − βu2v

u2 +mv2
,

∂v

∂t
= (dn∗

2 + σ2)∆v + (r∗ + σ1)v

(
1− v

u

)
.

(9)

For system (9), (u∗, v∗) is still the positive equilibrium point. Let us make the transfor-
mations ū = u − u∗ and v̄ = v − v∗ to move (u∗, v∗) to the origin. After omitting the
horizontal bar, system (9) becomes

∂u

∂t
= d1∆u+

u+ u∗
1 +K(v + v∗)

− (u+ u∗)
2 − β(u+ u∗)

2(v + v∗)

(u+ u∗)2 +m(v + v∗)2
,

∂v

∂t
= (dn∗

2 + σ2)∆v + (r∗ + σ1)(v + v∗)

(
1− v + v∗

u+ u∗

)
.

(10)

Then according to [7], for system (10), we can get

D(σ) =

(
d1 0
0 dn∗

2 + σ2

)
, L(σ) =

(
r∗ a2

r∗ + σ1 −(r∗ + σ1)

)
,

F (φ, σ) =

(
φ1+u∗

1+K(φ2+v∗) − (φ1 + u∗)
2 − β(φ1+u∗)2(φ2+v∗)

(φ1+u∗)2+m(φ2+v∗)2 − r
∗φ1 − a2φ2

(r∗ + σ1)(φ2 + v∗)(1− φ2+v∗
φ1+u∗

)− (r∗ + σ1)φ1 + (r∗ + σ1)φ2

)
,

where φ = (φ1, φ2)T ∈ X . Then we can obtain

D(0) =

(
d1 0
0 dn∗

2

)
, D1(σ) =

(
0 0
0 2σ2

)
,

L(0) =

(
r∗ a2

r∗ −r∗
)
, L1(σ) =

(
0 0

2σ1 −2σ1

)
,

Q(φ, ψ) =

(
α11φ1ψ1 + α12(φ1ψ2 + ψ1φ2) + α13φ2ψ2

α21φ1ψ1 + α22(φ1ψ2 + ψ1φ2) + α23φ2ψ2

)
,

C(φ, ψ, υ) =


β11φ1ψ1υ1 + β12(φ1ψ1υ2 + φ1ψ2υ1 + φ2ψ1υ1)

+β13(φ1ψ2υ2 + φ2ψ1υ2 + φ2ψ2υ1) + β14φ2ψ2υ2

β21φ1ψ1υ1 + β22(φ1ψ1υ2 + φ1ψ2υ1 + φ2ψ1υ1)
+β23(φ1ψ2υ2 + φ2ψ1υ2 + φ2ψ2υ1) + β24φ2ψ2υ2


with

α11 = −2− 2(−3+m)mβ

(1+m)3u∗
, α12 = − K

(1+Ku∗)2
+

2(−3+m)mβ

(1+m)3u∗
,

α13 =
2K2u∗

(1+Ku∗)3
− 2(−3+m)mβ

(1+m)3u∗
, α21 = −2r∗

u∗
, α22 =

2r∗

u∗
, α23 = −2r∗

u∗
,
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β11 =
24(−1 +m)mβ

(1 +m)4u2
∗

, β12 =
2m(9− 14m+m2)β

(1 +m)4u2
∗

,

β13 =
2K2

(1 +Ku∗)3
− 4m(3− 8m+m2)β

(1 +m)4u2
∗

,

β14 = − 6K3u∗
(1 +Ku∗)4

+
6m(1− 6m+m2)β

(1 +m)4u2
∗

,

β21 =
6r∗

u2
∗
, β22 = −4r∗

u2
∗
, β23 =

2r∗

u2
∗
, β24 = 0,

and φ = (φ1, φ2)T, ψ = (ψ1, ψ2)T, υ = (υ1, υ2)T ∈ X .
The characteristic matrix corresponding to system (10) is

Dn(λ) =

(
λ− r∗ + d1µn −a2

−r∗ λ+ r∗ + dn∗
2 µn

)
, n ∈ N.

According to Theorem 6, λ = ±iω with ω =
√
−r∗(a1 + a2) are eigenvalues of D0(λ),

and λ = 0 is a simple eigenvalue for Dn∗(λ) with other eigenvalues having negative real
parts. Then, by straightforward calculations, we have

φ1 =

(
1

d1µn∗−r
∗

a2

)
, ψ1 =

(
a2r

∗

(d1µn∗−r∗)2+a2r∗

a2(d1µn∗−r
∗)

(d1µn∗−r∗)2+a2r∗

)T

,

φ2 =

(
1

iω−r∗
a2

)
, ψ2 =

(
a2r

∗

(iω−r∗)2+a2r∗

a2(iω−r∗)
(iω−r∗)2+a2r∗

)T

.

Therefore, Φ = (φ1, φ2, φ̄2) and Ψ = (ψ1, ψ2, ψ̄2)T satisfying ΦΨ = I3, where I3 is the
identity matrix. By [7], we can compute the following parameters:

a1(σ) =
1

2
ψ1(L1(σ)φ1 − µn∗D1(σ)φ1), a200 = a011 = b110 = 0,

b2(σ) =
1

2
ψ2

(
L1(σ)φ2 − 0D1(σ)φ2

)
,

a300 =
1

4
ψ1Cφ1φ1φ1

+
1

ω
ψ1 Re[iQφ1φ2

ψ2]Qφ1φ1
+ ψ1Qφ1(h0

200+h2n∗
200 /

√
2),

a111 = ψ1Cφ1φ2φ̄2
+

2

ω
ψ1 Re[iQφ1φ2

ψ2]Qφ2φ̄2
+ ψ1(Qφ1(h0

011+h2n∗
011 /

√
2)

+Qφ2h
n∗
101

+Qφ̄2h
n∗
110

),

b210 =
1

2
ψ2Cφ1φ1φ2

+
1

2iω
ψ2

(
2Qφ1φ1

ψ1Qφ1φ2
+ (−Qφ2φ2

ψ2 +Qφ2φ̄2
ψ̄2)Qφ1φ1

)
+ ψ2(Qφ1h

n∗
110

+Qφ2h0
200

),

b021 =
1

2
ψ2Cφ2φ2φ̄2

+
1

4iω
ψ2

(
2

3
Qφ̄2φ̄2

ψ̄2Qφ2φ2
+ (−2Qφ2φ2

ψ2+4Qφ2φ̄2
ψ̄2)Qφ2φ̄2

)
+ ψ2(Qφ2h0

011
+Qφ̄2h0

020
),
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where

h0
200 = −1

2
L−1(0)Qφ1φ1

+
1

2ωi
(φ2ψ2 − φ̄2ψ̄2)Qφ1φ1

,

h2n∗
200 = − 1

2
√

2
[L(0)− 4µn∗D(0)]−1Qφ1φ1

,

h0
011 = −L−1(0)Qφ2φ̄2

+
1

ωi
(φ2ψ2 − φ̄2ψ̄2)Qφ2φ̄2

,

h0
020 =

1

2
[2iωI − L(0)]−1Qφ2φ2

− 1

2ωi

(
φ2ψ2 +

1

3
φ̄2ψ̄2

)
Qφ2φ2

,

hn∗
110 =

[
iωI −

(
L(0)− diag(−µn∗ ,−dn∗µn∗)

)]−1
Qφ1φ2

− 1

ωi
φ1ψ1Qφ1φ2

,

h0
002 = h0

020, hn∗
101 = hn∗

110, h2n∗
011 = 0.

According to [7], the normal form restricted to the third order on the central manifold of
the reaction–diffusion system (3) at the Turing–Hopf singularity is

ż1 = a1(σ)z1 + a200z
2
1 + a011z2z̄2 + a300z

3
1 + a111z1z2z̄2 + h.o.t.,

ż2 = iωz2 + b2(σ)z2 + b110z1z2 + b210z
2
1z2 + b021z

2
2 z̄2 + h.o.t.,

˙̄z2 = −iωz̄2 + b̄2(σ)z̄2 + b̄110z1z̄2 + b̄210z
2
1 z̄2 + b̄021z2z̄2

2 + h.o.t.

(11)

Through the parameter transformation z1 = r, z2 = ρ cos θ − iρ sin θ, the normal form
equation (11) can be rewritten into real coordinates form (the third-order term is truncated,
and the azimuth angle is removed item θ)

ṙ = a1(σ)r + a300r
3 + a111rρ

2,

ρ̇ = Re
(
b2(σ)

)
ρ+ Re(b210)ρr2 + Re(b021)ρ3.

5 Numerical simulations

5.1 Numerical simulations of Turing–Hopf bifurcation with r and d2

as parameters

In this section, we perform the numerical simulations. Taking m = 0.35, β = 1.28,
d1 = 0.02, K = 0.01, l = 1, we have

∂u

∂t
= 0.02∆u+

u

1 + 0.01v
− u2 − 1.28u2v

u2 + 0.35v2
,

∂v

∂t
= d2∆v + rv

(
1− v

u

)
.

(12)

Through calculation, we get the unique positive equilibrium point (u∗, v∗) ≈ (0.0513,
0.0513). a1 ≈ 0.4052, a2 ≈ −0.4570, then hypothesis (A2) holds. In addition,
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S = {1, 2, 3, 4}, r∗ ≈ 0.4052, n∗ = 2, dn∗
2 ≈ 0.0411. H0: r = r∗ ≈ 0.4052 is

the Hopf bifurcation curve in r, d2-plane.

Ln: dn2 = r

(
d1µn − (a1 + a2)

µn(a1 − d1µn)

)
, n ∈ S,

are the Turing bifurcation curves. Then the normal form restricted on center manifold for
the reaction–diffusion system (12) at Turing–Hopf singularity is

ż1 = (−0.5397σ1 + 5.3245σ2)z1 − 88.1722z3
1 − 56.7982z1z2z̄2 + h.o.t.,

ż2 = 0.1449iz2 + (−0.5000 + 0.1789i)σ1z2 + (50.4645− 1.9071i)z2
1z2

− (22.5514 + 1.6995i)z2
2 z̄2 + h.o.t.,

˙̄z2 = −0.1449iz̄2 + (−0.5000− 0.1789i)σ1z̄2 + (50.4645 + 1.9071i)z2
1 z̄2

− (22.5514− 1.6995i)z2z̄2
2 + h.o.t.

Then we have

ṙ = (−0.5397σ1 + 5.3245σ2)r − 88.1722r3 − 56.7982rρ2,

ρ̇ = −0.5000σ1ρ+ 50.4645ρr2 − 22.5514ρ3.
(13)

Considering ρ > 0, system (13) has equilibria

A0 = (0, 0),

A±1 = (±
√
−0.0061σ1 + 0.0604σ2, 0) for − 0.0061σ1 + 0.0604σ2 > 0,

A2 = (0,
√
−0.0222σ1) for σ1 < 0,

A±3 = (±
√

0.0033σ1 + 0.0247σ2,
√
−0.0147σ1 + 0.0553σ2)

for 0.0033σ1 + 0.0247σ2 > 0 and − 0.0147σ1 + 0.0553σ2 > 0.

By [7], we know: A0 is the coexistence equilibrium; A±1 are spatially inhomogeneous
steady states; A2 is spatially homogeneous periodic solution; A±3 are spatially inhomoge-
neous periodic solutions.

Then the following critical bifurcation curves can be obtained:

H0: σ1 = 0, T : σ2 = 0.1014σ1,

T1: σ2 = −0.1351σ1, σ1 6 0,

T2: σ2 = 0.2654σ1, σ1 > 0.

From Fig. 4 it can be seen that the first intersection of the Turing curves Ln and
the Hopf curve H0 with (r, d2) = (r∗, dn∗

2 ) is chosen as the Turing–Hopf bifurcation
point. Therefore, system (12) undergoes Turing–Hopf bifurcation at the point (r∗, dn∗

2 ) =
(0.4052, 0.0411). Then the parameter plane partition diagram and phase diagram can be
obtained as shown in Fig. 5.
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Figure 4. Turing–Hopf bifurcation point (r∗, dn∗
2 ) in r, d2-plane.

(a) (b)

Figure 5. The bifurcation set (a) and the phase portraits (b) for Turing–Hopf bifurcation of system (12).

Proposition 1. For given m = 0.35, β = 1.28, d1 = 0.02, K = 0.01, l = 1, the
plane of parameters σ1, σ2 is divided into six regions by bifurcation curves H0, T , T1,
T2. For each region, different dynamic phenomenon are generated by system (3). When
(σ1, σ2) ∈ D1, system (3) has a locally asymptotically stable positive equilibrium point
(u∗, v∗) (see Fig. 6). Conversely, when (σ1, σ2) /∈ D1, the positive equilibrium point
(u∗, v∗) becomes unstable. When (σ1, σ2) ∈ D2, system (3) has a pair of stable spatially
inhomogeneous steady states (see Fig. 7). The spatial patterns and bistability are shown
by system (3). When (σ1, σ2) ∈ D3, there are a pair of stable spatially inhomogeneous
periodic solutions and a pair of unstable spatially inhomogeneous steady states (see
Fig. 8). When (σ1, σ2) ∈ D4, there are a pair of stable spatially inhomogeneous periodic
solutions, a pair of unstable spatially inhomogeneous steady states, and an unstable
spatially homogeneous periodic solution (see Figs. 9 and 10). When (σ1, σ2) ∈ D5, there
are a stable spatially homogeneous periodic solution and a pair of unstable spatially
inhomogeneous steady states. There are heteroclinic solutions connecting the unstable
spatially inhomogeneous steady state to stable spatially homogeneous periodic solution
(see Fig. 11). When (σ1, σ2) ∈ D6, system (3) has a stable spatially homogeneous
periodic solution (see Fig. 12).
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Figure 6. When (σ1, σ2) = (1, 0) lies in region D1, the positive constant equilibrium (u∗, v∗) =
(0.0513, 0.0513) is asymptotically stable. The initial value is u(x, 0) = 0.05, v(x, 0) = 0.05.

(a)

(b)

Figure 7. When (σ1, σ2) = (1, 0.2) lies in region D2, the positive constant equilibrium (u∗, v∗) =
(0.0513, 0.0513) is unstable, and there are two stable spatially inhomogeneous steady states like cos(2x).
(a) The initial value is u(x, 0) = 0.051338728 − 0.01 cos(2x), v(x, 0) = 0.051338728 + 0.01 cos(2x);
(b) the initial value is u(x, 0) = 0.051338728 + 0.01 cos(2x), v(x, 0) = 0.051338728− 0.01 cos(2x).
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(a) (b)

(c) (d)

Figure 8. When (σ1, σ2) = (0.1, 0.1) lies in region D3, the positive constant equilibrium (u∗, v∗) =
(0.0513, 0.0513) is unstable, and there are stable spatially inhomogeneous periodic solutions. The initial value
is u(x, 0) = 0.051338728 + 0.05 sin(5x), v(x, 0) = 0.051338728. (a) and (b) are transient behaviours for
u and v, respectively; (c) and (d) are long-term behaviours for u and v, respectively.

(a) (b)

Figure 9. When (σ1, σ2) = (−0.1, 0.2) lies in region D4, the positive constant equilibrium (u∗, v∗) =
(0.0513, 0.0513) is unstable, and there are stable spatially inhomogeneous periodic solutions. The initial value
is u(x, 0) = 0.051338728 + 0.01 sin(5x), v(x, 0) = 0.051338728. (a) and (b) are transient behaviours for
u and v, respectively.
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(a) (b)

Figure 10. When (σ1, σ2) = (−0.1, 0.2) lies in region D4, the positive constant equilibrium (u∗, v∗) =
(0.0513, 0.0513) is unstable, and there are stable spatially inhomogeneous periodic solutions. The initial value
is u(x, 0) = 0.051338728+ 0.01 sin(5x), v(x, 0) = 0.051338728. (a) and (b) are long-term behaviours for
u and v, respectively.

(a) (b)

(c) (d)

Figure 11. When (σ1, σ2) = (−0.1, 0) lies in region D5, the positive constant equilibrium (u∗, v∗) =
(0.0513, 0.0513) is unstable, and there are heteroclinic solutions connecting the unstable spatially
inhomogeneous steady state to stable spatially homogeneous periodic solution. The initial value is u(x, 0) =
0.051338728 − 0.01 cos(2x), v(x, 0) = 0.051338728 + 0.01 cos(2x). (a) and (b) are transient behaviours
for u and v, respectively; (c) and (d) are long-term behaviours for u and v, respectively.
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Figure 12. When (σ1, σ2) = (−0.1,−0.03) lies in region D6, the positive constant equilibrium (u∗, v∗) =
(0.0513, 0.0513) is unstable, and there is a stable spatially homogeneous periodic solution. The initial value is
u(x, 0) = 0.051338728 + 0.01, v(x, 0) = 0.051338728− 0.01.

(a) (b)

Figure 13. The numerical simulations of system (3) withK = 0.1153 and the initial condition at (0.05, 0.05).
(a) component u (Hopf bifurcation); (b) component v (Hopf bifurcation).

5.2 Numerical simulations of Hopf bifurcation with K as the parameter

In this section, we perform the numerical simulations of Hopf bifurcation with K as the
parameter. Taking m = 0.35, β = 1.28, r = 0.41, d1 = 0.02, d2 = 0.0411, we
have K = K0 ≈ 0.1153. Through calculation, we get the unique positive equilibrium
point (u∗, v∗) ≈ (0.0465, 0.0465). a1 = 0.4100, a2 ≈ −0.4618, then hypothesis (A2),
(C1), and (C2) hold. Figure 13 shows the numerical simulations of system (3) with Hopf
bifurcation.

6 Conclusions

In this paper, we have formulated a Leslie–Gower-type predator–prey system with the
fear effect and ratio-dependent Holling III functional response to consider the cost of
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fear on prey demography. The main focus of this study is to investigate the influence of
antipredator behaviour due to fear of predators analytically and numerically. We obtain
many interesting results. Mathematically, we analyze the existence and stability of the
positive equilibria of the model and give conditions for the existence of the Turing insta-
bility, the Hopf bifurcation, and the Turing–Hopf bifurcation by selecting d2, r, and K
as the bifurcating parameters, respectively. In addition, we calculate the normal form of
system (3) and divide the plane of parameters σ1, σ2 into six regions D1–D6. In each
region, we demonstrate that the predator–prey model exhibits complex spatiotemporal
dynamics including spatially homogeneous periodic solutions, spatially inhomogeneous
periodic solutions, and spatially inhomogeneous steady-state solutions. Ecologically, we
show that if the model has a unique positive equilibrium, the fear effect can reduce the
density of predator and prey: as the level of fear K increases, both the predator and prey
density gradually decrease. Moreover, depending on the predator and prey’s different
states in each region, we can give solutions accordingly.

Acknowledgment. The authors wish to express their gratitude to the editors and the
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