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Abstract. In this paper, we consider the convolution closure problem for the class of strong
subexponential distributions, denoted as S ∗. First, we show that, if F,G ∈ L , then inclusions
of F ∗G, FG, and pF +(1−p)G for all (some) p ∈ (0, 1) into the class S ∗ are equivalent. Then,
using examples constructed by Klüppelberg and Villasenor [The full solution of the convolution
closure problem for convolution-equivalent distributions, J. Math. Anal. Appl., 41:79–92, 1991],
we show that S ∗ is not closed under convolution.

Keywords: class of strong subexponential distributions, class of subexponential distributions,
convolution closure.

1 Introduction and the main result

Throughout the paper, we will say that a distribution F is on R := (−∞,∞) if F (x) :=
1 − F (x) > 0 for all x; we will say that a distribution F is on R+ if its support is
contained in R+ := [0,∞) and F (x) > 0 for all x. For two positive functions a(x)
and b(x), we write a(x) ∼ b(x) if limx→∞ a(x)/b(x) = 1, we write a(x) � b(x) if
0 < lim infx→∞ a(x)/b(x) 6 lim supx→∞ a(x)/b(x) <∞. For any two distribution F
and G, by F ∗G we denote their convolution:

F ∗G(x) =
∞∫
−∞

F (x− y) dG(y), x ∈ R.
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We say that distribution F on R belongs to the class of long-tailed distributions,
denoted L , if its right tail F = 1− F satisfies

lim
x→∞

F (x− y)
F (x)

= 1

for any y > 0. We say that distribution F on R belongs to the subexponential class of
distributions, denoted S , if F ∈ L and

lim
x→∞

F ∗ F (x)
F (x)

= 2. (1)

The class of distributions, characterized by (1), was introduced by Chistyakov [2] and
later, in more general setup, by Athreya and Ney [1] and Chover et al. [3, 4].

A distribution F on R is said to belong to the strong subexponential class of distri-
butions, introduced by Klüppelberg [9] and denoted S ∗, if µF =

∫∞
0
F (y) dy ∈ (0,∞)

and

lim
x→∞

1

F (x)

x∫
0

F (x− y)F (y) dy = 2µF . (2)

The properties of class S ∗ and related classes were studied in [6, Sect. 3.4], [8–14],
[18–20], and other papers. In particular, it is well known that, under µF < ∞, it holds
that S ∗ ⊂ S ⊂ L .

In the following theorem, we present equivalent conditions for the convolution F ∗G
to be in the class S ∗ under the initial assumption F,G ∈ L .

Theorem 1. Suppose that F and G are two distributions on R. Let F,G ∈ L . Then the
following statements are equivalent:

(i) F ∗G ∈ S ∗,
(ii) FG ∈ S ∗,

(iii) pF + (1− p)G ∈ S ∗ for some 0 < p < 1,
(iv) pF + (1− p)G ∈ S ∗ for all 0 < p < 1.

Moreover, any of these equivalent statements implies the relations

F ∗G(x) ∼ F (x) +G(x), (3)
x∫

0

F (x− y)G(y) dy ∼ µGF (x) + µFG(x), (4)

where µF :=
∫∞
0
F (y) dy, µG :=

∫∞
0
G(y) dy.

In the corollary below the assumption F,G ∈ L of Theorem 1 is replaced by a stricter
assumption F,G ∈ S ∗. In this case, the asymptotic relation (4) is equivalent to any of
statements (i)–(iv) of Theorem 1 (see also [7, Thm. 3], which refers to [10]).
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Corollary 1. Suppose that F and G are two distributions on R. Let F,G ∈ S ∗. Then
any of statements (i)–(iv) of Theorem 1 is equivalent to (4).

Proof. We need only to prove that (4) implies (iii) of Theorem 1. Obviously,

I :=

x∫
0

1

2
(F +G)(x− y)1

2
(F +G)(y) dy

=
1

4

x∫
0

F (x− y)F (y) dy + 1

2

x∫
0

F (x− y)G(y) dy + 1

4

x∫
0

G(x− y)G(y) dy

=: I1 + I2 + I3.

Since F,G ∈ S ∗, by relation (4), we get

lim sup
x→∞

I

(µF + µG)(F (x) +G(x))

6 lim sup
x→∞

max

{
I1

µFF (x)
,

I2

µGF (x) + µFG(x)
,

I3

µGG(x)

}
6

1

2
.

Similarly, we obtain that

lim inf
x→∞

I

(µF + µG)(F (x) +G(x))
>

1

2
.

The derived estimates imply that
x∫

0

1

2
(F +G)(x− y)1

2
(F +G)(y) dy

∼ (µF + µG)
1

2
(F +G)(x) = 2µ(F+G)/2(F +G)/2(x),

and, consequently, (F +G)/2 ∈ S ∗ by definition.

We use Theorem 1 for proving main Theorem 2 on the convolution non-closure of
class S ∗. Indeed, by Theorem 1, for distributions F,G ∈ S ∗, their convolution F ∗G is
not in S ∗ if and only if pF +(1− p)G is not in S ∗ for some p ∈ (0, 1). Hence, in order
to prove Theorem 2, we construct two distributions F and G such that F/2+G/2 /∈ S ∗

or, equivalently, F ∗G /∈ S ∗.

Theorem 2. Distribution class S ∗ is not closed under convolution, i.e. there exist distri-
butions F,G ∈ S ∗ such that F ∗G /∈ S ∗.

Remark 1. The first counterexample for the closure of the subexponential class with
respect to convolution was provided by Leslie [16]. Another counterexample for the
closure of the convolution equivalent class of distributions with respect to convolution
was given a few years later by Klüppelberg and Villasenor [10].
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2 Proof of Theorem 1

2.1 Auxiliary lemmas

Before proving our main result, we state two auxiliary lemmas.

Lemma 1. Suppose that F and G are two distributions on R.

(i) If F ∈ S ∗, G ∈ L , and G(x) � F (x), then G ∈ S ∗.
(ii) If F ∈ L , G ∈ L , then F ∗G ∈ L .

(iii) If F ∈ L , G ∈ L , and F ∗G ∈ S , then F ∗G(x) ∼ F (x) +G(x).

Proof. For the proof of part (i), see [9, Thm. 2.1(b)] (see also [6, Thm. 3.25]). For part (ii),
see [5, Thm. 3(b)] (see also [6, Cor. 2.42] or [17, Lemma 4.2]). Part (iii) can be found in
Theorem 1.1 of Leipus and Šiaulys [15].

Lemma 2. Suppose F is distribution on R with finite µF . The following statements are
equivalent:

(i) F ∈ S ∗.
(ii) F ∈ L and

lim
v→∞

lim sup
x→∞

x−v∫
v

F (x− y)F (y)
F (x)

dy = 0.

Proof. An equivalent assertion by choosing a special form function instead of the addi-
tional variable v is given in [6, Them. 3.24]. For the sake of completeness, we briefly
present the main steps of the lemma proof. According to considerations in [6] (see the
proof of Theorem 3.24), [7] (see the proof of Lemma 4), and [9] (see the proof of
Theorem 3.2(b)), the assertion of the lemma follows from the estimate

x/2∫
0

F (x− z)F (z)
F (x)

dz >

y∫
0

F (z) dz +
F (x− y)
F (x)

x/2∫
y

F (z) dz, x > 2y > 0,

implying that

1 6
F (x− y)
F (x)

6
(F (x))−1

∫ x/2
0

F (x− z)F (z) dz −
∫ y
0
F (z) dz∫ x/2

0
F (z) dz −

∫ y
0
F (z) dz

,

and from equality

x∫
0

F (x− z)F (z) dz = 2

v∫
0

F (x− z)F (z) dz +
x−v∫
v

F (x− z)F (z) dz,

where x > 2v > 0.
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2.2 Proof of the theorem

(ii)⇒ (i) Assume that FG ∈ S ∗. Lemma 1(ii) implies F ∗G ∈ L , thus the proof will
follow from

F ∗G(x) � FG(x) (5)

and Lemma 1(i). To prove (5), assume that X and Y are independent random variables
with distributions F and G, correspondingly, and write

F ∗G(x) = P(X + Y > x) > P
(
{X > x, Y > 0} ∪ {X > 0, Y > x}

)
= G(0)F (x) + F (0)G(x)− F (x)G(x),

FG(x) = F (x) +G(x)− F (x)G(x).

Thus,

lim inf
x→∞

F ∗G(x)
FG(x)

> lim inf
x→∞

G(0)F (x) + F (0)G(x)− F (x)G(x)
F (x) +G(x)− F (x)G(x)

> min
{
F (0), G(0)

}
> 0. (6)

On the other hand,

lim sup
x→∞

F ∗G(x)
FG(x)

= lim sup
x→∞

P(X1 + Y2 > x)

P(X ∨ Y > x)

6 lim sup
x→∞

P(X1 ∨ Y1 +X2 ∨ Y2 > x)

P(X ∨ Y > x)
, (7)

where (X1, Y1) and (X2, Y2) are independent copies of (X,Y ).
Since, by (ii), FX∨Y ∈ S ∗ ⊂ S , we have

P(X1 ∨ Y1 +X2 ∨ Y2 > x) ∼ 2P(X ∨ Y > x). (8)

Hence, by (6)–(8),

min
{
F (0), G(0)

}
6 lim inf

x→∞

F ∗G(x)
FG(x)

6 lim sup
x→∞

F ∗G(x)
FG(x)

6 2

and (5) follows.

(i)⇒ (ii) Let F ∗G ∈ S ∗. Since S ∗ ⊂ S , by Lemma 1(iii),

F ∗G(x) ∼ F (x) +G(x) ∼ FG(x),

which further implies FG ∈ L by the above second equivalence. Therefore, FG ∈ S ∗

follows from Lemma 1(i) immediately.

(ii)⇔ (iii)⇔ (iv) follows because of Lemma 1(i).

Nonlinear Anal. Model. Control, 28(1):97–115, 2023
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Finally, relation (3) holds by Lemma 1(iii). It remains to prove relation (4). First,
observe that any of the equivalent statements in (i)–(iv) from Theorem 1 implies the
existence of finite µF and µG. Further, for M > 0 and x > 2M , we have

x∫
0

F (x− y)G(y) dy =

M∫
0

F (x− y)G(y) dy +
x−M∫
M

F (x− y)G(y) dy

+

M∫
0

F (y)G(x− y) dy

=: J1 + J2 + J3.

Therefore,

lim inf
x→∞

∫ x
0
F (x− y)G(y) dy

µGF (x) + µFG(x)
> lim inf

x→∞

J1 + J3

µGF (x) + µFG(x)

> lim inf
x→∞

min

{
J1

µGF (x)
,

J3

µFG(x)

}
> min

{∫M
0
G(y) dy

µG
,

∫M
0
F (y) dy

µF

}
. (9)

Letting M →∞, we get from (9) that

lim inf
x→∞

∫ x
0
F (x− y)G(y) dy

µGF (x) + µFG(x)
> 1. (10)

For the corresponding upper bound, we obtain

lim sup
x→∞

∫ x
0
F (x− y)G(y) dy

µGF (x) + µFG(x)
6 lim sup

x→∞
max

{
J1

µGF (x)
,

J3

µFG(x)

}
+ lim sup

x→∞

J2

µGF (x) + µFG(x)
. (11)

By condition F ∈ L , we get

lim sup
x→∞

J1

µGF (x)
6 lim sup

x→∞

F (x−M)

F (x)

1

µG

M∫
0

G(y) dy =
1

µG

M∫
0

G(y) dy.

Now, letting M →∞, we obtain

lim
M→∞

lim sup
x→∞

J1

µGF (x)
6 1. (12)

Similarly, condition G ∈ L implies

lim
M→∞

lim sup
x→∞

J3

µFG(x)
6 1. (13)

https://www.journals.vu.lt/nonlinear-analysis
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Further, according to Theorem 1(iii), we have that (F + G)/2 ∈ S ∗. Hence, due to
Lemma 2,

lim
M→∞

lim sup
x→∞

J2

µGF (x) + µFG(x)

6
1

min{µF , µG}
lim
M→∞

lim sup
x→∞

∫ x−M
M

F (x− y)G(y) dy
F (x) +G(x)

6
2

min{µF , µG}
lim
M→∞

lim sup
x→∞

x−M∫
M

1
2 (F +G)(x− y) 12 (F +G)(y)

1
2 (F +G)(x)

dy

= 0. (14)

Estimates (11)–(14) imply

lim sup
x→∞

∫ x
0
F (x− y)G(y) dy

µGF (x) + µFG(x)
6 1. (15)

Hence, the desired relation (4) of the theorem follows immediately from (10) and (15).
Theorem 1 is proved.

3 Proof of Theorem 2

3.1 Auxiliary lemmas

In this subsection, we present two additional lemmas, which play a crucial role in the
proof of Theorem 2. The statement of the first lemma is similar to that in Lemma 2. Note
that equivalent condition for F ∈ S ∗ does not require additional condition F ∈ L ,
comparing to Lemma 2.

Lemma 3. Suppose F is distribution of R such that µF <∞. Then F ∈S ∗ if and only if

lim
x→∞

x/2∫
0

F (x− y)− F (x)
F (x)

F (y) dy = 0.

Proof. The proof is similar to the proof of Lemma 3 from [10]. Obviously, equality (2)
is equivalent to ∫ x/2

0
F (x− y)F (y) dy

F (x)
= µF .

Thus,

F ∈ S ∗ ⇐⇒ lim
x→∞

x/2∫
0

F (x− y)
F (x)

F (y) dy = lim
x→∞

x/2∫
0

F (y) dy

⇐⇒ lim
x→∞

x/2∫
0

(
F (x− y)
F (x)

− 1

)
F (y) dy = 0. �

Nonlinear Anal. Model. Control, 28(1):97–115, 2023
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The second lemma is a technical result about behaviour of the special sequences.

Lemma 4. Let {an, n > 1} be an unboundedly increasing sequence of positive numbers,
and let

hn := max
{
k: (k + 1)! 6 an(log an)

β
}

with some positive β > 0. Then, for all sufficiently large n,

log an
log log an

6 hn 6
2 log an
log log an

. (16)

Proof. The proof is constructed along to similar lines as in Lemma 5 from [10]. Namely,
the Stirling’s formula implies that

log(k + 1)! = (k + 1) log(k + 1)− (k + 1)−O(log k)

for k →∞. Define

ĥn =
2 log an
log log an

.

For some positive constant c1 and for sufficiently large n, we have

log(ĥn + 1)! > (ĥn + 1) log(ĥn + 1)− (ĥn + 1)− c1 log ĥn >
9

10
ĥn log ĥn

=
9

5
log
(
an(log an)

β
) log an
log log an

log 2 + log log an − log log log an
log an + β log log an

> log
(
an(log an)

β
)
,

which implies the upper bound in (16).
Similarly, using Stirling’s formula again, for

h̃n =
log an

log log an
,

we obtain

log(h̃n + 1)! 6 h̃n log h̃n + c2 log h̃n

= log an

(
1− log log log an

log log an

)(
1 +

c2

h̃n

)
with some positive c2 and sufficiently large n. Therefore, for large n,

log(h̃n + 1)! 6 log
(
an(log an)

β
)
,

which implies the lower bound in (16). Lemma is proved.
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3.2 Proof of the theorem

Define two distributions F and G with tails:

F(x) := 1(−∞, 6!)(x) + (6!)2

{ ∞∑
n=6

1

(n!)2
1[n!, (n+1)!−bndn)(x)

+

∞∑
n=6

1

((n+ 1)!)2

(
1 +

(n+ 1)!− x
dn

)
1[(n+1)!−bndn, (n+1)!)(x)

}
,

G(x) := 1(−∞,8!)(x) + (8!)2

{ ∞∑
n=3

1

((2n)!)2
1[(2n)!, (2n+1)!−b̂nd̂n)(x)

+

∞∑
n=3

1

((2n + 1)!)2

(
1 +

(2n + 1)!− x
d̂n

)
1[(2n+1)!−b̂nd̂n, (2n+1)!)(x)

+

∞∑
n=3

1

x2
1[(2n+1)!, (2n+1)!)(x)

}
,

where bn := n2+2n, dn := (log bn)
3, b̂n = b2n = 2n(2n+2), and d̂n = (log b̂n)

2. The
functions above are constructed according to the scheme presented in [10] and [16].

Because of Theorem 1, it suffices to prove that F ,G ∈ S ∗ and (F + G)/2 /∈ S ∗.
According to Lemma 3, we have to prove the following relations:

µF <∞, µG <∞, (17)

lim sup
x→∞

x/2∫
0

F(x− y)−F(x)
F(x)

F(y) dy = 0, (18)

lim sup
x→∞

x/2∫
0

G(x− y)− G(x)
G(x)

G(y) dy = 0, (19)

lim sup
x→∞

x/2∫
0

(F + G)(x− y)− (F + G)(x)
(F + G)(x)

(F + G)(y) dy > 0. (20)

Denote

∆F (x, y) :=
F(x− y)−F(x)

F(x)
, ∆G(x, y) :=

G(x− y)− G(x)
G(x)

.

Proof of (17). According to definitions of F(x) and G(x),

µF =

∞∫
0

F(y) dy 6 6! + 6!

∞∑
n=3

1

(n!)2
(
(n+ 1)!− n!

)
< 1238,

Nonlinear Anal. Model. Control, 28(1):97–115, 2023
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µG =

∞∫
0

G(y) dy 6 8! + 8!

∞∑
n=3

1

((2n)!)2
(
(2n + 1)!− (2n)!

)
+ 8!

∞∑
n=3

(
1

(2n + 1)!
− 1

(2n+1)!

)
< 98243,

implying (17).

Proof of (18). Suppose that n is sufficiently large and let

(n+ 1)!− bndn 6 x < (n+ 1)!. (21)

For such x, we have

∆F (x, y) =

{
y
dn

if 0 6 y 6 x− ((n+ 1)!− bndn),
x−((n+1)!−bndn)
dn+(n+1)!−x if x− ((n+ 1)!− bndn) < y 6 x

2 .

Therefore, for x in (21), we have

JF (x) :=

x/2∫
0

∆F (x, y)F(y) dy

6
1

dn

bndn∫
0

yF(y) dy + bn

∞∫
bndn

F(y) dy =: K1 +K2. (22)

Define kn := max{k: (k + 1)! 6 bndn} and write

K1 6
(6!)2

2dn

{
1 +

kn+1∑
k=6

1

(k!)2
((
(k + 1)!− bkdk

)2 − (k!)2
)

+

kn+1∑
k=6

1

((k + 1)!)2

(
1 +

(k + 1)!

dk

)((
(k + 1)!

)2 − ((k + 1)!− bkdk
)2)}

6
(6!)2

2dn

(
1 + 3

kn+1∑
k=6

bk

)
=

(6!)2

2dn

(
1 + 3

kn+1∑
k=6

(k2 + 2k)

)
(23)

because

1

(k!)2
(
((k + 1)!− bkdk)2 − (k!)2

)
6 (k + 1)2 − 1 = bk

and (
1 +

(k + 1)!

dk

)((
(k + 1)!

)2 − ((k + 1)!− bkdk
)2)
6 2
(
(k + 1)!

)2
bk.

https://www.journals.vu.lt/nonlinear-analysis
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Thus, by (23) and Lemma 4,

K1 6 (6!)2
k3n
dn
6 (6!)2

(
2 log bn
log log bn

)3
1

(log bn)3
=

8(6!)2

(log log bn)3
. (24)

For the second integral in (22), we have

K2 6 bn(6!− bndn)+ + bn

∞∑
k=kn+1

6!

(k!)2
(
(k + 1)!− k!

)
= bn(6!− bndn)+ + bn6!

∞∑
k=kn

1

k!

6 bn(6!− bndn)+ +
24(6!)

(log log bn)2 log bn
(25)

because of the following estimate:

bn

∞∑
k=kn

1

k!
6

e

kn!

bndn
dn
6

e

kn!

(kn + 2)!

dn

6
2ek2n
dn
6 6

(
2 log bn
log log bn

)2
1

(log bn)3

=
24

(log log bn)2 log bn
.

Here we have used that, by definition of kn, bndn 6 (kn + 2)! 6 2kn! and then applied
Lemma 4. Substituting estimates (24)–(25) into (22), we get that for x from (21), it holds

JF (x) 6
c1

(log log bn)3
(26)

for some positive constant c1.
Now, consider x satisfying

(n+ 1)! 6 x < (n+ 2)!− bn+1dn+1. (27)

We split this interval into three subintervals

(n+ 1)! 6 x < 2((n+ 1)!− bndn), (28)
2((n+ 1)!− bndn) 6 x < 2(n+ 1)!, (29)

2(n+ 1)! 6 x < (n+ 2)!− bn+1dn+1 (30)

and estimate JF (x) in each case separately.
In case (28), we have

∆F (x, y) =


y
dn

if , 0 6 y 6 x− (n+ 1)!,
(n+1)!−x+y

dn
if x− (n+ 1)! < y 6 x− ((n+ 1)!− bndn),

bn if x− ((n+ 1)!− bndn) < y 6 x
2 .
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Since
(n+ 1)!− x+ y

dn
6 min

{
y

dn
, bn

}
,

for the x from (28) and for x − (n + 1)! < y 6 x −
(
(n + 1)! − bndn

)
, we get that

JF (x) 6 K1 +K2 and estimate (26) holds again.
Consider now case (29). We have

∆F (x, y) =

{
0 if 0 6 y 6 x− (n+ 1)!,
(n+1)!−x+y

dn
if x− (n+ 1)! < y 6 x

2 .

Thus,

JF (x) =

x/2∫
x−(n+1)!

(n+ 1)!− x+ y

dn
F(y) dy

6 bn

∞∫
bndn

F(y) dy = K2 6
c2

log bn(log log bn)2
,

according to estimate (25), where c2 is some positive constant.
Finally, in case (30), ∆F (x, y) = 0 for all 0 6 y 6 x/2, implying JF (x) = 0.
Summarizing, estimate (26) holds for all x in (27) and for all sufficiently large n. This

implies relation (18).

Proof of (19). Suppose that n is sufficiently large and split the interval(
2n
)
! 6 x <

(
2n+1

)
!

into following subintervals: (
2n
)
! 6 x < 2

(
2n
)
!, (31)

2
(
2n
)
! 6 x <

(
2n + 1

)
!− b̂nd̂n, (32)(

2n + 1
)
!− b̂nd̂n 6 x <

(
2n + 1

)
!, (33)(

2n + 1
)
! 6 x < 2

((
2n + 1

)
!− b̂nd̂n

)
, (34)

2
((
2n + 1

)
!− b̂nd̂n

)
6 x < 2

(
2n + 1

)
!, (35)

2
(
2n + 1

)
! 6 x <

(
2n+1

)
!. (36)

As in the case of F , for each subset above, we will obtain the exact expressions for
∆G(x, y) and then, the upper bounds for JG(x).

In case (31),

∆G(x, y) =

{
0 if 0 6 y 6 x− (2n)!,

((2n)!)2−(x−y)2
(x−y)2 if x− (2n)! < y 6 x

2 ,
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and, consequently,

JG(x) 6

x/2∫
0

((
x

x− y

)2

− 1

)
G(y) dy.

Since (x/(x− y))2 6 4, by the dominated convergence theorem, we have that

sup
(2n)!6x<2(2n)!

JG(x) = ε1(n)→ 0, n→∞. (37)

In case (32), ∆G(x, y) = 0 for 0 6 y 6 x/2, implying

sup
2(2n)!6x<(2n+1)!−b̂nd̂n

JG(x) = 0. (38)

In case (33), we have

∆G(x, y) =


y

(2n+1)!+d̂n−x
if 0 6 y < x−

(
(2n + 1)!− b̂nd̂n

)
,

x−((2n+1)!−b̂nd̂n)
(2n+1)!+d̂n−x

if x− ((2n + 1)!− b̂nd̂n) 6 y < x
2 ,

implying that

JG(x) 6

x/2∫
0

min

{
y

d̂n
, b̂n

}
G(y) dy 6 1

d̂n

d̂nb̂n∫
0

yG(y) dy + b̂n

∞∫
d̂nb̂n

G(y) dy

=: L1 + L2.

Analogously to kn, define k̂n := max{k: (2k + 1)! 6 b̂nd̂n
}

. We get

L1 6
1

d̂n

b̂nd̂n∫
0

y

{
1(−∞,8!)(y) + (8!)2

∞∑
k=3

1

((2k)!)2
1[(2k)!,(2k+1)!−b̂kd̂k)(y)

+ (8!)2
∞∑
k=3

1 + b̂k
((2k + 1)!)2

1[(2k+1)!−b̂kd̂k,(2k+1)!)(y)

+ (8!)2
∞∑
k=3

1

y2
1[(2k+1)!,(2k+1)!)(y)

}
dy

6
(8!)2

2d̂n
+

(8!)2

d̂n

k̂n+1∑
k=3

1

((2k)!)2

(2k+1)!∫
(2k)!

y dy +
(8!)2

d̂n

b̂nd̂n∫
9!

1

y
dy

6
(8!)2

2d̂n
+

(8!)2

d̂n
log(̂bnd̂n) +

(8!)2

2d̂n

k̂n+1∑
k=3

b̂k = ε2(n)→ 0, n→∞, (39)
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because for sufficiently large n,

k̂n+1∑
k=3

b̂k 6
16

3
22k̂n + 8 · 2k̂n 6 6 · 22k̂n 6 24(log b̂n)

2

(log log b̂n)2

due to Lemma 4.
For the integral L2, we obtain

L2 6 b̂n

(
(8!− b̂nd̂n)+ + (8!)2

∞∑
k=k̂n+1

(2k + 1)!− (2k)!

((2k)!)2
+ (8!)2

∞∫
b̂nd̂n

dy

y2

)

6 b̂n

(
(8!− b̂nd̂n)+ + (8!)2

∞∑
k=k̂n+1

1

(2k − 1)!
+

(8!)2

b̂nd̂n

)

6 b̂n(8!− b̂nd̂n)+ +
(8!)2e b̂n

(2k̂n+1 − 1)!
+

(8!)2

d̂n
= ε3(n)→ 0, n→∞, (40)

because (2k̂n+1 − 1)! > b̂nd̂n for large n, according to definition of the sequence k̂n.
Relations (39)–(40) imply that

sup
2(2n)!6x<(2n+1)!−bndn

JG(x) 6 ε2(n) + ε3(n)→ 0, n→∞. (41)

In case (34), we obtain

∆G(x, y) =


y(2x−y)
(x−y)2 if 06y6x−(2n+1)!,

x2(d̂n+(2n+1)!−x+y)
d̂n((2n+1)!)2

if x−(2n+1)! < y6x−((2n+1)!−b̂nd̂n),

( x
(2n)! )

2 − 1 if x−((2n+1)!−b̂nd̂n)<y6 x
2 .

(42)

Hence,

JG(x) =

x−(2n+1)!∫
0

y(2x− y)
(x− y)2

G(y) dy

+

x−((2n+1)!−b̂nd̂n)∫
x−(2n+1)!

(
x2(d̂n + (2n + 1)!− x+ y)

d̂n((2n + 1)!)2
− 1

)
G(y) dy

+

x/2∫
x−((2n+1)!−b̂nd̂n)

((
x

(2n)!

)2

− 1

)
G(y) dy. (43)
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In particular case of (34), when (2n + 1)! 6 x < (2n + 1)! + b̂nd̂n, by estimating the
above integrals separately, we get

JG(x) 6

∞∫
0

(
x

x− y

)2

1[0,x/2](y)G(y) dy −
∞∫
0

G(y) dy + ε4(n)

+
2

d̂n

b̂nd̂n∫
0

yG(y) dy + 2b̂n

2b̂nd̂n∫
b̂nd̂n

G(y) dy + b̂n

∞∫
b̂nd̂n

G(y) dy

for some vanishing function ε4(n). Thus, for large n and for all x ∈ [(2n+1)!, (2n+1)!+

b̂nd̂n), we have that

JG(x) 6 ε1(n) + ε4(n) + 3(L1 + L2)

6 ε1(n) + ε4(n) + 3
(
ε2(n) + ε3(n)

)
→ 0. (44)

For the remaining subinterval of (34), where (2n+1)!+ b̂nd̂n 6 x < 2((2n+1)!− b̂nd̂n),
using expressions (42) and (43), we obtain

JG(x) 6

∞∫
0

(
x

x− y

)2

1[0,x/2](y)G(y) dy −
∞∫
0

G(y) dy + 3b̂n

∞∫
b̂nd̂n

G(y) dy

6 ε1(n) + 3 ε3(n)→ 0. (45)

Relations (44) and (45) imply that

sup
2(2n+1)!6x<2((2n+1)!−b̂nd̂n)

JG(x) 6 ε5(n) (46)

with some vanishing function ε5.
Consider now case (35). For such x,

∆G(x, y) =


y(2x−y)
(x−y)2 if 0 6 y 6 x− (2n + 1)!,

x2(d̂n+(2n+1)!−x+y)
d̂n((2n+1)!)2

− 1 if x− (2n + 1)! < y 6 x
2 ,

implying that

JG(x) =

x−(2n+1)!∫
0

y(2x− y)
(x− y)2

G(y) dy

+

x/2∫
x−(2n+1)!

(
x2(d̂n + (2n + 1)!− x+ y)

d̂n((2n + 1)!)2
− 1

)
G(y) dy.
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In the case under consideration, we have that x− (2n + 1)! > b̂nd̂n and

x2(d̂n + (2n + 1)!− x+ y)

d̂n((2n + 1)!)2
− 1 6 4

d̂n + (2n + 1)!− x/2
d̂n

6
d̂n + b̂nd̂n

d̂n
6 5b̂n.

The derived estimates yield

JG(x) 6

∞∫
0

(
x

x− y

)2

1[0,x/2](y)G(y) dy −
∞∫
0

G(y) dy + 5L2,

which implies that

sup
2((2n+1)!−b̂nd̂n)6x<2(2n+1)!

JG(x) 6 ε1(n) + 5ε3(n). (47)

Finally, consider case (36). For these x and for all 0 6 y 6 x/2,

∆G(x, y) =
y(2x− y)
(x− y)2

.

Thus,
sup

2(2n+1)!6x<(2n+1)!

JG(x) 6 ε1(n). (48)

The derived estimates (37), (38), (41), (46), (47), and (48) imply that

lim
n→∞

sup
(2n)!6x<(2n+1)!

JG(x)→ 0,

showing the validity of (19).
It remains to prove inequality (20). Integral from this inequality is bounded from

below by

JF,G(x) :=

x/2∫
0

G(x− y)− G(x)
F(x) + G(x)

F(y) dy.

Take xn := (2n + 1)!. Then F(xn) = G(xn) = 1/x2n, implying that

JF,G(xn) =
1

2

xn/2∫
0

G(xn − y)− G(xn)
G(xn)

F(y) dy

>
1

2

b̂nd̂n∫
0

∆G(xn, y)F(y) dy
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for large n. According to (42),

∆G(xn, y) =
d̂n + y

d̂n
>

y

d̂n
.

Consequently, denoting k̃n = max{k : (k + 1)! 6 b̂nd̂n}, we get

JF,G(xn) >
1

2d̂n

b̂nd̂n∫
0

yF(y) dy

=
1

2d̂n

b̂nd̂n∫
0

y

{
1(−∞,6!)(y) + (6!)2

∞∑
k=6

1

(k!)2
1[k!,(k+1)!−bkdk)(y)

+ (6!)2
∞∑
k=6

1

((k + 1)!)2

(
1 +

(k + 1)!− y
dk

)
1[(k+1)!−bkdk,(k+1)!)(y)

}
dy

>
(6!)2

4d̂n

k̃n∑
k=6

((k + 1)!− bkdk)2 − (k!)2

(k!)2

=
(6!)2

4d̂n

k̃n∑
k=6

((
k + 1− bkdk

k!

)2

− 1

)

>
(6!)2

4d̂n

(
k̃n∑
k=6

k2 − 2

k̃n∑
k=6

k + 1

k!
bkdk

)
.

Since the series
∞∑
k=6

k + 1

k!
bkdk

converges, we have that

JF,G(xn) > c2

(
k̃3n

d̂n
− c3

)
for large n with some positive constants c2 and c3. As b̂nd̂n = b̂n(log b̂n)

2, applying
Lemma 4 with an = b̂n and β = 2 to the sequence k̂n, we get

k̃3n

d̂n
>

log b̂n

(log log b̂n)3
→∞, n→∞.

Therefore,
lim
n→∞

JF,G(xn) =∞,

and the desired inequality (20) follows. Theorem 2 is proved.
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