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Abstract. Oncolytic virotherapy is a therapy for the treatment of malignant tumours. In some
undesirable cases, the injection of viral particles can lead to stationary oscillations, thus preventing
the full destruction of the tumour mass. We investigate the oscillation thresholds in a model for the
dynamics of a tumour under treatment with an oncolytic virus. To this aim, we employ the minimum
bifurcation roots (MBR) method, which is a novel approach to determine the existence and location
of Hopf bifurcations. The application to oncolytic virotherapy confirms how this approach may be
more manageable than classical methods based on the Routh–Hurwitz criterion. In particular, the
MBR method allows to explicitly identify a range of values in which the oscillation thresholds fall.

Keywords: dynamical system, nonhyperbolic equilibrium, Hopf bifurcation, periodic solution,
tumour.

1 Introduction

Malignant tumours (also termed cancers) are a leading cause of death worldwide, ac-
counting for nearly 10 million deaths in 2020 [34]. One of the most promising therapy
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for tumour treatment is the oncolytic virotherapy, namely the use of replicating viruses
that are genetically modified and destroy tumour cells. However, tumours may respond in
different ways to viral particles. It has been experimentally observed that the interaction
between tumour cells and viral particles can either lead to equilibria of partial/full tumour
eradication or settle on periodic cycles [2, 31]. Oscillatory behaviours are well known in
clinical settings. These fluctuations are always emerging after an initial tumour decline
due to virus infection, but their persistence prevents the full destruction of the tumour
mass (see, e.g., [11]).

Oncolytic virotherapy has been recently investigated from a mathematical point of
view with the aid of different approaches. In particular, oscillatory behaviours as well
as sufficient conditions for tumour eradication have been obtained by means of ordinary
differential equations (ODEs) [2, 9, 10, 31], partial differential equations (PDEs) [21, 32],
agent-based models [8, 28] and hybrid models. For example, Jenner et al. [8] employed
an agent-based model to investigate the sensitivity of the treatment to the timing for
the tumour infection. More recently, Pooladvand et al. [21] assessed the role of viral
infectivity on the tumour evolution by using a system of PDEs for the spatiotemporal
dynamics between tumour and virus.

We found particularly intriguing the works by Jenner et al. [9, 10], where the authors
modeled the interaction between tumour cells and an oncolytic virus by using a minimal
mathematical framework, given by a three-dimensional dynamical system. Due to its
relative simplicity, their model is amenable to both analytical and numerical investigations
from which some nontrivial and, in some cases, counterintuitive findings emerge. Also,
the model includes all the major processes acting in virotherapy so that it turns out to
be sufficient to replicate some experimental results. Specifically, in the paper [10] the
model was tuned on the experimental data from Kim et al. [12]. After that, it was used to
investigate the effects of the treatment on tumours of different virulence and magnitude.
In the paper [9] the authors obtained numerically an extended area of the parameter space,
where stable or unstable oscillations take place from Hopf bifurcations. The oscillation
thresholds are obtained by using continuation and bifurcation software for ODEs.

Inspired by the papers above, one of the main goals of this paper is to analytically
determine the oscillation thresholds for the model by Jenner et al. [9, 10]. We will use
a novel approach for the existence and location of Hopf bifurcations in dynamical systems,
called minimum bifurcation roots (MBR) method, recently introduced by Rionero [22,
24–27]. Therefore, the aim of this contribution is twofold. On the one hand, we revisit
the MBR method in the case of one parameter-depending systems of ODEs. On the other
hand, we provide an application of the MBR method to the model proposed by Jenner et
al. [9, 10].

As a matter of fact, determining the existence and location of Hopf bifurcations in
dynamical systems (and, as a consequence, of the emerging periodic solutions) could be
arduous due to the cumbersome conditions deriving from classical methods, among which
the most commonly used is the Routh–Hurwitz criterion [19]. This criterion requires the
sign of the Hurwitz determinants (see Section 2.3). The search for alternative methods
for determining Hopf bifurcations has attracted much attention in the last decades. A very
well-known criterion was given by Liu in 1994 [17]. It states that in a n-dimensional
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dynamical system a simple Hopf bifurcation occurs at a given point if, and only if, the
(n − 1)th Hurwitz determinant passes through zero, all the other ones being positive.
These classical criteria have been largely used in literature, including contributions in
epidemiology (e.g., macrophages–tuberculosis interaction [33], waterborne diseases [1],
etc.), crop production [20], and economics [5, 18, 27].

The MBR method is a quite general approach to Hopf bifurcations, where, instead
of computing the Hurwitz determinants, the minimum roots of the coefficients of the
characteristic polynomial are derived as functions of the bifurcation parameters. There-
fore, compared to classical methods, the MBR method can greatly reduce the amount of
computations needed. The MBR method was first used to determine Hopf bifurcations in
dynamical systems ruling the thermal convection in fluids [22, 24], and then extended to
general parameters-depending dynamical systems [27]. Subsequent applications include
mathematical models for the FitzHugh–Rinzel neurons [25] and for porous layers with
stratified porosity [26]. To the best of our knowledge, applications in the field of medical
sciences have not yet been given in the literature.

The rest of the paper is organized as follows. In Section 2, we present some prelim-
inary settings and recall definitions and classical results from dynamical system theory
and bifurcation theory. In Section 3, the MBR method is revisited in the general case
of n-dimensional one parameter-depending dynamical systems. Also, we supply stronger
conditions of practical use in the case of three-dimensional and four-dimensional dynam-
ical systems. In Section 4, the MBR method is applied to the model by Jenner et al. [9,10]
to determine the range in which the oscillation thresholds fall in terms of the parameters
of the system. Concluding remarks are given in Section 5.

2 Some preliminaries on bifurcations and oscillations

2.1 Hyperbolic and nonhyperbolic equilibria

Let us consider a system of ODEs depending on a parameter µ ∈ R:

ẋ = f(x, µ), (1)

where x ∈ Rn, f ∈ C1(Rn+1), and the upper dot denotes the time derivative.
Let x0 be an equilibrium of system (1) for µ belonging to an interval I ⊆ R, namely

f(x0, µ) = 0 for µ ∈ I. We denote the Jacobian matrix of system (1) evaluated at the
equilibrium by

J
(
x0, µ

)
= Dxf

(
x0, µ

)
,

with µ ∈ I. The eigenvalues of J(x0, µ) are the roots of the characteristic polynomial

p(λ, µ) = λn + a1(µ)λn−1 + · · ·+ an−1(µ)λ+ an(µ), (2)

having µ-dependent real coefficients ah ∈ C1(I), h = 1, . . . , n.
The well-known Lyapunov’s indirect method [19] states that, if at a given µ all the

eigenvalues of J(x0, µ) (namely all the roots of p(λ, µ)) have negative real part, then the
equilibrium x0 is locally asymptotically stable. Otherwise, if at least one eigenvalue has
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positive real part, then x0 is unstable. But no conclusions can be drawn if one or more
eigenvalues have zero real part, while the other ones have negative real part.

It is straightforward to verify that a necessary condition for all the roots of p(λ, µ) to
have negative real part is that (see, e.g., [23, Property 1])

ah(µ) > 0 ∀h ∈ {1, . . . , n}. (3)

Nonetheless, since the parameter µ varies in I, it may happen that the equilibrium passes
from being locally asymptotically stable to unstable (or vice versa) and/or the asymptotic
behaviour of the system solutions changes. Namely, the flow of system (1) may be not
qualitatively the same by varying µ ∈ I.

Specifically, if at a given µ the equilibrium x0 is hyperbolic (i.e., none of the eigen-
values of J(x0, µ) have zero real part), then varying µ slightly does not change the nature
of the stability of the equilibrium (see, e.g., [30, Chaps. 12 and 20]). However, when x0 is
nonhyperbolic, i.e., when J(x0, µ) has some eigenvalues with zero real part, by slightly
varying µ radically new dynamical behaviour can occur. For example, equilibria can be
created or destroyed and time-dependent behaviour such as periodic, quasiperiodic, or
even chaotic dynamics can arise.

2.2 Steady, Hopf and Hopf-steady bifurcations

An equilibrium x0 of system (1) is said to undergo a bifurcation at µ=µc, with µc ∈I,
if the flow of system (1) for µ near µc is not qualitatively the same as the flow at µ=µc
(more formal definitions of bifurcation can be found in classical books [13, 16, 30]).
A bifurcation occurs when the real part of at least one eigenvalue of J(x0, µ) changes
sign at µ = µc, implying that x0 “loses its hyperbolicity” at µ = µc. Disregarding the
case of a multiplicity change of eigenvalues, at µ = µc either one of the following holds:

(i) a real eigenvalue passes through zero, and in such a case the corresponding
bifurcation is called steady bifurcation;

(ii) the real part of a pair of complex conjugate eigenvalues passes through zero, and
in such a case the corresponding bifurcation is called Hopf bifurcation;

(iii) the combination of (i) and (ii), and in such a case the corresponding bifurcation
is called Hopf–steady bifurcation (or zero–Hopf bifurcation [16]).

In each of the cases mentioned above, all the other eigenvalues of J(x0, µc) have nonzero
real part. Note that for a steady bifurcation to occur at µ = µc, it is necessary that the
constant term of the characteristic polynomial p(λ, µ) vanishes, namely an(µc) = 0.

We underline that the condition that x0 is nonhyperbolic at µ = µc is a necessary but
not sufficient condition for a bifurcation to occur (see, e.g., [30, p. 361] for a counterex-
ample).

2.3 The Routh–Hurwitz criterion

The most celebrated criterion for determining the occurrence of a Hopf bifurcation with-
out the explicit computation of all the eigenvalues of J(x0, µ) is the well-known Routh–
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Hurwitz criterion. The basic idea is to arrange the coefficients of the characteristic poly-
nomial p(λ, µ) of J(x0, µ) into a n × n square matrix, the so-called Hurwitz matrix, H ,
such that all the roots of p(λ, µ) have negative real part if, and only if,

∆h > 0 ∀h ∈ {1, . . . , n}, (4)

where ∆h are the Hurwitz determinants. Conversely, if one of the inequalities in (4) is
reversed, then some of the roots of p(λ, µ) have positive real part, implying the instability
of x0. Formally, the Routh–Hurwitz criterion can be stated as follows (see [19, Thm. 4.6]).

Routh–Hurwitz criterion. Let us consider a polynomial

p(λ) = λn +

n∑
h=1

ahλ
n−h,

with ah ∈ R, h = 1, . . . , n, and letH = (Hij)
n
i,j=1 be the corresponding Hurwitz matrix,

namely

Hij =


1 if 2j − i = 0,

a2j−i if 2j − i ∈ {1, . . . , n},
0 if 2j − i /∈ {0, . . . , n}.

Then all the roots of p(λ) have negative real part if, and only if, the determinants of the
principal submatrices of H (Hurwitz determinants) are all positive.

3 Oscillation thresholds via the MBR method

In spite of its undisputed strength, oftentimes the stability conditions deriving from the
Routh–Hurwitz criterion can be cumbersome. In this section, we revisit an approach re-
cently proposed by Rionero [27], which relies on the computations of the minimum roots
of the coefficients of the characteristic polynomial p(λ, µ). In particular, in the general
n-dimensional case the MBR method provides sufficient conditions for a hyperbolic and
locally asymptotically stable equilibrium to lose its hyperbolicity at some point where
a Hopf bifurcation is possible, while in the case n = 3 and n = 4 we further prove that
the Hopf bifurcation occurs and the equilibrium destabilizes.

We anticipate that, for the MBR method to be applied, it is necessary that condition (3)
on the coefficients of the characteristic polynomial of J(x0, µ) does not hold for every
µ ∈ I. Otherwise, if all the coefficients ah(µ) remain positive by varying µ ∈ I, then
classical methods are needed to verify the occurrence of Hopf bifurcations.

3.1 The general formulation of the MBR method

For mathematical convenience, in the following we assume that

I = [µ0,+∞),

with µ0 ∈ R. It is straightforward to verify that analogous results hold in the case of
different kinds of interval I [27] (see also Remark 1).
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Let us start by considering the coefficients of the polynomial p(λ, µ), as given in (2),
namely ah ∈ C1(I), h = 1, . . . , n, and introduce the definition of minimum bifurcation
root of ah(µ), h = 1, . . . , n.

We denote by
Rh =

{
µ > µ0: ah(µ) = 0

}
(5)

the set of roots of ah(µ) in the interval I.
If Rh 6= ∅, namely if there exists µ > µ0 such that ah(µ) = 0, then we define the

minimum bifurcation root of ah(µ) as the lowest of its roots: µm,h = minRh. Otherwise,
if Rh = ∅, namely if ah(µ) 6= 0 for all µ > µ0, then we define the minimum bifurcation
root of ah(µ) as µm,h = +∞.

In sum, for each h ∈ {1, . . . , n}, the minimum bifurcation root of ah(µ) is

µm,h =

{
minRh if Rh 6= ∅,
+∞ if Rh = ∅,

(6)

with Rh given in (5).
On the basis of the results given in the work [27], the following criterion is established.

The basic idea is that, if at µ = µ0 the equilibrium x0 is hyperbolic and locally asymp-
totically stable and at least one between the first n− 1 coefficients of p(λ, µ) vanishes in
I before the nth coefficient does, then the equilibrium has lost its hyperbolicity at some
point, and a Hopf bifurcation may have occurred.

Theorem 1. Let x0 be an equilibrium of system (1) for µ > µ0, and let p(λ, µ), as given
in (2), be the characteristic polynomial of J(x0, µ) = Dxf(x0, µ). Let us assume that at
µ = µ0 the equilibrium x0 is hyperbolic and locally asymptotically stable.

If there exists h̄ ∈ {1, . . . , n − 1} such that µm,h̄, the minimum bifurcation root of
ah̄(µ) as defined in (6), is

µm,h̄ 6 µm,h ∀h 6= n, and µm,h̄ < µm,n, (7)

then at µ = µH , with µ0 < µH 6 µm,h̄, the equilibrium x0 is nonhyperbolic, and a Hopf
bifurcation can occur.

Proof. Let us denote by

λh(µ) = αh(µ) + iβh(µ), h = 1, . . . , n,

the eigenvalues of J(x0, µ) that are the roots of p(λ, µ).
At µ = µ0, since x0 is hyperbolic and locally asymptotically stable, from the Lya-

punov’s indirect method one yields

αh(µ0) < 0 ∀h ∈ {1, . . . , n},

implying that the coefficients of p(λ, µ0) are all positive (see (3)):

ah(µ0) > 0 ∀h ∈ {1, . . . , n}.
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From (7) and the definition of minimum bifurcation root (6) it follows that µm,h̄, with h̄ ∈
{1, . . . , n− 1}, is the minimum value of µ > µ0 such that ah̄(µ) = 0, and ah(µm,h̄) > 0
for all h 6= n, an(µm,h̄) > 0. In turn, by using the Descartes’ rule of signs, this implies
that at µ = µm,h̄ the polynomial p(λ, µm,h̄) admits at least a pair of complex conjugate
roots with nonnegative real part. Namely, there are two indexes h± ∈ {1, . . . , n} such
that

αh±(µm,h̄) > 0, βh−(µm,h̄) = −βh+(µm,h̄) 6= 0.

Since αh±(µm,h̄) > 0 > αh±(µ0), there exists µH , with µ0 < µH 6 µm,h̄, such that
αh±(µH) = 0 and βh−(µH) = −βh+(µH). Furthermore, βh±(µH) 6= 0 because the
polynomial p(λ, µ) has a zero root if, and only if, an(µ) = 0 and µH < µm,n (see (7)).

In conclusion, we have proved that the equilibrium x0 is nonhyperbolic at µ = µH .
More precisely, J(x0, µH) admits at least a pair of pure imaginary eigenvalues. The assert
follows.

Note that in the work [27] the results are given in terms of the reciprocal of the
minimum bifurcation roots, there called instability coefficients power.

As anticipated above, if condition (3) holds for every µ ∈ I, then the minimum
bifurcation roots of ah(µ) are µm,h = +∞ for all h ∈ {1, . . . , n}, and Theorem 1 does
not apply because the inequality µm,h̄ < µm,n in (7) cannot be satisfied.

3.2 Further results in the specific case n = 3 and n = 4

In the case of three-dimensional and four-dimensional dynamical systems, we also prove
that, if the assumptions of Theorem 1 are fulfilled, then the fact that one between the
first n − 1 coefficients of p(λ, µ) vanishes in I before all the other ones do, not only
indicates the lost of hyperbolicity of the equilibrium x0, but also ensures that it has been
destabilized via a Hopf bifurcation. Note that this result can be also obtained by applying
the criterion by Liu [17], which provides conditions for a simple Hopf bifurcation in
terms of the Hurwitz determinants of p(λ, µ). At the increasing of µ from µ = µ0, the
coefficient first becoming zero provides for the upper bound to the possible locations of
the bifurcation.

Theorem 2. Let us consider the assumptions of Theorem 1. If n = 3 or n = 4 and

µm,h̄ < µm,h ∀h 6= h̄, (8)

then at µ = µH , with
µ0 < µH < µm,h̄, (9)

the equilibrium x0 destabilizes via a Hopf bifurcation.

Proof. Let us resume the proof of Theorem 1 and make use of the Routh–Hurwitz crite-
rion (see Section 2.3). We distinguish between the cases:

• n = 3. Then the Hurwitz determinants are

∆1(µ) = a1(µ), ∆2(µ) = a1(µ)a2(µ)− a3(µ), ∆3(µ) = a3(µ)∆2(µ). (10)
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At µ = µ0, all the roots of p(λ, µ0) have negative real part, hence ∆h(µ0) > 0 for all
h ∈ {1, 2, 3}.

One can easily verify that for p(λ, µ) to admit a pair of pure imaginary roots, it is
necessary that ∆2(µ) = 0. Indeed, let us consider the quantities α(µ), β(µ) ∈ R, then

p(λ, µ) =
(
λ− α(µ)

)(
λ2 + β2(µ)

)
⇐⇒ p(λ, µ) = λ3 − α(µ)λ2 + β2(µ)λ− α(µ)β2(µ),

implying that ∆2(µ) = a1(µ)a2(µ)− a3(µ) = 0.
From (8) and the definition of minimum bifurcation root (6) it follows that at µ =

µm,h̄, with h̄ ∈ {1, 2},
∆2(µm,h̄) = −a3(µm,h̄) < 0,

and p(λ, µm,h̄) admits a real negative root and a pair of complex conjugate roots with
positive real part. This implies that there exists µH , with µ0 < µH < µm,h̄, such that at
µ = µH the real part of a pair of complex conjugate roots passes through zero, the third
root being real and negative.

• n = 4. Then the Hurwitz determinants are

∆1(µ) = a1(µ), ∆2(µ) = a1(µ)a2(µ)− a3(µ),

∆3(µ) = a3(µ)∆2(µ)− a2
1(µ)a4(µ), ∆4(µ) = a4(µ)∆3(µ).

At µ = µ0, all the roots of p(λ, µ0) have negative real part, hence ∆h(µ0) > 0 for all
h ∈ {1, . . . , 4}.

One can easily verify that for p(λ, µ) to admit a pair of pure imaginary roots, it is
necessary that ∆3(µ) = 0. Indeed, if the other two roots are real, then one yields

p(λ, µ) =
(
λ− α(µ)

)(
λ− β(µ)

)(
λ2 + γ2(µ)

)
⇐⇒ p(λ, µ) = λ4 −

(
α(µ) + β(µ)

)
λ3 +

(
α(µ)β(µ) + γ2(µ)

)
λ2

−
(
α(µ) + β(µ)

)
γ2(µ)λ+ α(µ)β(µ)γ2(µ),

with α(µ), β(µ), γ(µ) ∈ R. Otherwise, if the other two roots are complex and conjugate,
then one yields

p(λ, µ) =
(
(λ− α(µ))2 + β2(µ)

)(
λ2 + γ2(µ)

)
(11)

⇐⇒ p(λ, µ) = λ4 − 2α(µ)λ3 +
(
α2(µ) + β2(µ) + γ2(µ)

)
λ2

− 2α(µ)γ2(µ)λ+
(
α2(µ) + β2(µ)

)
γ2(µ),

with α(µ), β(µ), γ(µ) ∈ R. In both cases,

∆3(µ) = a1(µ)a2(µ)a3(µ)− a2
3(µ)− a2

1(µ)a4(µ) = 0.

From (8) and the definition of minimum bifurcation root (6) it follows that at µ =
µm,h̄, with h̄ ∈ {1, 2, 3},

∆3(µm,h̄) < 0,

Nonlinear Anal. Model. Control, 27(5):948–963, 2022
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and p(λ, µm,h̄) admits at least a pair of complex conjugate roots with positive real part.
This implies that there exists µH , with µ0 < µH < µm,h̄, such that at µ = µH the real
part of a pair of complex conjugate roots passes through zero, all the other ones having
negative real part. Indeed, if at µ = µH the real part of two pairs of complex conjugate
roots passed through zero, then it should be α(µH) = 0 in (11), namely a1(µH) =
a3(µH) = 0, which contradicts the inequality µH < µm,h̄.

The assert follows.

Remark 1. If we considered the interval I = (−∞, µ0], with µ0 ∈ R, and x0 hyperbolic
and locally asymptotically stable at µ = µ0, then we would introduce the definition of
maximum bifurcation root of ah(µ), h = 1, . . . , n, as

µM,h =

{
maxRh if Rh 6= ∅,
−∞ if Rh = ∅,

with Rh given by Rh = {µ 6 µ0: ah(µ) = 0}. In such a case, the analogues of
Theorems 1 and 2 are simply obtained by substituting µm,h with µM,h and reversing
the sign of all the inequalities in the statements.

4 Oscillations in oncolytic virotherapy

4.1 The model and its equilibria

Let us consider the three-dimensional dynamical system proposed by Jenner et al. [9, 10]
that captures the in vivo dynamics of a tumour under treatment with an oncolytic virus.
As stressed in Section 1, this model is particularly relevant because it was calibrated on
experimental results and unveiled some drawbacks in the existing strategies adopted in
the oncolytic virotherapy [10].

The nondimensional version of the model in the papers [9, 10] is given by

U̇ = m ln

(
K

U

)
U − UV

U + I
, İ =

UV

U + I
− ξI, V̇ = −γV + ξI, (12)

where all the parameters are positive constants, U is the density of uninfected tumour
cells, I is the density of virus-infected tumour cells, V represents the density of virus
particles at the tumour site, and the term U + I corresponds to the total tumour cell popu-
lation. The model is the result of a nondimensionalisation process so that the parameters
m, ξ, γ are all scaled by the infectivity rate, and they represent the tumour growth rate, the
tumour cell death rate and the viral decay rate, respectively. The parameter K represents
the carrying capacity of the tumour.

In (12), the uninfected tumour cells U grow according to a Gompertz function law
to model the rapid growth at smaller time scales. This initial growth is what makes the
Gompertz function a good approximation for tumours, which are known to grow rapidly
early on.
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The solutions of the system are imposed to be nonnegative in order to ensure the
mathematical and biological well-posedness of the model. For more details about the
modelling assumptions, see [9].

One can easily verify that model (12) admits three equilibria:

(i) E0 = (0, 0, 0), that corresponds to the complete eradication of the tumour;
(ii) EK = (K, 0, 0), where uninfected tumour cells equal the carrying capacity,

indicating the ineffectiveness of the treatment;
(iii) the internal equilibrium

Ẽ =

(
Ũ ,

1− γ
γ

Ũ ,
ξ(1− γ)

γ2
Ũ

)
, with Ũ = K exp

ξ(γ − 1)

mγ
,

that exists if 0 < γ 6 1, and represents the case of incomplete eradication,
characterized by a quiescent tumour despite the nonnull viral load.

We apply Theorem 2 in order to prove that an equilibrium of model (12) can switch from
being locally asymptotically stable to unstable (or vice versa) via a Hopf bifurcation.
Of course, the equilibrium of interest for our purposes is that internal to the positive
orthant, namely Ẽ. In the paper [9] the authors found through the use of continuation and
bifurcation software an extended area of the parameter space where Ẽ can change stability
via (supercritical or subcritical) Hopf bifurcations. However, they did not analytically
characterize the oscillation thresholds.

Remark 2.
(i) The stability analysis of the equilibria E0 and EK can be found in the paper [9].

(ii) Note that Ẽ → E0 if γ → 0, and Ẽ = EK if γ = 1. Hence, it is not restrictive
to limit our analysis to the case 0 < γ < 1.

(iii) The Jacobian of system (12) evaluated at the equilibrium E0 of complete erad-
ication is singular due to the presence of logarithmic and rational terms. In
such a case, an analytical treatment of the Jacobian is not possible; Jenner et
al. [9] used instead a different approach based on numerical integration and
computation of eigenvalues under specific assumptions on U , I and V .

4.2 Application of the MBR method

We choose ξ, the death rate of the tumour cells, as bifurcation parameter and assume that
the other parameters are fixed. Hence, ξ plays here the role of the parameter µ in the
previous sections.

From simple algebra one obtains the Jacobian matrix of system (12) evaluated at the
equilibrium Ẽ:

J(Ẽ, ξ) =


ξ(1−γ)
γ −m− ξ(1−γ)2

γ ξ(1− γ) −γ
ξ(1−γ)2

γ ξ(γ − 2) γ

0 ξ −γ

 ,
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whose characteristic equation is

p(λ, ξ) = λ3 + a1(ξ)λ2 + a2(ξ)λ+ a3(ξ), (13)

with

a1(ξ) = − tr
(
J(Ẽ, ξ)

)
= ξ +m+ γ > 0,

a2(ξ) =
1

2

[
tr2
(
J(Ẽ, ξ)

)
− tr

(
J(Ẽ, ξ)2

)]
= −1− γ

γ
ξ2 +m(2− γ)ξ +mγ,

a3(ξ) = −det
(
J(Ẽ, ξ)

)
= mγ(1− γ)ξ > 0.

Let us start to take ξ0 such that Ẽ is hyperbolic and locally asymptotically stable at ξ = ξ0.
We assume that ξ0 is close to zero: 0 < ξ0 � 1. Then one yields a1(ξ0) > 0,

a3(ξ0) > 0, and

∆2(ξ0) = a1(ξ0)a2(ξ0)− a3(ξ0) ' m
[
(m(2− γ) + 2γ)ξ0 + (m+ γ)γ

]
> 0,

where we neglected the effects of the remaining higher-order terms. From the Routh–
Hurwitz criterion in the case n = 3 it follows that all the Hurwitz determinants are positive
(see (10)), namely all the roots of p(λ, ξ0) (that are the eigenvalues of J(Ẽ, ξ0)) have
negative real part. Hence, Ẽ is hyperbolic and locally asymptotically stable at ξ = ξ0.

Let us now compute the minimum bifurcation roots ξm,h of the coefficients ah(ξ),
h = 1, 2, 3, in the interval I = [ξ0,+∞) (see the definition (6)). One immediately gets
ξm,1 = ξm,3 = +∞, while ξm,2 is the unique positive root of a2(ξ), namely

ξm,2 =
mγ(2− γ) + γ

√
m2(2− γ)2 + 4m(1− γ)

2(1− γ)
.

Since ξm,2 < ξm,h for all h 6= 2, Theorem 2 asserts that at ξ = ξH , with ξ0 < ξH < ξm,2,
the equilibrium Ẽ destabilizes via a Hopf bifurcation.

Hence, the application of Theorem 2 has allowed us to complement the numerical
investigations performed by Jenner et al. [9], by analytically determining the existence
and location of Hopf bifurcations for the equilibrium Ẽ.

Remark 3. A classical method for determining the occurrence of Hopf bifurcations
starting from the characteristic equation (13) consists in searching between the roots of
the Hurwitz determinant ∆2(ξ) = a1(ξ)a2(ξ) − a3(ξ). Specifically, a Hopf bifurcation
value ξH is a positive real root of

∆2(ξ) =
d0ξ

3 + d1ξ
2 + d2ξ + d3

γ
, (14)

where
d0 = −(1− γ) < 0,

d1 = mγ(2− γ)− (m+ γ)(1− γ),

d2 = mγ
(
m(2− γ) + 2γ

)
> 0,

d3 = m(m+ γ)γ2 > 0,
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such that the test for nonzero speed is fulfilled [7]:

d∆2(ξ)

dξ

∣∣∣∣
ξ=ξH

6= 0. (15)

In such a case, from the Descartes’ rule of signs it follows that the cubic function ∆2(ξ)
in (14) has a unique positive real root. Also, condition (15) is satisfied since ∆2(0) > 0
and ∆2(ξ) → −∞ when ξ → +∞. Then at ξ = ξH a pair of complex conjugate eigen-
values of J(Ẽ, ξ) crosses the imaginary axis (the third one being real and negative), so
that Ẽ passes from being locally asymptotically stable to unstable via a Hopf bifurcation.

The procedure presented in Remark 3 involves the investigation of a cubic function,
and the bifurcation value ξH must be obtained as a solution of a cubic equation (for
the algebraic expression use, e.g., the solution formula for cubic equations given in the
book [15]). In such a way, the oscillation thresholds are fully characterized and can be
also written in terms of the other parameters of the system. Conversely, the MBR method
requires the solution of a quadratic equation (that is, the roots of the coefficient a2(ξ))
and provides a range of values (ξ0, ξm,2) in which ξH falls.

4.3 The impact on the oscillation thresholds of the features of tumour and virus

In Fig. 1A, we display a contour plot of the value of Hopf bifurcations ξH in the plane
(m, γ) ∈ (0, 0.5]2. It turns out that the oscillation threshold increases as the tumour
growth rate and/or the viral decay rate increases. In Fig. 1B, we set the tumour growth rate
to m = 0.1 and display the values of both ξH (solid line) and the minimum bifurcation
root ξm,2 (dashed line) as functions of the viral decay rate, γ. The white (resp. grey) colour
denotes the region where Ẽ is locally asymptotically stable (resp. unstable). We restrict
the parameter space to the interval (0, 0.5] just to make the variations of the bifurcation
values and of the distance between ξH and ξm,2 more appreciable.

For example, by assuming that m = 0.1 and γ = 0.1, Jenner et al. [9] numerically
found that the value of the Hopf bifurcation is approximately equal to ξH = 0.043.
One can easily verify that in such a case we have ξm,2 ' 0.046, and inequality (9) of
Theorem 2, which reads ξH < ξm,2, is satisfied (see Fig. 1B, vertical and horizontal
lines). From Fig. 1B one can also notice that ξm,2 is in any case very close to ξH : the
maximum distance ξm,2 − ξH is 0.018 when γ = 0.5.

A representative scenario in which Ẽ is unstable and system (12) converges towards
a periodic solution is shown in Fig. 2: it is obtained from Fig. 1B by setting γ = 0.1 and
ξ = 0.06 > ξH . One observes that, asymptotically, the uninfected cells, U , are the first to
reach the peak with a subsequent peak in the infected cells, I , and then in the viral load,
V (Fig. 2A, black, blue and red lines, respectively).

Note that in the paper [9] several numerical simulations show that the Hopf bifur-
cations can be either supercritical (onset of stable oscillations) or subcritical (onset of
unstable oscillations) depending on the model parameters. In particular, the bifurcations
are likely to be supercritical (resp. subcritical) for small (resp. high) values of both the
tumour growth rate, m, and the viral decay rate, γ.
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Figure 1. Bifurcation analysis of the equilibrium Ẽ of model (12). Panel A: Contour plot of the value of
Hopf bifurcation, ξH , versus the tumour growth rate, m, and the viral decay rate, γ. Panel B: Hopf bifurcation
value, ξH (solid line), and minimum bifurcation root of a2(ξ), ξm,2 (dashed line), as functions of the viral
decay rate, γ, by assumingm = 0.1. The intersection between vertical and horizontal lines indicates the values
corresponding to γ = 0.1. Region colour is white (resp. grey) where Ẽ is locally asymptotically stable (LAS)
(resp. unstable).

0 200 400 600 800 1000

0

25

50

75

100

125

0

125

15

100

30

80
75

45

60
50

60

40
25 20

0 0

Figure 2. Numerical solutions of model (12) in case of stable stationary oscillations. Panel A: Temporal
dynamics of uninfected tumour cells, U (black line), infected tumour cells, I (blue line), and viral load, V
(red line). Panel B: Phase portrait in the space (U, I, V ). Parameter values: K = 100, m = 0.1, ξ = 0.06,
γ = 0.1. Initial conditions: U(0) = 80, I(0) = 100, V (0) = 10.

5 Concluding remarks

Our findings can be summarized in the following key points.

• In the general case of one parameter-depending dynamical systems, we provided in
Theorem 1 sufficient conditions for a hyperbolic and locally asymptotically stable
equilibrium to lose its hyperbolicity at some point where a Hopf bifurcation is
possible.
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• In the particular case of three-dimensional and four-dimensional dynamical sys-
tems, we further proved in Theorem 2 that the Hopf bifurcation indeed occurs and
the equilibrium destabilizes.

• The assumptions of Theorems 1 and 2 may be more manageable and easier to verify
in comparison with classical stability conditions, such as those provided by the
Routh–Hurwitz criterion.

• For the oncolytic virotherapy model by Jenner et al. [9,10], the MBR method allows
to find a range in which the critical value for the occurrence of the Hopf bifurcation
falls. Such a range was determined in terms of the parameters of the dynamical
system. Locating the oscillation thresholds can be relevant to further investigate the
possibility that oncolitic viruses prevent the full destruction of the tumour mass.

We acknowledge that a limitation of the MBR method is the lack of general applicability.
Indeed, for the MBR method to be applied, it is necessary that the coefficients of the
characteristic polynomial of the Jacobian matrix of the system evaluated at the equilibrium
are not always positive when the bifurcation parameter changes. Of course, there are
many dynamical systems for which such coefficients are all positive for every value
of the bifurcation parameter, but Hopf bifurcations occur. See, for instance, the three-
dimensional epidemic models proposed by d’Onofrio et al. [3, 4].

This limitation stimulates further efforts to find more general sufficient conditions for
a Hopf bifurcation to occur. Another future perspective of our research is to enlarge the
range of applications of the MBR method, by focusing on those systems where internally
driven oscillations play a key role (e.g., the predator–prey population cycles in ecology
[6, 14], or the temporal series of some infectious diseases in epidemiology [29]).
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